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Abstract
Background: Wound healing is a dynamic, sequential,and complex physiological process, including a
variety of cellular events, such as proliferation, adhesion, chemotaxis, and apoptosis. Skin �broblasts and
keratinocytes are the two most important cells involved in wound repair, and Relying on the proliferation
and differentiation of keratinocytes to form epithelium to completely cover the wound is the most ideal
result for wound repair, so expanding the source of keratinocytes is a huge challenge. In this study, we
examined the phenomenon that fetal skin �broblasts spontaneously transdifferentiated into keratinocyte-
like cells in conventional culture, and evaluated the characteristics of KLCs and the potential mechanisms
of the transdifferentiation process.

Methods: HFF-1 were routinely cultured in ordinary DMEM medium for more than 40 days,and observed
the cell morphology. The cytological properties of KLCs at the cellular and molecular levels were detected
by RT-PCR, Western-blot, immuno�uorescence, Transwell, and cell scratch experiments.The functionality
and safety of KLCs were determined through wound healing and tumorigenicity experiments. And high-
throughput transcriptome sequencing (RNA-seq) was performed to explore the mechanism underlying
HFF-1 transdifferentiation.

Results: The transdifferentiation process started on the 25th day and was completed by the 40th day.
KLCs and KCs had similar expressions at the molecular and protein levels, both functioned similarly in
wound healing and were non-tumorigenic.RNA-seq revealed that the transdifferentiation process was
regulated by the activation of the classical Wnt/β-catenin signaling pathway, which could shorten the
process to 10 days.

Conclusion: This study demonstrates that HFF-1 can spontaneously transdifferentiate into KLCs with
conventional culture conditions, and the Wnt/β-catenin signaling pathway regulates the
transdifferentiation process.

Background
Cell transdifferentiation refers to the process by which one type of differentiated cell is transformed into
another type of differentiated cell in terms of structure and function. Yamanaka K et al discovered for the
�rst time that a combination of four transcription factors (Oct4, Sox2, Klf4 and c-myc), transfected with a
viral vector, could dedifferentiate terminally differentiated somatic cells into a cell type similar to
embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs) [1], which overturned the previous
knowledge that the developmental path of terminally differentiated cells was irreversible.
Transdifferentiation between different types of cells has also been reported through further research. For
example, Kocaefe YC et al transdifferentiated rat adipocytes into myoblasts [2]. Ieda M et al
transdifferentiated �broblasts from mouse heart and tail tip into cardiomyocytes [3]. Vierbuchen T et al
transdifferentiated �broblasts into neurocytes [4]. Ambasudhan R et al transdifferentiated neonatal and
adult skin �broblasts into functional neurocytes [5]. Szabo E et al transdifferentiated human skin
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�broblasts into hematopoietic progenitor cells [6], and Sekiya S et al transdifferentiated mouse
�broblasts into liver-like cells [7].

The repair of wounds depends on the division and proliferation of keratinocytes, which fuses gradually
and reform the epidermis. When extensive burns occur, the structure and function of the skin and its
accessory organs are severely damaged. The current therapeutics in clinical practice mainly rely on
autologous or allogeneic skin grafting. However, for patients with extensive burns, the available skin
donor sites are limited, which hardly meet the needs of large-area skin grafting and thus limit the patient’s
chances of survival. Keratinocytes (KCs) are the target cells for wound repair, and it remains a huge
challenge to obtain keratinocytes on a large scale. Studies have found that KCs can be derived by
transdifferentiation from embryonic stem cells (ESCs), iPSCs, adipose stem cells (ATSCs), wound
resident mesenchymal cells and �broblasts [8]. Bilousova et al found that Oct4, Sox2, c-Myc and Klf4
genes could be transfected with viral vectors to dedifferentiate �broblasts into iPSCs, and then by
incubation with a medium containing retinoic acid (RA) and a medium containing Bmp4, the induced
pluripotent stem cells were further differentiated into keratinocytes. Chen et al. reported that two genes,
P63 and KLF4, were transfected to directly transdifferentiate �broblasts into keratinocytes [9]. Cell
reprogramming provides a new idea for the source of KCs. Although gene transfection using viral vectors
can induce cell transdifferentiation, this method is di�cult to use in clinical practice due to toxicity,
tumorigenic risk, and especially low transdifferentiation e�ciency.The purpose of wound healing is to
quickly restore the structure and function of the skin, but in extreme cases this will lead to scar formation.
Scar tissue is a dysfunctional �brous tissue [10]. Unlike wound healing in adults, perfect tissue
regeneration is observed in the fetus, which is characterized by the absence of scars [11].

When we routinely cultured fetal skin �broblasts, a wonderful phenomenon of cell transdifferentiation
was observed, that is, HFF-1 spontaneously transdifferentiated into keratinocyte-like cells (KLCs) in a
regular high-sugar DMEM medium in a time-accumulating manner, and the transformed KLCs showed
similar behaviors and effects to KCs in terms of cell characteristics, cell behavior and wound healing, and
were not tumorigenic.To further explore the potential mechanism of HFF-1 transdifferentiating into KLCs,
we performed RNA-seq. Through analysis, we found that this time-dependent HFF-1 transformation is
regulated by the Wnt/β-catenin signaling pathway. The discovery of cell transdifferentiation has opened
up a new horizon for skin regeneration and scarless wound healing in severe burns.

Methods

Cell isolation and culture
Human skin tissue specimens were taken from our burn center, with ethical approval and informed
consent. Human skin KCs were extracted as previously described [12]. In brief, the obtained skin tissue
was cleaned with PBS (500ml,Cat#G4202-500ML, Servicebio) for three times before the subcutaneous
tissue and adipose tissue was removed, and the skin tissue was trimmed to make it regular.
Subsequently, the skin tissue was placed into Dispase II enzyme (2.5mg/mL,Cat#D4693-1G,Sigma) for



Page 4/25

digestion overnight at 4°C, and the epidermis and dermis were separated the next day.
Then,trypsin/ethylenediaminetetraacetic acid (0.25%,Cat#25200072,Gibco) preheated at 37°C was used
to grind and digest the skin tissue for 5 minutes, and then the cell suspension was sucked. The said
trypsinization was repeated three times until the skin tissue was completely digested. The cell suspension
was �ltered through a 70um cell sieve and sterilized (0.22um,Cat#SLGP033RB,Millex), centrifuged at
13000rpm for 3 minutes, and washed once with PBS. Afterwards, the cells were seeded on a 6-well plate
(Cat#3516S,Corning), pre-coated with type IV collagen (Cat#C6745,Merck), and routinely cultured with 1%
HKGS (Cat#S0015,Gibco) using epilife medium (Cat#Mepicf500,Gibco). Fetal skin �broblast cell line
(HFF-1,The cell identi�cation certi�cate is in the supplementary material 1) was purchased from JiKai
Gene (Shanghai,China) and grown in DMEM high glucose medium (Cat#SH30022.01,Hyclone) with 10%
FBS (Cat#10099141C,Gibco). The third-generation cells were used in the experiment. HepG2 liver cancer
cells were donated by Peking University People’s Hospital and cultured under the same conditions as
described above. All cells were cultured in a 5% CO2, 37°C incubator, and the medium was changed every
three days. All cells were grown without antibiotics.

Flow Cytometry
Flow cytometry was used to quantitatively analyze HFF-1 vimentin and CK14 positive cells in the process
of transdifferentiation. Simply put, the cell suspension at each time point in the HFF-1 culture process
was taken �xed with 4% paraformaldehyde �xative (Cat#P0099,Beyotime) at 4°C for 30 min, and then the
permeation buffer TritonX-100 (Cat#P0096,Beyotime) was used to in�ltrate the cells and further
incubated with the corresponding antibody , rabbit anti-CK14 (Cat#ab192056,Abcam) and mouse anti-
Vimentin (Cat#ab8069,Abcam)overnight at 4°C. After incubation, the cells were washed to form a 200 μl
cell suspension. Flow cytometry analysis of cell suspension was performed with FACScan (Beamcyte-
1026,China).

RT-PCR analysis
RNA extraction and qRT-PCR detection were performed as previously described [13]. The total RNA was
extracted with Trizol (Cat#15596026,Thermo Fisher), and the precipitate was washed with 75% ethanol
and dissolved in distilled water without ribonuclease. The purity and concentration of total RNA were
determined with an ultraviolet spectrophotometer (NanoDrop 2000,Thermo Fisher,Waltham, MA,USA). As
per the instructions of FastKing gDNA Dispelling RT SuperMix (Cat#KR118, TianGen, China), a 20μl
reverse transcription reaction system was prepared and incubated at 42°C for 15 min and 95°C for 3 min
in a T100 thermal cycler (BIO-RAD, Hercules, CA, USA), and then stored at 4°C. Afterwards, Top Green
qPCR SuperMix, Nuclease-free Water, cDNA template, and forward and reverse ribonucleic acid primers
were added to form a 20μl reaction system. The ampli�cation was performed in the CFX Connect real-
time system (BIO-RAD,Hercules,CA,USA) as follows: 94°C for 30 s, 95°C for 5 s, 56°C for 15 s, 72°C for 10
s for 45 cycles. The CT value of each well was detected and recorded, and 2-ΔΔCt was used to normalize
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the gene expression in the sample to the expression of GAPDH. The primer sequence was shown in
Table 1.

Western blot analysis
The cell pellets of each group were collected, washed with PBS for three times, and then the total protein
was extracted. In short, protease inhibitor (Cat#36978, Thermo Fisher) and phosphatase inhibitor
(Cat#A32957,Thermo Fisher) were added in RIPA lysate (Cat#89901,Thermo Fisher) with a volume ratio
of 1:1:100, and homogenized on ice.The protein concentration was determined with an ultraviolet
spectrophotometer, and the target protein was detected by Western blot. 40 μg of total protein was taken
for sodium dodecyl sulfate-polyacrylamide gel electrophoresis and wet transferred to PVDF membrane
(Cat#IPVH00010,Millipore,Merck), and the sample was blocked with 5% skim milk at room temperature
for 1 h. Then the sample was incubated respectively with anti-CK14 (Cat#60320-1-AP,1:1000,mouse
monoclonal,Proteintech),anti-CK5(Cat#66727-1-Ig,1:1000,mouse,monoclonal,Proteintech),Integrin Beta
1(Cat#66315-1-Ig, 1:1000, rabbit monoclonal, Proteintech), anti-E-
cadherin(Cat#ab1416,1:1000,mousemonoclonal,Abcam),anti-
CK19(Cat#ab76539,1:1000,rabbitmonoclonal,Abcam),anti-β-
catenin(Cat#8480S,1:1000,rabbitmonoclonal,CST),anti-
Vimentin(Cat#5741S,1:1000,rabbit,monoclonal,CST),anti-P-β-catenin(Cat#5741S, 1:1000, rabbit
monoclonal, CST), anti-GSK-3β (Cat#5741S, 1:1000, rabbit monoclonal,CST),anti-P-GSK-3β (Cat#5558S,
1:1000, rabbit monoclonal,CST), anti-Axin1(Cat#2087S,1:1000,rabbit,monoclonal,CST),anti-
LEF1(Cat#2230S,1:1000,rabbit,monoclonal,CST),anti-
ZEB1(Cat#3396S,1:1000,rabbit,monoclonal,CST),anti-GAPDH(Cat#5174S,1:2000, rabbit
monoclonal,CST) overnight at 4°C. The next day after rewarming to room temperature, horseradish
peroxidase-labeled anti-rabbit IgG (Cat#7074S,1:5000,CST) and anti-mouse IgG (Cat#7076S,1:5000,CST)
were added correspondingly and incubated at room temperature for 1 hour. After chemiluminescence and
image development, the image was exposed using a gel imaging system (Bio-RAD, Hercules, CA, USA).

CCK8 assay
After the cells were trypsinized (Cat#KR11825200056, Gibco), HFF-1, KLCs and KCs were seeded in a 96-
well plate, each group of cells with 6 wells. After they grew adherently for 8h. 10ul CCK8 reagent (Cat#HY-
K0301, MCE) was added to each well, and the cells were incubated at 37°C for 4 h before a
multifunctional microplate reader (Biotek Synergy2, USA) was employed to measure the absorbance 12,
24, 36, 48hour at 450 nm wavelength.

Cell migration analysis
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Scratch assay: After the cells were trypsinized, HFF-1, KLCs and KCs were seeded in a 6-well plate at a
density of 5×105 cells/well. After overnight incubation, a 200μl pipette tip (Cat#TF200-RS, Axygen) was
used to form wound scratches. Each well was cleaned with PBS for three times to remove sloughed cells.
At 0, 12, 24, and 48 hour, images were taken with a Leica optical microscope to calculate the number of
migrated cells.

Transwell assay: After the cells were digested, Transwell assay was performed in a 24-well Transwell
chamber (Cat#3422, Corning). In brief, the mixed cell culture medium (DMEM high glucose medium +
10% fetal calf serum + 1% EGF) was added to the lower chamber, and 200 μl of DMEM high glucose
medium was added to the upper chamber after resuspending the cells. After incubation at 37°C for 24 h,
the cells were taken out of the chamber, and the cells that migrated to the bottom of the chamber were
stained with crystal violet (Cat#C8470, Solarbio, China), and each well was counted manually under a
microscope.

Immuno�uorescence
The immuno�uorescence test was carried as previously described [14]. Simply put, cells growing on a
glass slide were �xed with 4% paraformaldehyde for 15 min, and 0.25% Triton X-100 (Cat#X100-100ml,
Sigma) diluted in PBS for 10 min was used for in�ltration at room temperature.To block non-speci�c
epitope binding, cells were incubated with phosphate buffer containing 1% bovine serum albumin
(Cat#A1933, Merck) and 0.1% Tween-20 (Cat#P7949,Sigma) for 1 h, and then incubated overnight at 4°C
with the following primary antibodies: mouse anti-CK14, rabbit anti-Vimentin, and anti-a-SMA
(Cat#23081-1-AP, mouse monoclonal, Proteintech). After that, the cells were incubated with donkey anti-
mouse or anti-rabbit secondary antibodies conjugated with Alexa Fluor 488 (Cat#ab150077,Abcam) or
Alexa Fluor 568 (Cat#ab175704, Abcam), and the nuclei were reversely stained with DAPI (Cat#d1306,
Thermo Fisher).

Wound healing model and treatment
All animal experiments were approved by the appropriate ethics committee of our hospital. Eight-week-old
male BALB/c mice (SPF Biotechnology Beijing, China) were randomly divided into four groups, each with
15 mice. As described by Wu et al [15], a full-thickness skin defect of 5mm × 5mm was created on mice’s
dorsum. The treatment plan was: (1) PBS group: 100ul PBS was administered into the wound surface; (2)
HFF-1 group: 100ul HFF-1 (1×107 cells/ml) cell suspension was administered into the wound surface; (3)
KLCs group: 100ul KLCs (1×107 cells/ml) cell suspension was administered into the wound; (4) KCs
group: 100ul KCs (1×107 cells/ml) cell suspension was administered to the wound. The above treatment
plan was repeated every day, and digital photos were taken on the 0th, 3rd, 6th, and 9th days. Wound
healing rate = (original wound area-actual wound area)/original wound area × 100%.
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Tumorigenicity analysis
Eight-week-old male BALB/c-Nu nude mice (SPF Biotechnology Beijing, China) were randomly divided
into three groups: KLCs, KCs and Hepg2, with 5 mice randomly selected from each group. Cells from
KLCs, KCs and Hepg2 groups were suspended respectively in PBS (5×106 cells per 100µl). We injected
100µl of this cell suspension (5×106 cells) into the subcutaneous tissue of nude mice. The mice were
sacri�ced 40 days after cell transplantation. The tumor size was measured and the tumor was dissected
for histopathological examination [16].

HE staining
In brief, fresh tissues were �xed in 4% paraformaldehyde for 24 h, dehydrated, para�n embedded,
sectioned, and H&E stained as previously described [17]. The prepared para�n sections were
depara�nized, stained with hematoxylin-eosin (Cat# C0105M, Beyotime), and �nally dehydrated and
mounted. The histopathological changes were observed with an optical microscope (Nikon DS-U3).

Immunohistochemical analysis
Tissue sections were taken, depara�nized with xylene, dehydrated in a decreasing ethanol gradient, and
incubated with citric acid buffer. The sample was incubated overnight with mouse anti-human CK5 at
4°C, washed with PBS for three times, and then incubated with secondary antibody for corresponding
specimens at room temperature for 1 hour. Subsequently, the sample was incubated with
diaminobenzidine and sectioned, and re-stained with hematoxylin to obtain images.

RNA-seq analysis
Total RNA was extracted using Trizol reagent kit (Invitrogen, Carlsbad, CA, USA) according to the
manufacturer’s protocol. RNA quality was assessed on an Agilent 2100 Bioanalyzer (Agilent
Technologies, Palo Alto, CA, USA) and checked using RNase free agarose gel electrophoresis. After total
RNA was extracted, eukaryotic mRNA was enriched by Oligo(dT) beads, while prokaryotic mRNA was
enriched by removing rRNA by Ribo-Zero TM Magnetic Kit (Epicentre, Madison, WI, USA). Then the
enriched mRNA was fragmented into short fragments using fragmentation buffer and reverse
transcripted into cDNA with random primers. Second-strand cDNA were synthesized by DNA polymerase I,
RNase H, dNTP and buffer. Then the cDNA fragments were puri�ed with QiaQuick PCR extraction kit
(Qiagen, Venlo, The Netherlands), end repaired, A base added, and ligated to Illumina sequencing
adapters. The ligation products were size selected by agarose gel electrophoresis, PCR ampli�ed, and
sequenced using Illumina Novaseq6000 by Gene Denovo Biotechnology Co. (Guangzhou, China).
DNA/RNA/Small RNA/cDNA library sequencing was performed on the Illumina HiseqTM 2500/4000 by
Gene Denovo Biotechnology Co., Ltd (Guangzhou, China).
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DEG analysis
RNAs differential expression analysis was performed by DESeq2 software between two different groups
and by edgeR between two samples [18,19]. The genes/transcripts with the parameter of false discovery
rate (FDR) below 0.05 and absolute fold change≥2 were considered differentially expressed
genes/transcripts.

Principal component and pathway enrichment analysis
Principal component analysis (PCA): PCA was performed with R package gmodels
(http://www.rproject.org/) in this experience. PCA is a statistical procedure that converts hundreds of
thousands of correlated variables (gene expression) into a set of values of linearly uncorrelated variables
called principal components. PCA is largely used to reveal the structure/relationship of the
samples/data. 

Pathway analysis: Genes usually interact with each other to play roles in certain biological functions.
Pathway-based analysis helps to further understand genes biological functions. KEGG is the major public
pathway-related database. Pathway enrichment analysis identi�ed signi�cantly enriched metabolic
pathways or signal transduction pathways in DEGs comparing with the whole genome background [20].
The calculated p-value was gone through FDR Correction, taking FDR ≤ 0.05 as a threshold. Pathways
meeting this condition were de�ned as signi�cantly enriched pathways in DEGs.

Statistical analysis
All data were expressed as mean ± standard deviation (SD). The t test was used for the analysis between
two groups, and the one-way analysis of variance (ANOVA) was used to compare the data of three or
more groups. P values < 0.05 were considered statistically signi�cant. Statistical analysis was performed
with the software GraphPad Prism 5.

Results

HFF-1 transforms into KLC spontaneously in a time-
accumulated manner 
When HFF-1 was grown in conventional culture medium for more than 40 days without any special
inducers, we unexpectedly found that it could spontaneously transdifferentiate into KLCs. The entire
transdifferentiation process started on the 25th day, marked with the “diamond-like” appearance of the
cell colony, and all HFF-1 appeared “diamond-like” by the 40th day (Figure 1a, 1b). To quantify the cell
types in the process of transdifferentiation, CK14-positive cells and vimentin-positive cells were evaluated
by �ow cytometry. The percentage of CK14-positive cells was 19.55±0.43%, 49.92±0.38%, 76.63±0.64%,
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and 98.10±0.66% on the 10th, 20th, 30th and 40th day, respectively; the percentage of vimentin-positive
cells on the 10th, 20th, 30th and 40th days were72.42±0.48%,59.19±0.10%,22.41±0.33%, and 3.54±0.26%
(Figure 1c). Immuno�uorescence showed that HFF-1 transformed into KLCs in a time-accumulated
manner. The number of positive cells for epidermal cell-speci�c protein CK14 gradually increased [21],
while the number of positive cells of �broblast-speci�c proteins Vimentin and a-SMA gradually decreased
with time [22,23]. By the 40th day, the number of positive cells of vimentin or α-sma were signi�cantly
reduced and could hardly be detected (Figure 1d,1e).In short, HFF-1 transdifferentiated to KLCs gradually
with time, with decreasing HFF-1 and increasing KLCS, and a entire transformation occurred on the 40th
day.

Characteristics of KLCs
To explore the characteristics of KLCs after transdifferentiation, we compared KLCs with HFF-1 and KCs.
From a molecular level, the Western blot results revealed that the epithelial marker protein E-
cadherin [24] as well as KCs-labeled proteins, including CK5 [25], CK14 [26], CK19 [27,28] and Integrin
beta1 [29] were expressed in KCs and KLCs, but not in HFF-1. Meanwhile, the HFF-1 marker protein
Vimentin [22,23] was expressed in HFF-1, but not in KLCs or KCs (Figure 2a). Consistent with the Western
blot results, qRT-PCR results con�rmed that although the mRNA expression levels of E-cadherin and CK19
in KLCs were lower than those in KCs, they were 40 times and 20 times that in HFF-1, respectively.
Interestingly, the mRNA expression level of CK14 in KLCs was 100 times that in KCs. The expression of
CK14 mRNA in KLCs and KCs was much higher than that in HFF-1. In the meantime, the mRNA
expression of Vimentin species in HFF-1 was higher than that in KLCs and KCs (Figure 2b). 

From the cellular level, CCK8 assay showed that the proliferation rate of KCs and KLCs was signi�cantly
higher than that of HFF-1 at 24h, 48h and 72h after the adherent growth of the cells, and the proliferation
group of KLCs was higher than that of KCs at each time point (Figure 2c). In terms of cell migration rate,
according to the scratch assay results, there was no signi�cant difference between HFF-1, KLCs and KCs
12 h after the establishment of the cell wound model. However, at 24 h and 48 h, the migration rate of
HFF-1 was signi�cantly higher than that of KLCs and KCs (Figure 2e). The Transwell assay further
showed that the number of migrating cells decreased in HFF-1, KLCs and KCs (Figure 2d). These results
indicated that the proliferative ability of KCs and KLCs was higher than that of HFF-1, but the migration
e�ciency of HFF-1 was signi�cantly higher than that of KCs and KLCs.

KLCs accelerate wound healing
To explore the therapeutic effect of KLCs on wound healing after transdifferentiation, PBS, HFF-1, KLCs
and KCs suspension were administered into to a full-thickness skin defect wound (5 mm) on the back of
the mice, and the wound was inspected on the 3rd, 6th, and 9th days (Figure 3a). In the PBS group, the
wound healing rates on the 3rd, 6th and 9th days were 51.80±0.67%, 73.80%±0.32 and 90.20±4.52%,
respectively; in the HFF-1 group, the wound healing rates on the 3rd, 6th and 9th days were 60.60±0.53%,
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85.40±0.69% and 92.20±3.97%, respectively; in the KLCs group, the wound healing rates on the 3rd, 6th
and 9th days were 72.60±4.63%, 92.20±6.02% and 97.40±3.18%, respectively; in the KCs group, the
wound healing rates on the 3rd, 6th and 9th days were 82.80±2.81%, 89.00±4.97% and 96.80±3.52%,
respectively. The healing rate of each group at each time point was shown in Figure 3b. In a word, there
was no signi�cant difference in the therapeutic effect between KLCs and KCs, but the therapeutic effect
of KLCs and KCs was much better than that of PBS and HFF-1. Compared with PBS and HFF-1, the
wounds treated with KLCs and KCs shrank earlier. On the 9th day after injury, the wound healing rate in
the KLCs group was even higher than that in the KCS group. The therapeutic effect of HFF-1 was also
signi�cantly higher than that of PBS. The results of HE staining showed that on the 3rd day the skin
tissue structure of each group was severely abnormal, the epidermal layer fell off, and a large number of
neutrophil in�ltration was seen; the skin appendages were missing, no hair follicles, sebaceous glands
and collagen �bers were seen, and a large number of cellulose-like structures were seen , A large number
of pathological changes such as angiogenesis. On the 6th day, the skin tissue structure of the PBS group
and HFF-1 group was abnormal, there was no obvious epidermal layer structure, and a large number of
neutrophil in�ltration was still seen; a large number of �broblasts and in�ammatory cells proliferated in
some areas, a large number of angiogenesis, and no dermis layer was seen Sebaceous glands, hair
follicles and collagen �bers can be seen with cellulose-like structures; but in the KLCs and KCs groups, the
skin tissue structure is basically normal, the epidermal structure is intact, no cell degeneration is seen,
most of the normal tissues can be seen under the epidermis, and a large number of skin appendages can
be seen. Collagen �bers are arranged closely and regularly. On the 9th day, the skin tissue structure of the
PBS group and HFF-1 group was slightly abnormal, the epidermal structure was relatively complete, some
normal tissues were visible under the epidermis, a large number of skin appendages were visible, collagen
�bers were arranged regularly, and a large number of in�ammatory cells were seen in the tissue; KLCs The
skin tissue structure of the KCs group and the KCs group is basically normal, the epidermal structure is
intact, the collagen �bers of the dermis are arranged neatly, and the skin is closer to the physiological
state. In short, the wound healing of the KLCS group and the KCS group is signi�cantly better than that of
the PBS group and HFF-1 Group (Figure 3c). To further con�rm that KLCs are closely related to wound
healing, CK5 antibody was used to perform immunohistochemical staining on the wound. The results
showed that after transplantation of KLCs and KCs derived from HFF-1, a row of single cells remained
between the epidermis and the dermis (Figure 3d), which played a role in connection during wound
healing.In summary, the degree of re-epithelialization in the KLCs and KCs groups was signi�cantly better
than that of the HFF-1 and PBS groups, which could substantially promote wound healing.

KLCs were not tumorigenic
Safety is an issue that cannot be ignored in the future application of transformed KLCs cells in wound
healing in clinical practice. Therefore, subcutaneous tumorigenesis assay was performed in nude mice.
On the 40th day after the injection of cells in each group, no obvious tumorigenesis was observed in the
KCs and KLCs groups, but there was obvious growth of new organisms at the injection site in the Hepg2
group (control group). The tumor tissues of the KCs, KLCs and Hepg2 groups were removed and weighed
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(Figure 4a). HE staining of tumor tissue in the Hepg2 group revealed a large number of neutrophil
in�ltration, as shown by yellow arrows; local cells were loosely distributed, and the cytoplasm was
vacuolated, as shown by red arrows; a large number of tumor cells in the tissue had increased atypia and
obviously irregular nuclei, as shown by black arrows, while the KLCs and KCs groups showed the hair
follicle structure and did not have the above-mentioned pathological features (Figure 4b).
Immunostaining of tumors with human CK5 antibody demonstrated that there was no carcinogenicity
caused by KLCs in vivo (Figure 4d). These results indicate that KLCs do not have the potential to induce
tumorigenesis and are safe for in vivo administration in the future. 

Identi�cation of the mechanism underlying KLCs
transformation 
To explore the potential mechanism underlying the transformation of HFF-1 cells into KLCs, we analyzed
the mRNA pro�les of HFF-1 as well as HFF-1 cultured for 25 days, KLCs and KCs by RNA-seq, generated a
heat map of the mRNA, and clustered the four cell sample types by PCA analysis (Figure 5a). Candidate
mRNAs for dynamic transformation from HFF-1 to HFF-1-KLCs and �nally to KLCs were identi�ed (Figure
5b). The results showed that the mRNA expression pro�les of KLCs and KCs were similar. We analyzed
the signi�cantly changed mRNAs based on their dynamic expression patterns and mapped 20 clusters.
Among them, 6 color clusters showed that the enriched mRNA was detected, which was statistically
signi�cant. We found that the gene expressions of clusters 17 and 19 were up-regulated, while clusters 0,
1, 2, and 7 were down-regulated. The p-values of up-regulated clusters 7 and down-regulated 17 were
much lower than those of other clusters (Figure 5c). Therefore, clusters 7 and 17 were identi�ed as the
focus in our next research. KEGG enrichment analysis of the differential genes of clusters 7 and 19
respectively demonstrated that the transdifferentiation of HFF-1 into KLCs was closely related to the
changes in the Wnt signaling pathway (Figure 5d). 

Activation of the Wnt/β-catenin pathway promoted
transformation of KLCs 
β -catenin, GSK-3β, Axin1, APC and the TCF/LEF family of transcription factors are important members of
the Wnt/β-catenin signaling pathway. LEF1 can interact with nuclear β-catenin and act as the central
transcription mediator of Wnt signaling [48], and Axin1 can form β-Catenin degradation complex with
APC and GSK3β to inhibit β-Catenin aggregation in the cytoplasm or entering the nuclear transcription.
Based on our previous RNA-seq results, we hypothesize that the transformation from HFF-1 to KLCs is
caused by the activation of the Wnt/β-catenin pathway. Western-blot results showed that with the
progress of HFF-1 transformation, the levels of Axin1 protein and β-catenin phosphorylated protein
increased, resulting in a decrease in the total expression of β-catenin, and also signi�cantly inhibiting the
levels of APC and p-GSK- 3β protein.
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From another perspective, the transdifferentiation of HFF-1 into KLCs can be considered as a process of
mesenchymal epithelial transformation (MET), and ZEB1 is one of the most critical molecules in this
process. The results revealed that β-catenin entered the nucleus and bound to the transcription factor
LEF1 after its level increased, thereby increasing the level of LEF1, inhibiting the expression of ZEB1 and
epithelial mesenchymal transformation (EMT), and promoting the occurrence of MET, that is, the
transdifferentiation of HFF-1 into KLCs (Figure 6a, b). By immuno�uorescence staining, β-catenin
represented by the green �uorescence was distributed in the whole cell with high intensity in the HFF-1
group. However, in the KLCs group and KCs group cell species, the �uorescence intensity was reduced in
the KLCs and KCs groups, and the �uorescence intensity in the nucleus was much lower than that in the
cytoplasm, indicating that the expression of β-catenin decreased signi�cantly, and the translocation of β-
catenin in the nucleus was suppressed (Figure 6c).

Subsequently, to further explore the in�uence of the Wnt/β-catenin signaling pathway on the
transdifferentiation of HFF-1 to KLCs, HFF-1 was treated with the effective activator of the Wnt/β-catenin
signaling pathway CHIR-99021 (10μM,Cat#HY10182, MCE,China) and the inhibitor XAV939
(10μM,Cat#HY15147,MCE,China). Surprisingly, HFF-1 treated with CHIR-99021 began to transform on the
10th day, but this transformation did not occur in the unhandled, PBS and XAV939 groups (Figure 6d).
The characteristics of transformed cells were further examined at the molecular protein level (Figure 6e,
f), and the results indicated that the activation of the Wnt/β-catenin pathway played a key role in the
transformation of KLCs.

Discussion
Our study revealed that fetal skin �broblasts can spontaneously transdifferentiate into KLCs by
accumulating over time with ordinary culture conditions. On the 25th day of HFF-1 culture, it was
observed that the morphology of HFF-1 cells began to change, and the total transformation rate reached
98% on the 40th day. The transformed KLCs and KCs both highly expressed cytokeratins CK5, CK14,
CK19, E-cadherin and integrin β1, and did not express �broblast-speci�c proteins Vimentin and a-SMA.
From the perspective of cell proliferation and migration, transformed KLCs and KCs have similar
performance. The activation of Wnt/β-catenin signaling pathway played an important role in the
transformation of HFF-1 to KLCs. The possible mechanism underlying this process was that with the
activation of Wnt signaling, the stability of the degradation complex composed of β-catenin, axin1, GSK-
3β, colorectal adenomatous polyp gene (APC) could be attenuated, thus preventing the degradation of β-
catenin induced by phosphorylation and increasing its concentration in the cytoplasm. β-catenin then
transferred into the nucleus and bound to lymphoid enhancer-binding factor-1 (LEF1) to inhibit the
expression of the downstream target gene ZEB1 (a key factor in EMT) (Figure 7). The transformed KLCs
were as effective as KCs in healing wounds, and were superior to PBS and �broblasts. More importantly,
with the treatment of KLCs and KCs, the immunohistochemical results showed hair follicle-like structures.
Our future research will probe into the identi�cation of these hair follicle-like structures and their sources.
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The phenomenon of spontaneous transdifferentiation of fetal �broblasts reported in this study differs
signi�cantly from previous studies [30]. For example, it has been reported that dermal �broblasts can
transdifferentiate into KLCs phenotype in only 6 days, accounting for a transdifferentiation rate of about
50%, which requires the combined use of inducers (p63 and KLF4) to enter dermal �broblasts, and there
are functional differences between KLCs and KCs after induction [31]. In the meantime, we found a report
that presented similar �ndings with ours, namely, adult skin �broblasts underwent similar
transformations (from FBs to KLCs) on the 120th day during the routine culture in vitro, which was
regulated by the PI3K-AKT pathway mediated by LINC00672 [32]. The difference in transformation time
may be attributed to the stronger pluripotency and plasticity of fetal skin �broblasts than that of adult
skin �broblasts. This further shows that human skin �broblasts have strong pluripotency and plasticity
when cultured in vitro,In addition, RNA-seq results show that the enrichment of PI3K-AKT signaling
pathway ranks lower. We believe that the possible cause is the heterogeneity of fetal skin �broblasts and
adult skin �broblasts.Many studies have been reported on the direct induction of skin �broblasts into the
cell types we need through reprogramming and other methods [33, 34]. Therefore, our focus is on the
potential of skin �broblasts to spontaneously transdifferentiate into KLCs on wound healing and scar
repair.

Skin wound healing occurs in a series of overlapped but different steps, and the most ideal outcome of
this process is the remodeling of the epithelium and its appendages and the restoration of the epidermal
barrier function. After skin injury, the wound healing is mainly manifested with the increase of KCs
proliferation. This phenomenon occurs in the proliferation area around the wound, 0.5-1.5 mm away from
the wound edge, but the proliferation of KCs was not observed at the wound edge [35–37]. Intravital
microscopy revealed that during the wound healing process, both the basal layer and the super-basal
layer migrated [37, 45] and the keratinocytes closer to the wound edge migrated faster, which both
migrated and proliferated 0.5 mm away from the wound edge. KCs at the wound edge have a stronger
migration ability than those in other parts. We hypothesized that the KCs at the wound edge may have
undergone epithelial-mesenchymal transition (EMT), so that the epithelial KCs have acquired certain
phenotypes of interstitial cells, which represents the ability to migrate. Re-epithelialization plays an
important role in the entire wound healing process, involving the proliferation and migration of epidermal
KCs around the wound. The dynamic mutual transformation of the proliferation and migration
characteristics of KCs is similar to some aspects of EMT, so the healing process involves part of EMT
[38]. Mesenchymal-epithelial transformation (MET) is the reverse process of EMT. In recent years, MET
has been largely studied in the �eld of tumor. Metastatic tumor cells need continuous EMT-MET to
colonize distant organs [39], and complete the distant tumor colonization by epithelial-mesenchymal-
epithelial transition. Few has explored the relationship between MET and wound healing.It is noteworthy
that skin �broblasts and epidermal stem cells colonized in the basal layer of the skin and hair follicles
need to migrate to the wound to undergo terminal differentiation during the process of wound healing.
We found that the transdifferentiation from �broblasts into KLCs is a manifestation of MET, and
proposed that this process is mainly regulated by the Wnt/β-catenin-LEF1-ZEB1 signaling
pathway(Figure7).It may also be jointly regulated by other unknown genes or signal pathways. It is
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therefore believed that wound healing is the result of the combined effect of the EMT of keratinocytes
and the MET of �broblasts, similar to the distant colonization of tumor cells.

Scars are a common consequence of skin injury, causing various adverse effects on patients, including
physical deformities and mental illness [40, 41].The excessive production of connective tissue (especially
collagen) during wound healing may lead to scar formation [42, 43], which is closely associated with the
synthesis of extracellular matrix (ECM) and the promotion of ECM remodeling by �broblasts.Studies have
shown that the skin damage of human fetuses in early pregnancy can be cured, forming normal skin
tissues without leaving scars [44].The speci�c mechanism of scarless healing of fetal skin is not yet
clear, but the in vitro transdifferentiation potential of fetal skin �broblasts may represent a brand-new
therapeutic option.

Conclusions
In this study, we found that fetal skin �broblasts can spontaneously transdifferentiate into KLCs when
cultured in ordinary DMEM nutrient solution for about 40 days, and this process may be regulated by the
Wnt/β-catenin signaling pathway. When the Wnt/β-catenin pathway is activated, the �broblast
transformation time can be shortened from 40 days to 10 days. The transformed KLCs have similar
biological characteristics as skin KCs, which promote wound healing, and have no obvious
tumorigenicity. Therefore, the spontaneous transdifferentiation potential of HFF-1 can provide new ideas
for extensive and scarless wound healing.
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Figures

Figure 1

Fetal skin �broblasts cultured in vitro have the potential to spontaneously transdifferentiate into KLCS. a
Schematic diagram of transdifferentiation from HFF-1 to KLCs. b Bright�eld image of spontaneous
transdifferentiation from HFF-1 to KLCs over time. c Flow cytometry analysis of KCs labeled protein
(CK14) and HFF-1 labeled protein (Vimentin) during HFF-1 transformation. d Immuno�uorescence
labeling analysis of the expression of HFF-1 speci�c proteins Vimentin and α-SMA in the process of
transdifferentiation. e Immuno�uorescence labeling analysis of the expression of KCs speci�c protein
CK14. (***P<0.001, n=3)
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Figure 2

Features of KLCs. a Western blot showed that KLCs highly expressed CK5, CK14, CK19, E-cadherin and
Integrinβ1, but did not express Vimentin (n=3).b Quantitative reverse transcription polymerase chain
reaction was used to detect the gene expression of CK5, CK14, CK19, E-cadherin,Integrinβ1 and vimentin.
(*P<0.05, **P<0.01, ***P<0.001, n=3). c CCK8 assay showed the proliferative ability of HFF-1, KLCs and
KCs (**P<0.01, ***P<0.001, HFF-1 group vs KCs group, #P<0.05, ##P<0.01, HFF-1 group vs KLCs group,
n=3). d Transwell test was used to analyze cell migration, and the number of positive cells was counted
under the microscope. Scar bar, 10μm (**P<0.01, ***P<0.001, n= 3). e Wound scratch assay was
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employed to observe the migration of HFF-1, KLCs and KCs, and the wound width of HFF-1, KLCs and KCs
at 0h, 12h, 24h and 48h were calculated. Scar bar, 10μm (***P<0.001, n=3).

Figure 3

KLCs promoted wound healing. a Representative images showing wound healing on days 0, 3, 6 and 9 in
PBS, HFF-1, KLCs and KCs groups (n=5). b Wound healing rates on days 0 and 39 in PBS, HFF-1, KLCs
and KCs groups (**P<0.01, ***P<0.001, with signi�cant difference compared with the PBS group; #p<0.05,
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###p<0.001, with signi�cant difference compared with the HFF-1 group,n=5). c HE staining of skin
tissues in PBS, HFF-1, KLCs and KCs groups on 0, 3, 6, 9 days n=3 . d Immunohistochemical staining
showed that the mice wounds treated with KLCs contained CK5-positive cells, which is indicated by the
black arrow (n=3).

Figure 4

KLCs were not tumorigenic. a The tumorigenicity test of KLCs, KCs and Hepg2 cells in nude mice (the area
indicated by the red arrow on day 0 is the cell injection site, and the area marked by the red arrow on day
40 is subcutaneous tumor on day 40 after cell injection, ***P<0.001,n=5). b HE staining of tumors in the
KLCs, KCs and Hepg2 groups. KLCs and KCs group showed normal skin tissue, while there was a large
number of in�ltrated neutrophils in the Hepg2 group was observed, as shown by the yellow arrow; the
local cells were loosely arranged, and the cytoplasm was vacuolated, as shown by the red arrow; a large
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number of tumor cells in the tissue increased atypia, and the nucleus was obviously irregular, as indicated
by the black arrow (n=5). c Immunohistochemical staining revealed CK5-positive cells in tumor tissues in
the KLCs, KCs and Hepg2 groups (n=5).

Figure 5

Identi�cation of the mechanism of KLCs transformation. a PCA was used to analyze the composition of
each group of samples. The more similar the sample composition is, the closer the distance re�ected in
the PCA chart is. The samples from different effective treatments often aggregate. b Heat maps of
differentially expressed genes determined by RNA microarray analysis of HFF-1, HFF-1 (day 25), KLCs
and KCs. c According to the gene expression patterns of each group of cell stages, 20 clusters were
divided from the number and P value of differential genes, and the number of clusters is shown in the
upper left corner. d The pathways with signi�cant enrichment of differential genes were obtained and the
most important biochemical metabolic pathways and signal transduction pathways involved in
differential genes were determined through KEGG analysis on No. 7 and No. 17 clusters.
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Figure 6

Wnt/β-catenin pathway activation promoted KLCs transformation. a The expression of Wnt pathway-
related protein in HFF-1, KLCs and KCs group cells (n=3). b Quantitative reverse transcription polymerase
chain reaction was used to detect the gene expression of Wnt pathway-related molecules (*p 0.05, **p
0.01, ***p 0.001,n=3). c Immuno�uorescence analysis of β-catenin protein in HFF-1, HFF-1 (day 25) and
HFF-1 (day 40) cells. β-catenin (green), Dapi (blue) staining and combined images showing the
expression of β-catenin (n=3). d HFF-1 was treated respectively with PBS, CHIR-99021 and XAV939, and
the dynamic process of cell transdifferentiation in each group was recorded. e The expression of
Vimentin, E-cadherin, CK14 and Wnt pathway related proteins after 10 days of treatment with PBS, CHIR-
99021 and XAV939. f Quantitative reverse transcription polymerase chain reaction was used to detect the
gene expression of E-cadherin, vimentin, CK14 and Wnt pathway related molecules after 10 days of
treatment with PBS, CHIR-99021 and XAV939 (*p<0.05, **p<0.01, ***p<0.001, with signi�cant difference
compared with the Cont group; #p<0.05, ##P<0.01, ###p<0.001; with signi�cant difference compared
with the PBS group, n=3).
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Figure 7

Molecular mechanism of HFF-1 transdifferentiating into KLCs.


