1 Xiong, T., Tan, T. L., Lu, L., Lee, W. S. V. & Xue, J. Harmonizing Energy and Power Density toward 2.7 V Asymmetric Aqueous Supercapacitor. Adv. Energy Mater. 8, 1702630, doi:10.1002/aenm.201702630 (2018).
2 Wang, W. et al. A hybrid superconcentrated electrolyte enables 2.5 V carbon-based supercapacitors. Chem. Commun. 56, 7965-7968, doi:10.1039/D0CC02040K (2020).
3 Zhong, H., Xu, F., Li, Z., Fu, R. & Wu, D. High-energy supercapacitors based on hierarchical porous carbon with an ultrahigh ion-accessible surface area in ionic liquid electrolytes. Nanoscale 5, 4678-4682, doi:10.1039/C3NR00738C (2013).
4 Iamprasertkun, P., Ejigu, A. & Dryfe, R. A. W. Understanding the electrochemistry of “water-in-salt” electrolytes: basal plane highly ordered pyrolytic graphite as a model system. Chem. Sci. 11, 6978-6989, doi:10.1039/D0SC01754J (2020).
5 Wang, C. et al. Polyaniline functionalized reduced graphene oxide/carbon nanotube ternary nanocomposite as a supercapacitor electrode. Chem. Commun. 56, 4003-4006, doi:10.1039/D0CC01028F (2020).
6 Arvani, M., Keskinen, J., Lupo, D. & Honkanen, M. Current collectors for low resistance aqueous flexible printed supercapacitors. J. Energy Storage 29, 101384, doi:https://doi.org/10.1016/j.est.2020.101384 (2020).
7 Sahoo, B., Kumar, R., Joseph, J., Sharma, A. & Paul, J. Preparation of aluminium 6063-graphite surface composites by an electrical resistance heat assisted pressing technique. Surf. Coat. Technol. 309, 563-572, doi:https://doi.org/10.1016/j.surfcoat.2016.12.011 (2017).
8 Li, X. et al. Suppressing Corrosion of Aluminum Foils via Highly Conductive Graphene-like Carbon Coating in High-Performance Lithium-Based Batteries. ACS Appl. Mater. Interfaces 11, 32826-32832, doi:10.1021/acsami.9b06442 (2019).
9 Kim, S. Y. et al. Few-layer graphene coated current collectors for safe and powerful lithium ion batteries. Carbon 153, 495-503, doi:https://doi.org/10.1016/j.carbon.2019.07.032 (2019).
10 Yao, Y. et al. Epitaxial Welding of Carbon Nanotube Networks for Aqueous Battery Current Collectors. ACS Nano 12, 5266-5273, doi:10.1021/acsnano.7b08584 (2018).
11 Wang, R. et al. Carbon black/graphene-modified aluminum foil cathode current collectors for lithium ion batteries with enhanced electrochemical performances. J. Electroanal. Chem. 833, 63-69, doi:https://doi.org/10.1016/j.jelechem.2018.11.007 (2019).
12 Hu, H. et al. Small graphite nanoflakes as an advanced cathode material for aluminum ion batteries. Chem. Commun. 56, 1593-1596, doi:10.1039/C9CC06895C (2020).
13 Li, B. et al. Nitrogen-doped activated carbon for a high energy hybrid supercapacitor. Energy Environ. Sci. 9, 102-106, doi:10.1039/C5EE03149D (2016).
14 Kuenzel, M. et al. Unveiling and Amplifying the Benefits of Carbon-Coated Aluminum Current Collectors for Sustainable LiNi0.5Mn1.5O4 Cathodes. ACS Appl. Energy Mater. 3, 218-230, doi:10.1021/acsaem.9b01302 (2020).
15 Wei, Y. & Jia, C. Q. Intrinsic wettability of graphitic carbon. Carbon 87, 10-17, doi:https://doi.org/10.1016/j.carbon.2015.02.019 (2015).
16 Nakajima, D. et al. A Superhydrophilic Aluminum Surface with Fast Water Evaporation Based on Anodic Alumina Bundle Structures via Anodizing in Pyrophosphoric Acid. Materials 12, 3497 (2019).
17 Bu, X., Su, L., Dou, Q., Lei, S. & Yan, X. A low-cost “water-in-salt” electrolyte for a 2.3 V high-rate carbon-based supercapacitor. J. Mater. Chem. A 7, 7541-7547, doi:10.1039/C9TA00154A (2019).
18 Peng, H. et al. Pore and Heteroatom Engineered Carbon Foams for Supercapacitors. Adv. Energy Mater. 9, 1803665, doi:10.1002/aenm.201803665 (2019).
19 Wu, F. et al. Hierarchical porous carbon microrods derived from albizia flowers for high performance supercapacitors. Carbon 147, 242-251, doi:https://doi.org/10.1016/j.carbon.2019.02.072 (2019).
20 Wang, D. et al. Unconventional mesopore carbon nanomesh prepared through explosion–assisted activation approach: A robust electrode material for ultrafast organic electrolyte supercapacitors. Carbon 119, 30-39, doi:https://doi.org/10.1016/j.carbon.2017.03.102 (2017).
21 Yang, M. et al. Fabrication of High-Power Li-Ion Hybrid Supercapacitors by Enhancing the Exterior Surface Charge Storage. Adv. Energy Mater. 5, 1500550, doi:10.1002/aenm.201500550 (2015).
22 Mei, B.-A., Munteshari, O., Lau, J., Dunn, B. & Pilon, L. Physical Interpretations of Nyquist Plots for EDLC Electrodes and Devices. J. Phys. Chem. C 122, 194-206, doi:10.1021/acs.jpcc.7b10582 (2018).
23 Rosliza, R., Wan Nik, W. B., Izman, S. & Prawoto, Y. Anti-corrosive properties of natural honey on Al–Mg–Si alloy in seawater. Curr. Appl. Phys. 10, 923-929, doi:https://doi.org/10.1016/j.cap.2009.11.074 (2010).
24 Yang, W. et al. Supercapacitance of nitrogen-sulfur-oxygen co-doped 3D hierarchical porous carbon in aqueous and organic electrolyte. J. Power Sources 359, 556-567, doi:https://doi.org/10.1016/j.jpowsour.2017.05.108 (2017).
25 Wojciechowski, J., Kolanowski, Ł., Bund, A. & Lota, G. The influence of current collector corrosion on the performance of electrochemical capacitors. J. Power Sources 368, 18-29, doi:https://doi.org/10.1016/j.jpowsour.2017.09.069 (2017).
26 Gangwar, J., Gupta, B. K., Kumar, P., Tripathi, S. K. & Srivastava, A. K. Time-resolved and photoluminescence spectroscopy of θ-Al2O3 nanowires for promising fast optical sensor applications. Dalton Trans. 43, 17034-17043, doi:10.1039/C4DT01831A (2014).
27 Aliyu, I. K., Saheb, N., Hassan, S. F. & Al-Aqeeli, N. Microstructure and Properties of Spark Plasma Sintered Aluminum Containing 1 wt.% SiC Nanoparticles. Metals 5, 70-83 (2015).
28 Atchudan, R., Edison, T. N. J. I., Perumal, S. & Lee, Y. R. Green synthesis of nitrogen-doped graphitic carbon sheets with use of Prunus persica for supercapacitor applications. Appl. Surf. Sci. 393, 276-286, doi:https://doi.org/10.1016/j.apsusc.2016.10.030 (2017).
29 Borchardt, L., Leistenschneider, D., Haase, J. & Dvoyashkin, M. Revising the Concept of Pore Hierarchy for Ionic Transport in Carbon Materials for Supercapacitors. Adv. Energy Mater. 8, 1800892, doi:10.1002/aenm.201800892 (2018).
30 Yu, J. et al. Ultrahigh-rate wire-shaped supercapacitor based on graphene fiber. Carbon 119, 332-338, doi:https://doi.org/10.1016/j.carbon.2017.04.052 (2017).
31 Wang, S. et al. N-doped carbon spheres with hierarchical micropore-nanosheet networks for high performance supercapacitors. Chem. Commun. 50, 12091-12094, doi:10.1039/C4CC04832F (2014).
32 Kim, B.K., et al. Electrochemical Supercapacitors for Energy Storage and Conversion in Handbook of Clean Energy Systems1-25 (2015) doi/10.1002/9781118991978.hces112.