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Abstract
Context: Key to understanding forest water balances is the role of tree species regulating
evapotranspiration (ET), but the synergistic impact of forest species composition, topography, and water
availability on ET and how this shapes drought sensitivity across the landscape remains unclear.

Objectives: Our aims were to quantify (1) the effect of forest composition and topography including
elevation and hillslope gradients on the relationship between ET and water availability, and (2) whether
the relationship has changed over time.

Methods: We used remotely sensed Landsat and MODIS ET to quantify forest ET across the Blue Ridge
ecoregion of the southeastern USA. Then quanti�ed metrics describing ET responses to water availability
and trends in responses over time and assessed how these metrics varied across elevation, hillslope, and
forest composition gradients.

Results: We demonstrated forest ET is becoming less constrained by water availability at the expense of
lateral �ow. Drought impacts on ET diverged along elevation and hillslope gradients, and that divergence
was more pronounced with increasingly severe drought, indicating high elevation and drier, upslope
regions tend to maintain ET rates even during extreme drought. We identi�ed a decoupling of ET from
water availability over time, and found this process was accelerated at higher elevations and in areas
with more diffuse-porous trees.

Conclusions: Given the large proportion of forests on the landscape distributed across high elevation and
upslope positions, reductions in downslope water availability could be widespread, amplifying
vulnerability of runoff, the health of downslope vegetation, and aquatic biodiversity.

1. Introduction
Forest water cycles are accelerating in response to changing climate, which could stress water resources,
even in humid, traditionally water-rich ecoregions. The stable supply of forest water-based ecosystem
services is essential to the continued support of the diverse aquatic ecosystems as well as downstream
supplies for drinking water, agriculture, and energy. Forest evapotranspiration (ET) is the �ux of water
returned rapidly to the atmosphere, and partitioning of water to ET determines downstream water
availability (Fisher et al., 2017). Precipitation entering a watershed is either partitioned towards ET, or it
continues in the water cycle as runoff or groundwater available downslope for plants or streams
(Falkenmark & Rockström, 2006). Changes in ET relative to precipitation drive changes in local water
availability, and when such shifts happen over large portions of a watershed, they cause alterations in
stream�ow (Caldwell et al., 2016; Orth & Destouni, 2018; Teuling et al., 2013). A ten percent increase in ET
has been observed globally from 2003 to 2019, and has been attributed to rising temperatures, increasing
evaporative demand, longer growing seasons, and changing forest tree species composition (Caldwell et
al., 2016; Hwang et al., 2018; Pascolini-Campbell, Reager, Chandanpurkar, & Rodell, 2021). Given
increasing water demand from forests and the potential for less water in our rivers in the future, it is
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important to understand the control forests exert on water availability across landscapes and over time,
especially during periods of water stress (Fisher et al., 2017).

In complex topography, forest ET response to water stress at one part of the landscape can directly affect
water availability at other, connected parts of the landscape, as well as stream�ow (Bales et al., 2018).
Therefore, it is critical to understand the feedbacks between vegetation and topography to quantify
landscape forest hydrology. Two major components of topographic complexity, elevation and hillslope
gradients, control the abiotic conditions and create microclimates that in�uence vegetation
characteristics (Fan et al., 2019). Elevation gradients contribute to systematic changes in vegetation
species composition, temperature regimes, and can moderate or accelerate global change (Kelly &
Goulden, 2008; Rangwala & Miller, 2012). Hillslope gradients describing ridge to valley convergence
control lateral �ow (Fan et al., 2019). Soil moisture is organized along hillslope gradients following lateral
�ow with higher soil moisture found in valleys and lower soil moisture found upslope (Tromp-van
Meerveld & McDonnell, 2006).

Topographic patterns in water availability and microclimate shape landscape vegetation patterns, with
increasing LAI and biomass supported by wetter downslope positions compared to drier upslope
positions (Hwang, Band, Vose, & Tague, 2012; Hwang et al., 2020; Tai et al., 2020). Further, downslope
positions are characterized by tree species that tend to use more water and are more sensitive to drought
(Lin et al. 2019). In the southern Appalachians, mesic species trees with diffuse-porous xylem, including
maples (Acer sp) and tulip-poplars (Liriodendron tulipifera) are over two times as sensitive to soil drying
and can transpire up to four times the amount of water as similar sized xeric species with ring-porous
xylem, like oaks (Quercus sp.) and hickories (Carya sp.) (Ford, C. R., Hubbard, R. M., & Vose, J. M, 2011).
While diffuse-porous species have historically been associated with downslope, wetter positions, humid
forests of the eastern US have undergone a process called “mesophication.” A history of �re suppression,
in addition to shifts in precipitation and temperature distributions, has led to a shift in dominance from
disturbance tolerant xeric species to shade tolerant mesic species (Nowacki & Abrams, 2008; Pederson et
al., 2015). Mesic species are now found throughout the landscape, increasing ET and decreasing
downstream runoff (Elliott & Swank, 2008; Elliott, Miniat, Pederson, & Laseter, 2015). Caldwell et al.
(2016) estimated this change in species dominance has increased ET across the southeastern US up to
29% since the mid-1970s.

Whether upslope positions or downslope positions are more drought sensitive is not clear, particularly in
the context of changing species composition. Two contrasting mechanisms by which topography could
in�uence forest drought sensitivity have been proposed by Tai (2021). First, topographic convergence in
downslope portions of the landscape could buffer ecosystem sensitivity to drought because lateral
hydrologic �ow down slope would lead to higher water supply. However, convergent areas support higher
biomass composed of species with higher daily transpiration rates that are adapted to abundant soil
moisture. So, it’s also possible that higher water demand of convergent areas could deplete soil moisture
more quickly and ultimately result in greater drought sensitivity. A third mechanism, which may overlap
with the �rst two, is also possible. As vegetation capitalizes on lateral �ow during drought, it may reduce
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downslope water availability and thus increase drought sensitivity at convergent areas (Bales et al., 2018;
Hwang et al., 2020). The magnitude of the reduction in downslope water availability and thus, the
increase in drought sensitivity downslope, is likely dependent on ET rates and thus, tree species
composition.

We investigated the mechanisms of topographic-vegetation drought sensitivity using remote sensing
(RS) based ET, allowing us to examine processes at medium resolution across a regional scale. The
recent widespread availability of RS based ET provides a novel opportunity to assess forest ET drought
responses continuously across space to understand landscape level variation in forest water use over the
past two to three decades (Mu, Heinsch, Zhao, & Running, 2007; Senay, Gabriel B., Schauer, Friedrichs,
Velpuri, & Singh, 2017; Yang, Y., Anderson, Gao, Hain, & semmens, 2015). To complement RS based ET,
gridded standardized drought indices are frequently used to assess spatial patterns of drought severity
and their impacts on forests at large spatial scales. Drought indices are often based on water supply
(precipitation) and some additionally incorporate water demand (potential evapotranspiration, PET).
While indices accounting for both supply and demand are more representative of available water, we
focus here on a simple precipitation de�cit to facilitate direct comparisons across spatial and temporal
scales that could otherwise be in�uenced by changes in PET.

We investigated the in�uence of topography and the forest composition on spatial and long term
temporal trends of forest water use response to water availability across humid southeastern forests that
have undergone mesophication. The impact on forest ET of the expansion of diffuse porous at large
scales is not well understood, however, we hypothesized it would interact with topographic gradients,
mediating water supply to systematically in�uence forest water use, and in turn, forest water use would
in�uence subsequent downslope water supply. While there are reports of increasing forest ET and
decreasing lateral �ow, changes in sensitivity of forest ET to water availability over time and how that
relates to local biotic and abiotic conditions is unknown, but could yield large impacts on continued
delivery of water-based ecosystem services. Therefore, our aims were to quantify (1) the effect of forest
composition and topography including elevation and hillslope gradients on the relationship between ET
and water availability, and (2) whether the relationship has changed over time, using multi-sensor RS
based ET across the Blue Ridge ecoregion in the southeastern US.

2. Methods

2.1 Study site

2.1.1 General Description
The EPA Level III Blue Ridge ecoregion is approximately 40,940 km2 and spans parts of the Southern
Appalachian Mountains in Virginia, North Carolina, Tennessee, South Carolina, and Georgia (Fig. 1).
Elevation ranges from 200 - 2035 m with an average elevation of 764 m. Soils are largely acidic infertile,
and categorized as Dystrochrepts and Hapludults. Underlying geology consists mostly of sandstones,
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shales, and related rocks that were metamorphosed over to form dominantly steep slopes (Pittillo et al.
1998). Forests are primarily composed of oaks, northern hardwoods, with spruce-�r forests at high
elevations. Forest species composition and structure has slowly shifted towards more closed canopy
mesic forests over the past 100 years, with increasing abundance of maple and tulip-poplar across the
landscape (Elliott & Swank, 2008). While annual rainfall and average temperature varies across elevation
and latitudinal gradients, the climate is characterized as warm summer continental with signi�cant
precipitation in all seasons. Approximately 75% of the region is forested and increasing development and
agricultural land cover is located at lower elevations.

2.1.2 Topographic Gradients
Elevation data was retrieved from the USGS National Elevation Dataset (NED) at  arc-second (~30m)
(Gesch, Evans, Oimoen, & Arundel, 2018) (Fig. S1) and the Topographic Wetness Index (TWI) was
calculated using the USGS NED as a function of slope and upslope accumulated area (Beven & Kirkby,
1979). The TWI is representative of water availability fed by lateral drainage and has been frequently
used to describe hillslope gradients (Hoylman et al., 2018; Hwang et al., 2012; Tai et al., 2020). Lower TWI
values correspond to drier upslope landscape positions and higher TWI values correspond to wetter
downslope landscape positions. Elevation and TWI were resampled to match MODIS and Landsat spatial
resolution.

2.2 Forest Mapping

2.2.1 Continuous forest cover
We created continuous forest maps and screened out non-forest areas from the analysis at both the
MODIS and Landsat scales. The MODIS continuous forest cover map was created using the MODIS Land
cover product (MCD12Q1) available from 2001 - 2019 (Friedl & Sulla-Menashe, 2019). We considered
pixels classi�ed as forested for all years continuous forest and included them in the analysis. The
Landsat continuous forest cover map was created using the NLCD which has classi�ed land cover
available for 1992, 2001, 2004, 2006, 2008, 2011, 2013, and 2016 (Yang et al., 2018). Continuous forest
cover at Landsat scale using NLCD was mapped following the same procedure as MODIS. All other
gridded datasets used in this study were masked to only forest pixels using the relevant MODIS or
Landsat continuous forest cover product.

2.2.2 Forest species maps
We used a gridded forest composition dataset to assess forest composition impacts on ET. Riley et al.
(2021) developed a 30m tree-level model of the US circa 2014 using machine learning with satellite-
derived vegetation, topography, and biophysical grids produced by the LANDFIRE project (land�re.gov,
2017) to assign each forested pixel across the US the Forest Inventory and Analysis (FIA) (�a.fs.fed.us)
plot that best represented forest conditions (Riley, Grenfell, Finney, & Wiener, 2021). Model validation
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showed that 77% of validation plots matched at least one of the two most frequently occurring tree
species in the pixel within the plot diameter, indicating the model seemed to predict tree species with a
high level of accuracy. Using the tree-level model, we created a forest composition map characterizing the
percent of total basal area (BA) in each cell corresponding to species with diffuse-porous xylem anatomy.
The total BA of all species on the landscape was calculated and the 50 most abundant species,
accounting for 98.5% of BA, were classi�ed as diffuse-porous, ring-porous, or tracheid (Table S1). Using
these classi�cations, we calculated the percent diffuse-porous BA of total BA for each pixel and then
resampled to MODIS and Landsat spatial resolution (Fig. S1). We selected the Riley product because it is
higher resolution than other available forest composition products and includes disturbance history in the
predictions, which should allow it to better capture the distribution of diffuse-porous species. Additional
steps to validate the forest composition map are included in supplementary material.

2.3 Remotely sensed Evapotranspiration

2.3.1 Remotely sensed Evapotranspiration Datasets
Mountainous forested regions have higher uncertainty associated with modeled ET estimates because of
the complex topography and dense forest canopies. Therefore, to increase con�dence in our results and
assess the impact of scale, we selected two ET products from different sensors using different
algorithms. The �rst product we used was the MODIS (MOD16A2GF) Version 6 gap-�lled ET product from
2000 - 2019 with 8-day 500m resolution (Running et al. 2019). The MOD16 ET algorithm is based on the
Penman-Monteith logic (Monteith, 1965) and uses daily meteorological reanalysis data with MODIS
vegetation indices, albedo, and land cover to calculate the sum of ET over each 8-day composite period
(Running et al. 2019). The gap-�lled product was chosen because cloud-contaminated leaf area index
and fraction photosynthetically active radiation gaps were temporally �lled using linear interpolation
before calculating ET, mitigating the need to perform further quality control on the dataset. The second
product we used was the Landsat Provisional Actual Evapotranspiration product from the U.S. Geological
Survey (USGS), available every 8 to 16 days at 30m resolution from Landsat 4, 5, 7, and 8. This product is
based on the Operational Simpli�ed Surface Energy Balance (SSEBop) model (Senay, Gabriel B. et al.,
2013; Senay, Gabriel B., 2018), which is a unique parameterization of the Simpli�ed Surface Energy
Balance model (SSEB) intended for operations applications (Senay, G. B., Budde, & Verdin, 2011; Senay,
Gabriel B., Budde, Verdin, & Melesse, 2007). The algorithm combines ET fractions from soil and
vegetation using Landsat Collection 1 Provisional Surface Temperature with reference ET based on the
principle of satellite psychrometry, which assigns pre-de�ned seasonally dynamic boundary conditions to
each pixel. All scenes intersecting the study area with less than 90% cloud cover from 1984 - 2020 were
included in the analysis and pixels �agged as less than high quality were screened. ET could not be
estimated for 153 Landsat scenes during the growing season (3.16% of total growing season scenes)
because SSEBop model parameterization failed due to insu�cient pixels with an NDVI greater than 0.7,
likely due to high cloud cover, and resulted in consistently missing data in some parts of the landscape
(Sayler & Zanter, 2020). We used Landsat data starting in 1984 even though MODIS data only became
available in 2000 because Landsat scenes often were missing data and the longer record offered more



Page 7/28

opportunities to quantify ET. We don’t expect this difference to have a large impact on the analysis since
we largely focus on quantifying the overall ET response to water availability.

Given the temporal scale mismatch between the MODIS and Landsat ET products, monthly seasonally
standardized z-score ET anomalies were computed to make the results directly comparable. MODIS ET
anomalies represent the average monthly 8-day ET rate (mm/8-day) and Landsat ET anomalies represent
the average monthly ET rate (mm/day) and were calculated following:

Zi , j =
ETi , j −

−
ETi

SDi

Where Zi,j is the seasonally z-score standardized anomaly for a given month and year where i is the

month and j is the year, ETi,j is the average monthly ET rate, 
−

ETi is the long term average ET rate for a
given month, and SDi is the long term standard deviation of the ET rate for a given month. The MODIS
long term average and standard deviation calculations span 2000 - 2019 while the Landsat long term
average and standard deviation calculations span 1984 - 2020.

2.3.2 ET Validation
Eddy covariance latent energy data from the USDA Forest Service Coweeta Hydrologic Laboratory �ux
tower were available from 2011-2015 and used to validate remotely sensed ET estimates (Oishi, A. C.,
2020). Coweeta is located in western NC in the southern Appalachian Mountains
(https://ameri�ux.lbl.gov /sites/siteinfo/US-Cwt). Our comparisons included the ET rate at the original
temporal resolution (MODIS: 8 day total; Landsat: daily overpass rate) and averaged by month (MODIS:
average monthly 8-day total; Landsat: average monthly daily overpass). We calculated both MODIS and
Landsat ET averages across a 300m radius tower footprint for the comparisons (Fisher et al., 2020).
Since the tower is located in complex terrain that causes the footprint size and shape to vary (Novick, K.,
Brantley, Miniat, Walker, & Vose, 2014), we tested tower footprint sizes up to a 500m radius and found the
performance metrics were not sensitive to radius size. We compared the remotely sensed ET to �ux tower
estimates using root mean square error (RMSE), mean average error (MAE), relative error (RE) calculated
as MAE divided by average observed ET, as well as the slope and r-squared of a linear model.

2.4 Drought Index
The standardized precipitation index (SPI) is a measure of water availability based on the probability of
receiving precipitation relative to the climatological average over a given temporal aggregation period (1 -
36 months) (Guttman, 1999). Since the index is based on a standardized probability, a value of -2
corresponds to precipitation aggregated over the chosen time scale that is two standard deviations below
the climatological average for that time of year. We applied three-month SPI (SPI-3) because it has been
shown to correspond closely with soil moisture drought (Nicolai-Shaw, Zscheischler, Hirschi,
Gudmundsson, & Seneviratne, 2017; Wang, Rogers, & Munroe, 2015). Gridded SPI-3, available through
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Google Earth Engine, was calculated from 4km daily Gridded Surface Meteorological (GRIDMET)
datasets (Abatzoglou, 2013). To match the monthly ET anomalies, SPI-3 was averaged to a monthly time
step and resampled to MODIS and Landsat spatial resolution.

2.5. Analyses of ET Drought Sensitivity
The ET analyses in the following sections were applied to both the Landsat and MODIS scale ET
products.

2.5.1 Drought peak
According to the GRIDMET drought indices, a moderate drought corresponds to SPI values ranging from
[-1.3 : -1.6), a severe drought corresponds to SPI values ranging from [-1.6 : -2.0), and an extreme drought
corresponds to SPI values less than or equal to -2.0. We assigned the growing season month with the
most negative SPI-3 that was less than or equal to -1.3 (moderate drought) as the drought peak. The
gridded SPI-3 is standardized on a pixel basis, relative to the average precipitation received for a given
time of year, which allows us to compare drought severity across precipitation gradients found along
elevation and latitudinal gradients. We searched each pixel each year to identify any SPI-3 metrics that
met the drought criteria, and for each drought event, we analyzed the drought peak. For all drought peaks,
the average pixel-level ET anomaly (ETdp) was calculated for all droughts and separately for each
drought severity category. Additionally, the average pixel-level ET anomaly was calculated for normal
wetness conditions (-0.5 > SPI-3 < 0.5) to serve as a comparison to the ET anomalies at drought peak.

2.5.2 Correlation of ET and SPI
To understand the relationship between ET and water availability, we calculated the spearman rank
correlation coe�cient between growing season monthly ET anomalies and monthly SPI for the full study
period (RSPI−ET). A positive correlation means ET increases with water availability, and the higher the
correlation, the more sensitive ET is to dry periods and droughts. A negative correlation means ET
decreases with increasing water availability, which is typically due reduced temperature and solar
radiation associated with high levels of precipitation (Jiao et al., 2021). A lack of correlation implies ET is
not responsive to water availability. To understand how RSPI−ET has changed, we calculated 5-year rolling
correlations for all windows with at least 50% of observations. The trend in the strength of the correlation
over time (dRSPI−ET) was calculated using Sen’s slope and the Mann Kendall trend test (alpha <= 0.05) for
pixels in which at least 25% of rolling correlation time steps were calculated. A signi�cant, decreasing
correlation magnitude means forest water use is becoming decoupled from water availability while a
signi�cant, increasing correlation magnitude suggests forest water use is becoming more sensitive to
water availability.

2.5.3 ET response to water availability across
environmental gradients
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We assessed ET responses across elevation, hillslope, and percent diffuse-porous BA gradients to
quantify the in�uence of topography and forest composition on ET response to water availability. We
analyzed trends in ETdp, RSPI−ET and dRSPI−ET across gradients of elevation, TWI, and percent diffuse-
porous BA. The mean and standard deviation of ETdp, RSPI−ET and dRSPI−ET was calculated at 50m
elevation bins, 0.5 TWI bins (unitless), and 5% diffuse-porous BA bins. Binned ETdp was further subset by
drought severity categories. Bins with less than 100 pixels were excluded from the analysis. Trends in
binned ETdp, RSPI−ET and dRSPI−ET across environmental gradients were calculated using Sen’s slope and
Mann Kendall trend test (alpha <= 0.05) to analyze if there were signi�cant changes across those
gradients. We compared the MODIS and Landsat results to assess their robustness and assess
differences resulting from the two RS based ET algorithms and scales. The pairwise Pearson correlation
coe�cient was calculated for elevation, TWI, and the percent diffuse-porous BA at MODIS and Landsat
scale to further contextualize these results.

3. Results

3.1 Topographic Gradients
Forested area was distributed unevenly across elevation and hillslope gradients. The distribution of forest
area by elevation bin is similar between MODIS and Landsat scale elevation, with the majority of forested
area located between 500 - 1000m. Higher elevation forested areas (elevation > 1000m) accounted for an
average between MODIS and Landsat of 22% of total forested area. Lower elevation forested areas
(elevation < 500m) accounted for an average between MODIS and Landsat of 17.3% of total forested
area. The distribution of forested area across TWI gradients varied more between MODIS and Landsat
resolution but they are both skewed with long tails towards higher TWI values. At MODIS resolution,
27.3% of forested area was distributed over the lowest TWI values from 8 - 9, 64.7% of forested area
distributed form 9 - 10, and 7.9% of forested area distributed across the highest TWI values from 10 - 20.
At Landsat resolution, 17.7% of forested area was distributed over the lowest TWI values from 5.5 - 8,
60% of forested area distributed from 8 - 10, and the remaining 22.2% of forested area distributed over
TWI values ranging 10 - 31.5.

3.2 RS based ET
We validated the RS ET estimates using eddy covariance �ux tower ET. The MODIS ET (mm/8-day)
product performed well with a RE of 28.375%, a slope of 0.98 and an R2 of 0.82 (Table 1). Averaging the
MODIS ET by month improved performance with a RE of 24.29%, a slope of 1.01 and an R2 of 0.89
(Table 1). In comparison, Landsat ET (mm/day) did not perform as well as the MODIS ET. While the RE
was comparable (RE = 29.02%), the slope (0.32) and the R2 (0.41) were well below 1, indicating the
Landsat ET was biased and underestimated ET (Table 1). Averaged by month, RE did not improve
(31.42%) but slope (0.36) and R2 (0.55) did improve (Table 1).
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Table 1
Statistical metrics comparing �ux tower ET and remote sensing based ET.

  N RMSE MAE RE (%) R2 Slope

MODIS (8-day) 220 5.87 4.41 28.38 0.82 0.98

MODIS (monthly) 60 4.79 3.75 24.29 0.89 1.01

Landsat (daily) 61 1.16 0.88 29.02 0.41 0.32

Landsat (monthly) 29 1.19 0.9 31.42 0.55 0.36

3.3 Drought index
We used growing season SPI-3 to assess spatial patterns of drought severity and as an overall measure
of water availability. SPI-3 was averaged across the study area to observe overall temporal trends in
water availability from 1984 - 2020 (Fig. 2). Drier than average conditions (SPI-3 <= -1) and moderate
drought (SPI-3 <= -1.3) occur frequently, while extreme droughts were uncommon in the Blue Ridge
ecoregion. The two most extreme growing season droughts occurred in 1986 and 2007. Due to spatial
averaging, Fig. 2 does not represent the full spectrum of drought experienced across the landscape.
Drought severity varied across spatial gradients with a decrease in drought severity at the northern end of
our study region.

3.4 Analyses of ET Drought Sensitivity

3.4.1 Drought peaks
We mapped ETdp for all, moderate, severe, and extreme droughts using MODIS and Landsat ET (Fig. 3).
The distribution of positive and negative ETdp followed a distinct spatial pattern and varied between the
MODIS and Landsat maps (Fig. 3). As drought severity increased, there were some gaps in the ETdp
values because not all parts of the landscape experienced severe or extreme drought. The percent of
positive ETdp decreased with drought severity for MODIS while it increased for Landsat (Fig. 4). Across
both sensors and for all levels of drought severity, at least 20% of impacted pixels had a positive ETdp

indicating higher ET during drought (Fig. 4).

3.4.2 Correlation of ET and SPI analysis
We identi�ed a larger percentage of forested area where ET-water availability relationships were
signi�cant in the MODIS data compared to Landsat, with RSPI−ET equal to 46.18% and 16.06% and
dRSPI−ET equal to 13.22% and 1.17% for MODIS and Landsat, respectively. The majority of forested pixels
with a signi�cant RSPI−ET were positive and the majority of forested pixels with a signi�cant dRSPI−ET were
negative for MODIS and Landsat.

3.4.3 ET response to water availability across
environmental gradients
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Pairwise Pearson correlation between elevation, TWI, and percent diffuse-porous BA revealed all three
variables were signi�cantly correlated at both the MODIS and Landsat scales, although MODIS
correlations were stronger for all pairs (Table 2). MODIS elevation and percent diffuse-porous BA had the
strongest correlation (0.60) while TWI and percent diffuse-porous had the weakest correlation (-0.17). At
Landsat scale, elevation and percent diffuse-porous BA had the strongest correlation (0.39) and TWI and
percent diffuse-porous BA had the lowest correlation (0.007) (Table 2).

Table 2
Pearson correlation between elevation,

height above the nearest drainage, and the
percent diffuse-porous BA for MODIS and

Landsat resolution
MODIS TWI % diffuse-porous BA

Elevation -0.34 0.6

TWI 1 -0.17

Landsat TWI % diffuse-porous BA

Elevation -0.15 0.39

TWI 1 0.007

Sen’s slope of binned ETdp for all drought severity levels was positive across elevation gradients and
negative across TWI gradients in both MODIS and Landsat, indicating ETdp becomes less negative at
higher elevations and drier, upslope positions (Fig. 5a-d). ETdp was more negative as drought severity
increased for MODIS ET but not Landsat ET (Fig. 4, 5). For MODIS ET, only the lowest elevation (< 600m)
pixels had reduced water use during moderate drought, and even during extreme drought, over 1200m
elevation ETdp was comparable to that of no drought (Fig. 5a). In contrast, above 750m elevation, the
binned Landsat ETdp was greater than the no-drought average ET anomaly (Fig. 5b). We identi�ed similar
patterns along the TWI gradient, where only the wettest, most downslope MODIS pixels indicated a
negative ETdp during moderate drought; negative ETdp only spread across the landscape at extreme
drought levels (Fig. 5c). Similarly, Landsat indicated that only the pixels with the highest TWI values
experience negative ETdp regardless of drought severity (Fig. 5d). MODIS binned ETdp showed
increasingly divergent drought responses across the TWI and elevation gradients as drought severity
increased (Fig. 5a-d). There were no signi�cant trends in binned ETdp over the percent diffuse-porous BA
gradient for MODIS or Landsat (Fig. 5e-f).

While the signi�cant MODIS RSPI−ET was largely positive with a negative dRSPI−ET, Landsat RSPI−ET and
dRSPI−ET combinations varied across environmental gradients (Fig. 6). Despite the variability, both MODIS
and Landsat ET indicated a decoupling between ET and SPI over time, especially at high elevations
(Fig. 6). This means high elevation regions with a positive correlation tend to have negative trends and
regions with a negative correlation tend to have positive trends, meaning those correlations are moving
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closer to 0 over time (Fig. 6). RSPI−ET decreased signi�cantly with increasing elevation for MODIS and
Landsat, however, these correlations diverged around 700m as Landsat RSPI−ET became negative while
MODIS RSPI−ET remained positive (Fig. 6). Correlations also increased signi�cantly with increasing TWI for
both sensors but because of MODIS’ coarser resolution it does not have data for TWI bins past 12
(Fig. 6). RSPI−ET for MODIS and Landsat decreased with increasing percent of diffuse-porous BA but the
binned RSPI−ET remains positive across the gradient (Fig. 6).

Landsat and MODIS data indicate dRSPI−ET diverges across elevation and percent diffuse-porous
gradients. Across the elevation gradient, MODIS and Landsat have similar dRSPI−ET until approximately
750m, when MODIS dRSPI−ET becomes signi�cantly more negative while Landsat dRSPI−ET becomes
signi�cantly more positive (Fig. 6). This elevation threshold corresponds to the point where Landsat
RSPI−ET becomes negative while MODIS RSPI−ET remains positive (Fig. 6). This indicates that as elevation
increases, correlations are changing faster over time, and at higher elevations both sensors indicate a
decoupling between ET and SPI (Fig. 6). Interestingly, Landsat binned dRSPI−ET shows a positive trend
across the percent diffuse-porous BA gradient while MODIS dRSPI−ET shows a negative trend (Fig. 6).
Given both Landsat and MODIS RSPI−ET are positive, on average, across the gradient of percent diffuse-
porous BA, MODIS shows a faster decrease in water availability constraints on highly diffuse-porous
forest ET over time (Fig. 6). While the trend in Landsat dRSPI−ET is signi�cant and positive, the average
dRSPI−ET across the percent diffuse-porous gradient hovers close to 0 so the trend is largely trivial (Fig. 6).
Across the TWI gradient MODIS has a positive signi�cant trend in dRSPI−ET, providing evidence of a faster
decoupling at more upslope positions on the landscape, while Landsat does not have a signi�cant trend.

4. Discussion
Our study indicates that at regional scales, forest response to drought varies across topographically
complex terrain, and the differences are greater with increasing drought severity (Fig. 5). We found that
trees in high elevation and dry, upslope portions of the landscape maintained stable water use (ET) rates
even during extreme drought, while ET was reduced at low elevation and wet, downslope portions of the
landscape, indicating these areas as more drought sensitive. This is consistent with �ndings at �ner
scales in the southern Appalachians and clari�es a few discrepancies between studies. Hwang (2020)
reported that at the catchment scale, downslope trees experienced lower growth and greater sap �ow
sensitivity to soil moisture de�cits compared to upslope trees during dry years, despite having higher soil
moisture. Hawthorne and Miniat (2018) found that at low elevations, plot-level soil moisture and daily
transpiration rates were greater at plots downslope during drought, which indicated downslope was more
buffered from drought impacts (Hawthorne & Miniat, 2018).

Downslope portions of the landscape tend to have higher soil moisture and thus are dominated by the
higher water use, drought sensitive, diffuse-porous species. During drought, these species may have
higher water use sensitivity to soil moisture de�cits while maintaining higher daily transpiration rates
compared to upslope plots, which can help explain seemingly contrasting results from Hwang (2021) and
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Hawthrone (2018). As drought severity increased, it is likely the unchanged or slightly increased forest
water use at high elevations and upslope positions reduced downslope subsidies and led to the
increasingly negative average ET anomalies at low elevations and downslope positions. These high
elevation forests with unchanged or slightly increased forest water use tend to be located above 1000m,
an area that comprises 22% of total forested area across the ecoregion. This indicates the high elevation
forests have the potential to exert a large in�uence on reductions in lateral �ow and stream�ow
generation, which directly in�uences water availability in downstream reaches important to larger
metropolitan areas. Observed increases in ET, particularly upslope and at high elevations, have led to a
decrease in downslope water subsidy and stream�ow over time (Caldwell et al., 2016). This likely
contributes to greater drought vulnerability of the downslope and low elevation forests that depend on
upslope water subsidy to maintain soil moisture levels to support high daily transpiration and
productivity.

Our analysis of both MODIS and Landsat ET data identi�ed widespread above-average forest water use
at drought peak, even during extreme drought, which could be related to rising temperatures and
supported by deep soil moisture storage in the typically wet region (Fig. 4). Increasing temperatures have
been reported across the southern Appalachian mountains (including the Blue Ridge Ecoregion), with
growing season temperatures increasing by 0.48°C per decade since the 1970s in western North Carolina
(Hwang et al., 2018; Hwang et al., 2020). Warmer temperatures increase evaporative demand, forcing
vegetation to increase water use to support vegetation health, which propagates precipitation de�cits
faster and stronger downstream (Orth & Destouni, 2018). In fact, multiple investigations across forested
mountain regions have quanti�ed above average forest water use and reduced runoff generation at
higher elevations due to local allocation of precipitation to transpiration, resulting in greater ecological
vulnerability at lower elevations, likely due to decreased downslope subsidy (Goulden, M. L. & Bales, 2019;
Goulden, Michael L. & Bales, 2014; Mastrotheodoros et al., 2020). While there is a discrepancy in the
extent of positive ETdp between MODIS and Landsat estimates, the pattern is still prevalent across
sensors and drought severity levels which increases our con�dence in this result (Fig. 4). Above average
ET during drought likely directly translates to less stream�ow generation, and ultimately less water
�owing downstream, which contributes to lower low �ows, larger societal impacts and greater
vulnerability of aquatic biodiversity.

The discrepancies we identi�ed between some of the MODIS and Landsat ET data highlight the
importance of considering scale in remote sensing investigations over topographic gradients. While the
MODIS data indicated that ET is less correlated to water availability at higher elevations and upslope
positions, our analysis of Landsat correlations indicated that at high elevations, ET is more negatively
correlated to water surpluses, likely due to associated decreased temperatures. This discrepancy could be
tied to differences in spatial resolution between sensors because there is considerably less topographic
variation within a 30m pixel compared to a 500m pixel. This allows Landsat to more precisely identify
high elevation portions of the landscape compared to MODIS and reveal trends otherwise obscured by
spatial averaging. Other studies indicate that higher elevation forests in the southern Appalachians tend
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to be more strongly energy limited, which supports Landsat observations of negative RSPI−ET (Hwang et
al., 2012; Hwang et al., 2014). Both Landsat and MODIS analyses identi�ed low elevation regions as the
most water constrained (Fig. 6), which supports our other �ndings that low elevation and downslope
portions of the landscape are the most drought sensitive compared to higher elevations or upslope areas
(Tai et al., 2020). Low elevation forests below 500m and downslope forests with TWI greater than 10
display the greatest drought sensitivity across sensors and account for 17% and 15%, respectively, of
total forested area, underscoring the widespread vulnerability of vegetation due to decreases in lateral
�ow.

Despite divergent trends in dRSPI−ET between MODIS and Landsat ET, trends across both sensors are
converging towards a decoupling of ET and SPI over time, indicating that ET is becoming less correlated
to water availability over time. These trends occurred at a faster rate at high elevations, upslope positions,
and in areas of forests with a higher percent diffuse-porous BA (Fig. 6). The drivers of this decoupling
remain uncertain, but temperature is likely an important factor. As temperatures rise, forests are less
energy limited (negative correlations become less negative) (Hwang et al., 2018) and evaporative demand
rises which causes forests to use more water independent of availability (positive correlations become
less positive) (Teuling et al., 2013).

Increases in forest water use e�ciency (WUE) could also account for the decoupling of ET and water
availability over time. Observed increases in forest WUE show that under elevated CO2 concentrations,
forests are able to maintain productivity using less water, allowing them to become less coupled with
water availability (Keenan et al., 2013), but changes in WUE at the local scale are less conclusive.
Interestingly, a recent study identi�ed an increasing water constraint on vegetation growth across the
extra-tropical northern hemisphere over the past 30 years and found that water savings from increased
CO2 did not offset the increasing water constraint (Jiao et al., 2021). In a more water limited Rocky
Mountain watershed, the water savings attributed to stomatal closure associated with elevated CO2, were
offset by increased lateral �ow, largely ameliorating the bene�t to local vegetation (Tai, Venturas, Mackay,
Brooks, & Flanagan, 2021). Coupled with changes in VPD, ET could increase and overwhelm the water
saving effects of elevated CO2 (Tai et al., 2021). Taken together, these �ndings suggest an increase in
WUE is unlikely to explain our �ndings and indicates that WUE might decline if ET is maintained while
vegetation growth is constrained.

We included forest composition as a potentially important explanatory variable in ET drought responses.
We would expect forests with a greater percentage of diffuse-porous BA to be more tightly coupled with
water availability because they have been shown to be more sensitive to soil moisture de�cits than ring-
porous species (Elliott et al., 2015; Meinzer et al., 2013). We found RSPI−ET signi�cantly decreased across
the gradient in percent diffuse-porous BA and that over time ET has decoupled from water availability
more quickly in forested areas with greater percent diffuse-porous BA (Fig. 6). While these trends are
likely partially attributable to covariance of percent diffuse-porous BA with elevation and TWI (Table 2), it
highlights that water use by forests composed of generally climate sensitive and high water use species
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is becoming less constrained by water availability over time. It is possible that because extreme water
stress is less common in the southern Appalachians, this re�ects a decrease in sensitivity to water
availability due to an increase in sensitivity to temperature or atmospheric demand. Novick (2016) found
that climate change increases the role of VPD constraining water �uxes in eastern mesic forests, which
could contribute to the decrease in coupling between ET and water availability. This means that high
water use forests could maintain transpiration rates to satisfy atmospheric drought, which depletes soil
moisture faster and leads to less runoff. Further, ongoing mesophication could exacerbate this feedback
and we could see less runoff generation and more ecological stress as diffuse-porous species expand
and forests maintain or increase ET at the expense of downslope subsidies.

It is important to consider the in�uence of the uncertainty associated with RS based ET estimates on our
�ndings. We found that MODIS ET was more skilled at capturing ET variability than Landsat ET (Fig. 2).
Estimates aggregated over longer periods of time tend to be more accurate, so the MODIS ET summed
over 8-day periods was able to capture �ux tower ET variability better than the Landsat daily overpass
estimates. It is possible that the MODIS ET and Landsat ET performance would have been more
comparable if we chose to aggregate ET to monthly totals. However, attempts at temporally interpolating
Landsat ET between overpass dates to �nd monthly totals would likely be hindered by the frequent cloud
cover characteristic of the southern Appalachians and produce estimates with similarly high uncertainty.
To reduce algorithm complexity, monthly climatology reference ET is used in SSEBop as an auxiliary
product to calculate actual ET which can lead to larger deviations from �ux tower estimates on a given
day compared to longer aggregations (Sayler & Zanter, 2020). In addition, a blocky artifact is noticeable
in the Landsat ET estimates at high elevations due to coarse spatial resolution of the reference ET data
used in elevated areas (Sayler & Zanter, 2020). Despite these drawbacks, SSEBop is still expected to
adequately capture the spatial variability and all calculations were based on pixel-wise seasonally
standardized average monthly anomalies, which should largely mitigate the above uncertainties.

5. Conclusion
Our study highlights a divergence in forest ET responses to drought over topographic gradients, despite
large discrepancies between Landsat and MODIS ET results. We found high elevation and upslope
regions maintain ET rates even during extreme droughts and have become less constrained by water
availability over time. These regions account for a large proportion of forested area across the ecoregion,
and coupled with the expansion of diffuse-porous trees across eastern forests, contribute to widespread
decreases in lateral �ow and greater vulnerability of downslope vegetation, stream�ow, and aquatic
biodiversity. Leveraging long-term remote sensing ET datasets allowed us to clarify topography-
vegetation-drought sensitivity relationships at regional scales to understand systematic shifts in forest
water cycling. Reliable remotely sensed ET in forested mountains is important to continue monitoring
forest water use responses to hydroclimate variability and provides the necessary scope to assess global
responses. Divergent forest water use responses between upslope vs downslope and high and low
elevation regions should be further explored to understand how this could be exacerbated with continued
global change.
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Figure 1

Map of the study area delineated by the Blue Ridge ecoregion and elevation (USGS NED). The yellow star
represents the location of the Coweeta Hydrologic Laboratory eddy covariance �ux tower used for RS
based ET validation.
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Figure 2

Monthly SPI-3 from 1984 - 2020 averaged across the study area. The area shaded red is +/- 1 SD.
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Figure 3

MODIS and Landsat ET anomalies averaged at drought peak (ETdp) for all (SPI <= -1.3), moderate (-1.6 <
SPI <= -1.3), severe (-2.0 < SPI <= -1.6), and extreme droughts (SPI <= -2.0). Pixels with no data or that did
not experience a drought at a given severity are in white.
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Figure 4

The percentage of averaged ET anomalies at drought peak (ETdp) that are greater than 0, indicating
higher than expected water use, subset by drought severity for Landsat and MODIS.
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Figure 5

Binned ET anomalies at drought peak (ETdp) +/- 1 SD broken down by drought severity across elevation
(a,b), TWI (c,d) and % diffuse-porous BA gradients (e,f) for MODIS (a,c,e) and Landsat (b,d,f). Sen’s slope
and Man Kendall test computed separately for MODIS and Landsat at each drought severity level to
identify signi�cant trends across gradients with signi�cance denoted as * <= 0.05, ** <= 0.01, *** <=
0.001.
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Figure 6

Binned overall correlation between ET and SPI (RSPI-ET) (a,c,e) and the trend in overall correlation (dRSPI-
ET) (b,d,f) +/- 1 SD across elevation (a,b), TWI (c,d) and percent diffuse-porous BA (e,f) gradients for
Landsat and MODIS. Sen’s slope and Man Kendall test computed separately for MODIS and Landsat to
identify signi�cant trends across gradients with signi�cance denoted as * <= 0.05, ** <= 0.01, *** <=
0.001.
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