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Abstract
Background: Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide.
Costimulatory molecules have been proven to be the foundation of immunotherapy. However, the
potential roles of costimulatory molecule genes (CMGs) in HCC remain unclear. Our study is aimed to
develop a costimulatory molecule-related gene signature that could evaluate the prognosis of HCC
patients.

Methods: Based on The Cancer Gene Atlas (TCGA) database, univariate Cox regression analysis was
applied in CMGs to identify prognosis-related CMGs. Consensus clustering analysis was performed to
stratify HCC patients into different subtypes and compared them in OS. Subsequently, the LASSO Cox
regression analysis was performed to construct the CMGs-related prognostic signature and Kaplan–
Meier survival curves as well as ROC curve were used to validate the predictive capability. Then we
explored the correlations of the risk signature with tumor-infiltrating immune cells, tumor mutation burden
(TMB) and response to immunotherapy. The expression levels of prognosis-related CMGs were validated
in HCC using qRT-PCR method.

Results: All HCC patients were classified into two clusters based on 11 CMGs with prognosis values and
cluster 2 correlated with a poorer prognosis. Next, a prognostic signature of six CMGs was constructed,
which was an independent risk factor for HCC patients. Patients with low-risk score were associated with
better prognosis. The correlation analysis showed that the risk signature could predict the infiltration of
immune cells and immune status of the immune microenvironment in HCC. The qRT-PCR indicated six
CMGs with significantly differential expression in HCC tissues and normal tissues.

Conclusion: In conclusion, our CMGs-related risk signature could be used as a prediction tool in survival
assessment and immunotherapy for HCC patients.

Introduction
Primary liver cancer is an aggressive malignant tumor with high mortality worldwide(1). Hepatocellular
carcinoma (HCC) is the most common histological subtype and the fourth leading cause of cancer-
related mortality, accounts for approximately 90% of all primary liver cancer. At present, the traditional
treatment methods for HCC are systemic chemotherapy, local ablation and surgical resection(2).
However, the therapeutic effect of these methods is away from satisfactory. In recent years, some clinical
trials related immunotherapy showed different outcomes in improving the prognosis of HCC patients(3–
5). Therefore, it is urgently required to explore novel prognostic signature for HCC that can predict survival
and the response to immunotherapy.

The component of immune microenvironment in HCC is the target for many therapeutic advances,
including immunotherapy(6). Most recently, immunotherapies targeting the adaptive immune system,
specifically, T cells, have improved tumor control(7). Activating T cells involves many signals, among
which costimulatory molecules are important(8, 9). HCC could utilize immune checkpoint and evade anti-
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tumor immune responses by expressing the corresponding costimulatory ligands(10). B7-CD28
superfamily is a pivotal signal in co-stimulation of T cell activation, and PD-1/PD-L1 also belong to it,
which demonstrated the critical effect of costimulatory molecules in HCC(11, 12). Besides, accumulating
evidence has shown that TNF superfamily, another costimulatory signals, plays a central role in cancer
immune regulation(13). The OX40-OX40L axis, a member of the TNF superfamily, has been shown to
improve anti-tumor effects of immune cells and effect for cancer immunotherapy(14–16). Previous
studies also have shown that costimulatory molecules can regulate the tumor immune
microenvironment(TME), mainly affecting the activation and proliferation of T cells(17). Thus, these
molecules possibly could provide novel insights in TME. However, the functions of costimulatory
molecules in HCC remain unclear.

In this systematic study, we evaluated the expression levels of costimulatory molecules genes in HCC
tissues and normal tissues from The Cancer Genome Atlas (TCGA) database. Then a costimulatory
molecules-related prognostic signature was constructed for HCC patients and we explored the
associations between the prognostic signature and clinicopathological features. Furthermore, we also
analyzed the potential roles of this prognostic signature in the immune microenvironment, tumor
mutation analysis and response to immunotherapy in different subgroups.

Materials And Methods

1. Data collection
The transcriptomic data and corresponding clinical information of HCC were downloaded from the public
The Cancer Genome Atlas (TCGA) data portal (https://portal.gdc.cancer.gov/). A total of 50 normal
samples and 374 HCC samples were obtained. Patients with incomplete overall survival (OS) information
were excluded. Subsequently, the TCGA cohort was randomly divided into training set (n=186) and test
set (n=184). There were no significantly differences in clinical characteristics between two sets (Table 1).
Furthermore, a total of sixty costimulatory molecules genes (CMGs) were collected from prior reviews(18,
19). 

2. Identification of differentially expressed genes (DEGs)
We utilized “limma” package in R software (version 4.0.4) to identify the differentially expressed genes
(DEGs) between all HCC specimens and normal specimens according to the criteria of P-value < 0.05 and
|log2 (fold change) | > 1. The DEGs were notated with *** if p<0.001, ** if p<0.01 and * if p<0.05. A PPI
network was constructed using the Search Tool for the Retrieval of Interacting Genes (STRING) database
(http://www.string-db.org/) to explore the interactions between these DEGs.

3. Consensus clustering of prognosis-related CMGs
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Univariate Cox regression analysis was performed to screen the CMGs with prognostic values in HCC with
the cutoff value of P<0.05. To further elucidate the biological characteristics and prognostic values of
CMGs, we employed the “ConsensusClusterPlus” package to cluster the HCC patients into different
subgroups(20). Principal Component Analysis (PCA) was performed using R package to assess the
distribution of gene expression among different subtypes. The OS difference between different clusters
was verified by the Kaplan-Meier curves. Gene set enrichment analysis (GSEA) was conducted in gene set
“h.all.v7.2.symbols.gmt” using Java GSEA software (version 4.1.0) to identify the potential biological
processes among different clusters. An enrichment pathway with the normalized P < 0.05 and the false
discovery rate (FDR) value < 0.05 were considered as statistically significant. 

4. Construction of costimulatory molecule-related
prognostic signature
Patients with HCC were randomly divided into a training set and a test set. The training set was used to
construct a prognostic costimulatory molecule-related risk signature of HCC, and the test set and total set
were used to validate the prognostic power of this risk signature. The least absolute shrinkage and
selection operator (LASSO) penalized Cox proportional hazards regression was performed to narrow
down the candidate genes and construct the risk model based on the prognosis-related costimulatory
molecule genes using the R package “glmnet”(21). The penalty parameter (λ) was determined by the
minimum criteria. The risk score was calculated with the following formular for each patient: Risk score =
expression of gene 1 * coefficient 1 + expression of gene 2 * coefficient 2 + expression of gene 3 *
coefficient 3 + … + expression of gene n * coefficient n(22). Patients were divided into high- and low-risk
groups according to the median cutoff of the risk score. The area under the curve (AUC) was calculated
between high- and low-risk groups with R package “survivalROC” to validate the prognostic capability.
The Kaplan–Meier survival curves of the high- and low-risk groups were plotted using R package
“survival” and “survminer” to demonstrate the OS of the patients.

5. Construction and validation of a nomogram
The nomogram and calibration curves were constructed with R package “rms”. The consistency between
the predicted and actual survival of the calibration curves was used to evaluate the accuracy of the
nomogram. Meanwhile, the nomogram was examined using the ROC curves. 

6. Functional enrichment analysis 
HCC patients were stratified into high- and low-risk groups based on the median risk score. To explore the
potential molecular mechanisms of the risk model genes, DEGs between the high- and low-risk groups
were identified with the criteria of |log2FC|≥1 and FDR<0.05. Gene Ontology (GO) and Kyoto
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Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were conducted using the
“clusterProfler” package in R software according to the DEGs. 

7. Assessment of immune cell infiltration
The Cell-type Identification by Estimating Relative Subsets of RNA Transcripts (CIBERSORT) analysis
were performed to estimate the proportions of immune cells infiltration using R package “CIBERSORT”
from RNA-sequencing data in TCGA(23). Wilcoxon rank-sum test was used to examine the differences of
infiltrating immune cells in high- and low-risk groups. The tumor microenvironment score was calculated
using R package “ESTIMATE”(24).

8. Mutation analysis
The mutation data for HCC patients were downloaded from the TCGA data portal
(https://portal.gdc.cancer.gov/). Mutation data were further analyzed using the “maftools” package(25).
We calculated the tumor mutation burden (TMB) score for each HCC patient as follows: (total
mutation/total covered bases) ×10^6(26). 

9. Immunophenoscore analysis
Immunophenoscore (IPS) could well predict the response of immune checkpoint inhibitors (ICIs). The
immunogenicity is determined by four major categories of genes, including effector cells, major
histocompatibility complex (MHC) molecules, immunomodulators and immunosuppressive cells. The IPS
of a patient can be derived using machine learning without bias. The scores of IPS were calculated using
a scale ranging from 0–10 based on representative cell type gene expression z-scores. The IPS of every
HCC patient was obtained from The Cancer Immunome Atlas (TCIA) (https://tcia.at/home).

10. Verification of prognosis-related CMGs expression
Total RNA was extracted from tissue samples using Trizol reagent (Sigma, USA), and then, RNA was
reverse transcribed into cDNA with the Evo M-MLV RT Premix (Accurate Biotechnology (Hunan) Co.,Ltd).
Quantitative real-time PCR (qRT-PCR) analyses were performed by SYBR Green premix pro Taq HS qRT-
PCR kit (Accurate Biotechnology (Hunan) Co.,Ltd) to validate gene expression, and the level of β-Actin
served as an internal control. The relative expression was calculated based on the comparative Ct (2−ΔΔCt)

method. The primers’ sequences for qRT-PCR are shown in Table 2. 

11. Tissue collection

https://tcia.at/home
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Forty-three matched tumorous and non-tumorous tissue specimens of HCC were collected from The
Xijing Hospital of Air Force Medical university during 2017-2018. The clinicopathological details are
shown in Table 3. The research was approved by the Institutional Research Ethics Committees of the
Xijing Hospital. Informed consent for publication was obtained from all patients for collection of tissue
samples prior to the surgery.

Results

1. Identification of DEGs between normal and HCC tissues
The flowchart of this study was illustrated in Figure 1. The expression data of 59 CMGs, including 13
well-defined B7-CD28 family costimulatory molecules and 46 TNF family costimulatory molecules genes,
were extracted from The Cancer Genome Atlas (TCGA) database after excluding TNFRSF6B for its low
expression. The 59 costimulatory molecule-related genes expression levels were compared between HCC
tumor and normal tissues, we identified 40 differentially expressed genes (DEGs) (P < 0.05). Among these
DEGs, 11 genes (NGFR, TNFSF11, PDCD1LG2, CD274, TNFRSF1A, TNFRSF11B, TMIGD2, FAS,
TNFRSF10D, TNFSF13 and CD86) were down-regulated while 29 genes (TNFRSF17, TNFRSF13B, CD276,
TNFRSF12A, LTBR, TNFSF18, EDAR, TNFRSF14          , ICOSLG, RELT, CD28, ICOS, LTA, TNFRSF21,
TNFRSF10C, VTCN1, TNFRSF11A, LTB, EDA2RC, TLA4, TNFSF9, TNFRSF25, PDCD1, CD70, TNFSF4,
TNFRSF9, TNFRSF18, TNFSF15 and TNFRSF4) were up-regulated in tumor tissues (Figure 2A and
Supplementary Table 1). The correlation among CMGs were analyzed. The relationships between each
two of them were almost positively correlated, TNFRSF13C and TNFRSF13B were most correlated (Cor =
0.93) (Figure 2B). A protein–protein interaction (PPI) network was performed to further explore the
interactions among these CMGs (Figure 2C). The minimum required interaction score was set at highest
confidence 0.9. The resulted showed that TNF, CD28, CD40, CD80, CTLA4, LTA, TNFRSF10A and
TNFSF13B were hub genes.

2. Consensus clustering of prognosis-related CMGs in HCC
A univariate Cox regression analysis was performed to primary selecting of the survival-related genes
from 59 CMGs. A total of 11 CMGs were significantly linked to the prognosis of HCC patients (P < 0.05).
Two genes were protective genes with hazard ratio (HR) < 1, while 9 genes were risk factors with HR > 1
among them (Figure 3A). To explore the associations between the expression of 11 prognosis-related
CMGs and HCC subtypes, HCC patients were divided into two subgroups (Cluster 1: n=197, Cluster 2:
n=173) according to consensus clustering analysis (Figure 3B and Supplementary Figure 1A). The PCA
were analyzed to verify the reliability between different subgroups, and Cluster 1 and Cluster 2 could
gather together and non-overlapped with each other (Figure 3C). We compared the OS between two
subtypes to better understand the relationships between clustering results and survival outcomes, the
Kaplan-Meier curves indicated that Cluster 1 had a better prognosis than Cluster 2 (P = 0.002, Figure 3D).
The clinical features and two clusters were compared with a heatmap. The majority of 11 prognosis-
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related CMGs had higher expression in Cluster 2. These two clusters were different in grade (P < 0.01), but
not with tumor stage, age and gender (Figure 3E). Furthermore, GSEA analysis showed that oncogenic
pathways (apoptosis, G2M-checkpoint, IL2-STAT5-signaling, IL6-JAK-STAT3-signaling, inflammatory
response, PI3K-AKT-MTOR-signaling, TNFA-signaling via NF-κB, unfolded protein response) were
significantly enriched in Cluster 2 (Supplementary Figure 1B).

3. Construction and verification of costimulatory molecule-
related risk signature
To narrow down candidate genes and construct the risk signature, the least absolute shrinkage and
selection operator (LASSO) Cox regression analysis was performed in the training set, and 6 of 11
prognosis-related CMGs were identified (Supplementary Figure 2). The formula to calculate the risk score
as follows: risk score = (0.25584 * TNFSF4) + (-0.29002 * TMIGD2) + (0.13379 * TNFRSF4) + (0.22009 *
TNFRSF11B) + (0.40207 * TNFRSF11A) + (-0.78099 * CD40LG). We calculated the risk scores for every
HCC patient in the training set according to the above formular. Patients in the training set were divided
into high- and low-risk groups based on their median risk sore. A significant difference of OS was
observed in different subgroups. High-risk patients had a poorer OS than low-risk groups (P < 0.001)
(Figure 4D). Time-dependent receiver operating characteristic (ROC) analysis was used to evaluate the
sensitivity and specificity of the risk signature. The areas under the curve (AUC) were 0.756 at 1-year
survival, 0.791 at 3-year survival and 0.729 at 5-year survival (Figure 4E). We ranked the risk scores of
patients and analyzed their distribution in the training set (Figure 4A). The survival status of HCC patients
in the training set was showed on the dot plot (Figure 4B). The heatmap displayed the expressions of 6
prognosis-related CMGs between two risk groups (Figure 4C). 

To determine the stability of the risk signature, we further verified the predictive capability in the test set
and total set. The risk score was calculated for each patient in the test set and total set by the same
formular obtained from the training set and the patients were classified into high- and low-risk groups.
Similarly, Kaplan-Meier survival curve showed significantly difference in two risk groups among the test
set. The OS of the high-risk groups was poorer than that of the low-risk groups (P=0.019) (Figure 4I). The
1-year AUC was 0.728, the 3-year AUC was 0.644 and the 5-year AUC was 0.654 (Figure 4J). The survival
status, the distribution of the risk score and the expression heatmap of 6 prognosis-related CMGs in the
test set were presented in Figure 4F-H. 

The results in the total set were similar to the training set and test set. Patients in the high-risk group had
a significantly shorter prognosis than patients in the low-risk group (P<0.001) (Figure 4N). In the total set,
the AUC was 0.739 at 1 year, 0.708 at 3 years and 0.662 at 5years (Figure 4O). The distribution of the risk
score, survival status and the expression patterns of 6 prognosis-related CMGs were showed in Figure 4K-
M.
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4. Independent prognostic value of the risk signature
We performed the univariate and multivariate Cox regression analyses to examine whether the risk score
could act as an independent prognosis variable of HCC. Univariate Cox regression analysis showed that
pathological tumor stage and risk score were significantly associated with the prognosis (Figure 5A, C, E).
Multivariate Cox regression analyses further identified that the risk score was an independent prognostic
factor for OS in the training set, test set and total set (Figure 5B, D, F). 

5. Correlations between the risk signature and
clinicopathological factors
The association between the risk model and clinical characteristics were analyzed. The heatmap
displayed the expressions of 6 prognosis-related CMGs and the clinicopathological characteristics in
high- and low-risk groups. The risk score was significantly correlated with histological grade, pathological
T stage and clinical stage (Figure 6A). Patients were divided into subgroups according to the clinical
variables. Differences in clinicopathological factors between high- and low-risk groups were showed in
Figure 6B. The risk score was significantly higher in advanced grade, T stage and clinical stage.
Meanwhile, the correlation between the risk score and clinicopathological features on OS was also
explored. Survival analysis manifested that higher risk score were correlated with poor prognosis in most
subgroups (Figure 6C).

6. Construction of a novel nomogram
We constructed a nomogram to predict the survival rates for HCC patients based on age, gender,
histological grade, TNM stage, tumor stage and risk score (Figure 7A). The calibration curves of the
nomogram indicated good consistency between the predicted survival rate and actual 1-, 3- and 5-year
survival rate (Figure 7B). The AUCs of risk score and tumor stage were 0.739 and 0.671 in 1-year, 0.698
and 0.680 in 3-year, 0.638 and 0.663 in 5-year, respectively (Figure 7C). These findings suggested that the
risk signature might be reliable to predict the OS for HCC patients.

7. Functional enrichment analyses based on the risk
signature
To explore the potential biological processes for the prognostic risk signature, a total of 474 DEGs were
obtained in high- and low-risk groups with the criteria FDR < 0.05 and |log2FC | ≥ 1. Among them, 63
genes were downregulated in high-risk group, while 411 genes were upregulated (Supplementary Table 2).
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analyses were
carried out based on the DEGs. The results of GO analysis indicated that the DEGs were mainly related to
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nuclear division. KEGG analysis showed that DEGs were mostly enriched in cell cycle (Supplementary
Figure 3).

8. Association between risk signature and tumor immune microenvironment

The differences of tumor-infiltrating immune cells between high- and low-risk groups were analyzed to
explore the correlations between the prognostic risk signature and tumor immune microenvironment
(TIME). Supplementary Figure 4 displayed the abundance of 22 immune cells between high- and low-risk
subgroups. Among 22 immune cell types, memory B cells and macrophage M0 were positively correlated
with the risk score, while the abundance of naïve B cells, plasma cells and regulatory T cells (Tregs) were
significantly enriched in low-risk group (Figure 8A). Furthermore, the relative proportion of naïve B cells,
resting memory CD4 T cells, activated memory CD4 T cells, regulatory T cells, gamma delta T cells,
macrophage M1 and resting mast cells were significantly associated with OS (Figure 8B).

To further explore the relationship between the risk signature and immune status, we performed the
expression profiles of 29 immune signature gens sets (16 types of immune cells and 13 immune-related
pathways) in high- and low-risk groups using the single-sample gene set enrichment analysis (ssGSEA).
The heatmap displayed the significant differences in immune status between high- and low-risk samples
(Figure 9A). The low-risk subgroup showed higher levels of infiltration of immune cells and higher activity
of immune-related pathways (Figure 9B). We found that the immune score and stromal score were higher
in low-risk groups, while the tumor purity was significantly lower in low-risk subgroup (Figure 9C). 

9. Differences in molecular characteristics between high-
and low-risk groups 
We evaluated the relationship between mutation characteristics and the risk signature in TCGA HCC
patients with available somatic mutation data. TMB was higher in high-risk patients in spite of no
significant difference (Figure 10B). We also identified the top 20 genes with the highest mutation rates in
high- and low-risk subgroups (Figure 10A). Additionally, we explored the association between
immunophenoscore (IPS) and risk signature to predict the potential clinical efficacy and the response to
ICI therapy in HCC patient. The IPS, IPS-CTLA4, IPS-PD1-PD-L1- PD-L2, and IPS-PD1-PD-L1-PD-L2-CTLA4
blocker were significantly higher in low-risk group, implying that HCC patients with low-risk score could
benefit more from ICI therapy than high-risk patients (Figure 10C).

10. Verification of prognostic CMGs
We verified the expression of the CMGs (TNFSF4, TNFRSF4, TMIGD2, TNFRSF11A, TNFRSF11B, CD40LG)
in 43 pairs of tumorous and non-tumorous tissue specimens from patients with HCC using qRT-PCR
analysis. The results of qRT-PCR showed that the expression of TNFSF4, TNFRSF4, TNFRSF11A and
CD40LG was higher in HCC tissues compared to normal tissues. However, the mRNA expression of
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TNFRSF11B and TMIGD2 was higher in normal tissues, which was consistent with the results of
bioinformatic analysis.

Discussion
Preliminary data from trials of ICIs in the treatment of HCC led to encouraging results. Nevertheless, with
the rapid augment in the utilization of ICIs, immune-related adverse events of HCC arose(27, 28). Multiple
studies found that the usage of ICIs strategies targeting costimulatory molecules for HCC management
was promising(29). Therefore, it is necessary to improve the effect on immunotherapy by selecting the
suitable HCC patients according to costimulatory molecules expression patterns. In this study, we
analyzed the mRNA expression patterns of costimulatory molecules-related in HCC and selected six
genes with prognostic values. Then, we constructed the first costimulatory molecule-related prognostic
signature for HCC patients. We found that prognostic signature was strongly associated with clinical
characteristics. Additionally, our signature was significantly correlated with tumor immune
microenvironment and the response to immunotherapy. Univariate and multivariate cox regression
analysis indicated our signature could be an independent prognostic factors for the survival of HCC
patients. These findings suggested that CMGs risk signature may indicate some insights to personalized
targeted treatment in clinical practice.

Costimulatory molecules played an important role in immunotherapy(17). Recent findings demonstrated
that CD28 co-stimulation was necessary for responses to PD-1 blockade in tumor rejection(30). Thus,
understanding the states of costimulatory molecules in HCC patients will help us determine which
patients might benefit in immunotherapy. To explore the expression levels of costimulatory molecules in
HCC, we acquired 13 members of the B7-CD28 family and 46 members of the TNF family for HCC
patients. Six costimulatory molecular genes (TNFSF4, TNFRSF4, TMIGD2, TNFRSF11A, TNFRSF11B,
CD40LG) with prognostic values were selected. The TNFRSF4-TNFSF4 pathway provided crucial co-
stimulatory signals for CD4+T cell responses(31). Previous study showed that TNFSF4 was closely
related to the unfavorable prognosis of HCC patients(32). In addition, TNFRSF4 was overexpressed in
HCC, associated with a more aggressive phenotype and the activation of multiple immunosuppressive
pathways(33). Studies showed TMIGD2 was mainly expressed in tissue-resident lymphocyte T cells,
related to improved tumor prognosis(34). The different interaction between TMIGD2 and B7-H5 have
been identified in certain cancers, such as lung cancer, osteosarcoma, oral squamous cell carcinoma
(OSCC), colorectal cancer (CRC) and glioma(35). Of note, our results firstly revealed that TMIGD2 was
highly expressed in HCC with favorable prognosis. TNFRSF11A, also known as RANK, was significantly
up-regulated in HCC, and can lead directly to migration and invasion by its ligand(36). Interestingly,
genetic deletion of TNFRSF11A in thymic epithelial cells resulted in impaired thymic involution and
blunted expansion of natural regulatory T (Treg) cells(37). Additionally, study showed that HCC patients
with high serum TNFRSF11B, also known as osteoprotegerin(OPG), level had poorer survival rates
compared with HCC patients with low OPG level(38). CD40 ligand-expressing dendritic cells could induce
regression of HCC(39). Moreover, the expression levels of six prognostic genes were verified using qRT-
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PCR and immunohistochemistry. However, the expression of CMGs was not completely similar with our
previous results, may partly owing to different race and clinical characteristics. With these six
costimulatory molecular genes elucidated in immunity, we hope that the signature constructed by these
could predict the response to immunotherapy for HCC patients.

Tumors were complex ecosystems, defined by spatiotemporal interactions among heterogeneous cell
types(40). Subsequently, we compared the associations between our signature and tumor immune
microenvironment, the immune cell infiltration and tumor mutation profiles in high-risk and low-risk
patients. Our results showed that naïve B cells, plasma cells and regulatory T cells (Tregs) were
significantly enriched in low-risk groups. Much of researches regarded Tregs as an immunosuppressive
cell, posing anti-tumor immunity in various cancers(41). Nevertheless, some scholars stated that
inhibiting the expression of PD-1 promoted other immune checkpoints, resulting in impaired immune
killing ability(42, 43). Accordingly, fewer Tregs cells in HCC patients with poor prognosis, indicated that
those were more likely to be inhibited by PD-1 and activated more immune checkpoints. Correspondingly,
high-risk subgroup manifested lower levels of infiltration of immune cells, implicating less process in
immune activation.

Tumor mutation burden (TMB) is emerging as a potential biomarker, and participated in immunotherapy-
related pathway(44, 45). We found that the tumor mutation burden (TMB) in the high-risk group was
higher than that in the low-risk group with no significant, partly due to the small sample size. TP53
mutation frequency was evidently higher in high-risk group than low-risk group, suggesting more
increases genomic instability and complicated major pathway signaling changes in HCC. Additionally, it
was important to highlight that different microenvironment-based immune subtypes, based on gene
profiling or signatures, and other molecular features, may help identify subgroups of patients more likely
to benefit from specific therapies(46). Some scholars have found that immune-excluded tumors in HCC
were proposed to be primarily resistant to ICIs(47). IPS could predict the response to immunotherapy in
cervical cancer and HCC. The prediction of IPS has been demonstrated in different studies(48, 49). In the
present study, we found low-risk group tended to have higher IPS-CTLA4, IPS-PD1/PD-L1/ PD-L2, and IPS-
PD1/PD-L1/PD-L2+CTLA4, implying that HCC patients with low-risk score could benefit more from
immunotherapy than high-risk patients. Therefore, our signature was of great help to clinical
immunotherapy decision.

However, there were some limitations in this study. Firstly, we did not explore the exact function of six
costimulatory molecule genes in HCC. Thus, it was still necessary to clarify the mechanism of them in the
future. Secondly, it was inevitable that there were limited clinical information for HCC patients in public
datasets, so the values of the prognostic signature needed to be determined by experimental and
prospective studies. Moreover, the risk signature for evaluating the response to immunotherapy was
restricted to costimulatory molecule genes and tumor immune microenvironment was highly
heterogeneous. Therefore, the prognostic information for HCC patients with immunotherapy were needed
to validate the prediction power of our signature clinically.



Page 13/30

Conclusion
In our study, we first elucidated the expression of costimulatory molecules for HCC patients, and
constructed a six CMGs prognostic signature. The costimulatory molecular-related signature could
stratify patients into different subsets with adverse clinical outcomes. In addition, immunotherapy
response prediction by our signature explained disparate effect on HCC patients. Consequently, we
believed our research manifested the capacity of costimulatory molecules and provided clinicians with
applicable treatment.
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Tables
Table 1

The clinical information in training set, test set and total set.

Characteristic Type Total set Test set Training set p value

Age <=65 232(62.7%) 116(63.04%) 116(62.37%) 0.9782

>65 138(37.3%) 68(36.96%) 70(37.63%)

Gender Female 121(32.7%) 61(33.15%) 60(32.26%) 0.9422

Male 249(67.3%) 123(66.85%) 126(67.74%)

Grade G1-2 232(62.7%) 116(63.04%) 116(62.37%) 0.9214

G3-4 133(35.95%) 65(35.33%) 68(36.56%)

Unknow 5(1.35%) 3(1.63%) 2(1.08%)

Stage Stage I-II 256(69.19%) 130(70.65%) 126(67.74%) 0.2024

Stage III-IV 90(24.32%) 38(20.65%) 52(27.96%)

Unknow 24(6.49%) 16(8.7%) 8(4.3%)

T T1-2 274(74.05%) 140(76.09%) 134(72.04%) 0.2946

T3-4 93(25.14%) 41(22.28%) 52(27.96%)

Unknow 3(0.81%) 3(1.63%) 0(0%)

M M0 266(71.89%) 128(69.57%) 138(74.19%) 0.573

M1 4(1.08%) 3(1.63%) 1(0.54%)

Unknow 100(27.03%) 53(28.8%) 47(25.27%)

N N0 252(68.11%) 123(66.85%) 129(69.35%) 0.1515

N1-3 4(1.08%) 0(0%) 4(2.15%)

Unknow 114(30.81%) 61(33.15%) 53(28.49%)

 

Table 2
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 The primer sequences for qRT-PCR analysis. 

Premier Sequences (5'-3')

β-Actin-F CTCCATCCTGGCCTCGCTGT

β-Actin-R GCTGTCACCTTCACCGTTCC

TNFSF4-F CCCTGGGACCTTTGCCTATT

TNFSF4-R GGGGTTGGACCCTTTCCATC

TNFRSF4-F AAGCCTGGAGTTGACTGTGC

TNFRSF4-R CCTGTCCTCACAGATTGCGT

TNFRSF11A-F GTTGCAGCTCAACAAGGACAC

TNFRSF11A-R CAGAGAAGAACTGCAAACCGC

TNFRSF11B-F CTGGAACCCCAGAGCGAAAT

TNFRSF11B-R GCCTCCTCACACAGGGTAAC

TMIGD2-F AGAACAGAAACCGGATCGCA

TMIGD2-R GGCTGTTACCTGAGTCCCTT

CD40LG-F ATGGGAAACAGCTGACCGTT

CD40LG-R GATTGTTGCCCGCAAGGTTT

 

 Table 3

 The clinical features of the HCC (n=43).
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Characteristics Samples(N=43) Percentage(%)

Gender

Male  31 72 

Female 12 28 

 Age 

≤ 60 35 81 

 > 60 8 19 

Aetiology

HBV 41 95 

Others 2 5 

AFP, ng/ml

<400 37 86 

≥400 6 14 

T

T1-2 39 91 

T3-4 4 9 

N

N0 42 98 

N1 1 2 

M

M0 43 100 

M1

Stage

Stage Ⅰ-Ⅱ 39 91 

Stage Ⅲ-Ⅳ 4 9 

 

Figures
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Figure 1

The flowchart of the study
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Figure 2

Expressions of the CMGs in HCC. (A) The expression levels of 59 CMGS in HCC. *P < 0.05, **P < 0.01,
***P < 0.001. (B) The correlation of the 59 CMGs. (C) PPI network showed the interactions of the CMGs
(the highest confidence:0.9).
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Figure 3

Consensus clustering analysis on the CMGs. (A)	Univariate Cox regression analysis identified prognosis-
related CMGs. (B) Consensus clustering matrix for k=2. (C) Principal Component Analysis (PCA) plot for
clusters. (D) Kaplan–Meier overall survival (OS) curves of Cluser1 and Cluster 2. (E) Heatmap and clinical
factors of the two clusters.
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Figure 4

Construction of CMGs risk signature for HCC. The distribution of the risk score, survival status, expression
of 6 prognosis-related CMGs in high- and low-risk groups, Kaplan-Meier survival curve, time-dependent
ROC curve analyses of the CMGs risk signature in the training set (A-E), in the test set (F-G), in the total set
(K-O), respectively.
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Figure 5

Univariate and multivariate Cox regression analyses. Univariate and Multivariate Cox regression analysis
of the correlation between the risk score and clinicopathological features in the training set (A-B), test set
(C-D) and total set (E-F), respectively.

Figure 6
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Clinical characteristics of CMGs prognostic signature in different subgroups. (A) The heatmap and
clinicopathological factors of high- and low-risk subgroups. (B) The relationship between the CMGs
prognostic signature and age, gender, stage, grade, TMN stage. (C) Survival analyses of CMGs risk model
in different clinical subgroups.

Figure 7

Construction and validation of a novel nomogram. (A) The nomogram for predicting 1-year, 3-year and 5-
year OS of HCC in total set. (B) The calibration curves for internal validation of the nomogram in total set.
(C) The time-dependent ROC of the nomogram and clinical factors for 1-year, 3-year and 5year OS
prediction in total set.
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Figure 8

Analysis of tumor infiltrating immune cells. (A) The association of CMGs prognostic signature and
immune cells infiltration. (B) The relationship between OS and immune cells infiltration.
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Figure 9

Comparison of the immune status in high- and low-risk groups. (A) The immune status of HCC patients in
high- and low-risk groups. Tumor purity, ESTIMATE score, immune score and stromal score of every
sample were showed in the heatmap. (B) The box plot displayed the differences of enrichment scores of
16 types of immune cells and 13 immune-related pathways in high- and low-risk groups. (C) The
differences of stromal score, immune score, ESTIMATE score and tumor purity in high- and -risk groups
with violin plots. *** p < 0.001.
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Figure 10

Evaluation of tumor mutation burden and the response to immunotherapy. (A) Mutation profiles of high-
and low-risk groups. (B) The relationship between CMGs risk signature and TMB. (C) The association
between IPS and risk signature for HCC patients.
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Figure 11

Verification of prognostic genes in HCC tissues and normal tissues.（A) TNFSF4,（B）TNFRSF4, (C)
TNFRSF11A, (D) TNFRSF 11B, (E) TMIGD2, (F) CD40LG. ns : not significant,*P <0.05,**P <0.01.
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