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Quantum theory exhibits many non-classical phenomena: violating Bell’s inequalities, ex-

hibiting intrinsic uncertainty, and predicting measurement-disturbance relation. In a wider

framework of generalized probability theories, these traits continue to be shared by many

other post-quantum theories. In particular, Bell’s inequalities are more strongly violated.

Is there some undiscovered principle lying behind the generalized theory that accounts for

its correlation strength and other properties? We find that there is an intimate connection

between uncertainty and effect of disturbance in a measurement. The uncertainty in a mea-

surement upper-bounds the disturbance. It can also lead to a uncertainty-disturbance prin-

ciple. It turns out that this simple principle lies at the very heart of any correlations and

their properties. More specifically, by considering the most widely studied two-level system,
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it leads to a strong self-duality that constitutes the key geometrical structure of quantum state

space, and it also explains why quantum correlations do not reach the maximum violation

of Bell’s inequalities and that it can result in the famous Tsirelson’s bound for spatial Bell’s

scenario and Lüders’ bound for the temporal Bell’s scenario. We argue that the observation

of intrinsic uncertainty and disturbance distinguish quantum theory from classical theory,

and the relation between them reveals the insight into any theory under the framework of

generalized probability theories.

Quantum theory is probably the best theory that we have till now. It has explained microscop-

ic phenomena to an unprecedented level of accuracy. Notwithstanding our increasingly thorough

knowledge regarding its formalism relying Hilbert’s space, we still do not understand many as-

pects of the theory including a good grasp of uncertainty and disturbance of observables. Can the

structure be understood based on the ground of physical principle? This profound question can

trace back to the early days of the quantum theory and has a renew interest in recent tens years due

to the advance of quantum information, especially due to the deepen understanding of quantum

nonlocality.

The discover of nonlocality was inspired by the debate on uncertainty principle or specifically

on whether quantum theory is deterministic. For classical and deterministic theory every quantity

has a predefined value and one is able to measure the value without disturbing the system. These

classical features place strict constraint on correlations between separated measurements in terms

of Bell’s inequalities 1, 2. Bell’s inequalities can be violated by quantum theory that precludes a
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deterministic description of it. However, Bell’s inequalities do not specify quantum theory from

possible post-quantum theories as they can also violate Bell’s inequality and even to a larger extant.

Taking the best known spatial Clauser-Horne-Shimony-Holt (CHSH) inequality 3 for example, its

maximum quantum violation is known as Tsirelson’s bound 4 and strictly smaller than the violation

for the Popescu-Rohrlich box 2, 5. This fact suggests potential physical principle bounding quantum

correlation. Subject to the interpretation of Tsirelson’s bound, the first line of research is from

an information theoretic perspective. It is found that quantum correlations respect the principles

of non-trivial communication complexity 6–8, information causality 9 , and local orthogonality

10, 11, showing restricted information theoretic power in communication and computation. From

a different perspective and regarding that any bipartite systems must compose of individual sub-

system, it is found that the local properties of sub-systems, such as local quantum mechanics 12 and

uncertainty principle 13, can also account for the correlation strength between them, i.e., Tsirelson’s

bound.

Aside from the Tsirelson’s bound, we still do not know much about other quantum charac-

teristic properties, such as the quantum correlation strength for the temporal Bell scenario and the

geometrical structure of quantum state space. The temporal Bell’s inequalities consider correlation

arising from sequential measurements on one single party at different times. The simplest temporal

Bell’s inequality is Leggett-Garg (LG) inequality 14, for which the maximum quantum violation

for two-level system is known as Lüders’ bound. This bound is smaller than its maximum possible

algebraic violation. As a key geometrical structure of quantum state space and a main ingredient in

the Born rule 15, the strong self-duality roughly translates into the fact that the two elementary con-
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cepts of a projective measurement and a pure state are represented as rank-one vectors in Hilbert’s

space. In the wider context of generalized probability theories which includes the classical and

quantum theory as subsets, this structure (and the like) offers interesting paradigms that have im-

plications on the operational tasks of steering 16, teleportation 16, 17, nonlocality 15, and reversible

interchangeability between pure states 18.

In this paper, we shall provide a unified understanding on the strong self-duality, Tsirelson’s

bound, and Lüders’ bound based on a proposed uncertainty-disturbance relation. While the intrin-

sic uncertainty and invasiveness in measurements are necessary for any violation of Bell’s inequal-

ities in GPTs 13, 19, 20, here, we find an intimate connection between them holding for a quantum

measurement, where the uncertainty in the measurement upper bounds the disturbance it can lead

in a following measurement. Applying this relation to the most widely-studied two-level system,

we find that it immediately leads to the strong self-duality, Tsirelson’s bound, and Lüders’ bound.

Thus, we show that the uncertainty and invasiveness in a measurement, the geometrical structure

of state space, and correlation strength in Bell’s scenario are fundamentally related to each other,

which may act as seeds for exploring two-level systems to a full understanding of other generic

platforms.

GPT provides a general framework for describing operational features of arbitrary physical

theories. A GPT must specify the physical system and its state, transformations and the type

of measurements. Once these specifications are set, one should be able to describe the physical

theories from an operational perspective. Generally, a physical state S is a complete description
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of a system, a measurement A is a set of events {Aa} being specified by the outcomes a. It is

operationally legitimate to suppose that the state space Ω and measurement space M are convex,

in the sense that the preparation of a state S1 with probability p and a different state S2 with

probability 1 − p gives rise to a valid mixed state p · S1 + (1 − p) · S2. The same goes for

measurements. The probability assigned on an event Aa happen on state S is denoted by p(Aa|S),

and it should also respect probabilistic mixtures of states and measurements. For example, p(Aa|p ·

S1 + (1 − p) · S2) = p · p(Aa|S1) + (1 − p) · p(Aa|S2). A state that cannot be decomposed as a

convex combination of different states is called a pure state. An undecomposable event is called an

extremal event. Essentially, the pure states and extremal events are building blocks of the space of

Ω and M, the latter forming fundamental concepts in GPTs. An undecomposable event assumes

that an ath event in measurement A would ensure a definite value in the post-measurement state

Sa
A, called an ”eigenstate” and uniquely specified by A, a. A measurement with all the events being

extremal is called an extremal measurement. Such generic assumptions clearly holds in quantum

theory, where both of pure state and extremal measurement are represented as rank-one projectors

and a post-measurement state is an eigenstate uniquely specified by setting and outcome. In the rest

of the paper, we consider principally the basic measurement dealing with these undecomposable

events.

All the classical observables have well-defined values, and one is able to observe the values

with negligible disturbance to the state, corresponding to properties known as realism and non-

invasiveness. The quantum theory employs a drastically different conceptual framework that is

incompatible with the realism and noninvasiveness. This radical departure from realism and non-
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Figure 1: Sequential measurements scheme and direct measurement: (a) a first extremal measure-

ment A0 is performed on a physical state S , then the post-measurement state is submitted to a

following measurement A1. (b) Had not be disturbed, a direct measurement A1 is performed on

state S . By the distributions from scheme (a) we can characterize the uncertainty of measure-

ment A0, by the distance between statistics from measurement A1 in two scenarios we define the

disturbance leaded by A0 to A1.

.

invasiveness provides the structure for uncertainty principle and gives birth to quantum theory 21.

When dealing with incompatible measurements, the uncertainty principle has two statements as:

(i) Preparation uncertainty, stating that the values of incompatible observables are indeterminate in

a quantum state, the intrinsic uncertainties of the observables exhibit a trade-off, (ii) Measurement

uncertainty relates to the fact that a measurement on a quantum state would alter the state, resulting

in a disturbance to a following incompatible measurement 22, 23. In the following, we shall show

a dedicate relation between them that would be formulated in terms of operational probabilities.

This enables us to impose the relation as physical principle in a GPT and resulting theories in-

clude quantum theory as a subset. We consider a simple measurement scheme as shown in Fig.1,

where two sequential extremal measurements A0 → A1 are performed on a system whose initial
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state is S . In Fig.1.a, after the measurement A0 on sufficient state copies, we obtain a distribution

p(Aa
0|S) and an average state S ′ = p(Aa

0|S) · Sa
A0

, where Sa
A0

denote the ath ”eigenstate” of A.

The average state then is submitted to a following measurement A1, yielding a disturbed distribu-

tion as p(Aa′

1 |S ′) =
∑

a p(A
a
0|S) · p(Aa′

1 |Sa
A0
), where p(Aa′

1 |Sa
A0
) relates to transfer probability of

obtaining a′ when measuring A1 on the ”eigenstate” Sa
A0

. By p(Aa′

1 |S) we denote the probability

of directly measuring A1 on the original state.

A classical measurement is noninvasive and may exhibit some uncertainty (due to ignorance

of state preparation), in some post-quantum theory a measurement may exhibit no uncertainty but

leads to a non-trivial disturbance 24, 25. We raise the question regarding the nature of quantum case.

Is there some prerequisites for a given magnitude of DA→A′ , which can be quantified in terms

of distance between p(Aa′

1 |S) and p(Aa′

1 |S ′):
∑

a′ |p(Aa′

1 |S) − p(Aa′

1 |S ′)|. In quantum theory, the

disturbance should relate to the δA0
and p(Aa′

1 |Sa
A0
), here the uncertainty is defined via δ2A0

=

1 −∑

a p(A
0
0|S)2 that is convex and assumes maximum for a uniform distribution. On one hand,

if the input state is “eigenstate” of A0, then δA0
is zero, the input state is left unchanged and no

disturbance is incurred. On the other hand, DA0→A1
should relate to p(Aa′

1 |Sa
A0
), if each of them

is either zero or one, then A0 is equivalent to A1 up to a relabel of outcomes, then no disturbance

would be leaded. To quantify this aspect, we introduce a sum uncertainty

δA0|A1
=

∑

a′ δA0|Sa′

A1

:=
∑

a′

√

1−∑

a p
2(Aa

0|Sa′

A1
),

which is zero if and only if p(Aa′

1 |Sa
A0
) ∈ {0, 1}. We find that

Theorem 1 On a quantum system with finite levels, if two extremal measurements are
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performed in order A0 → A1 then it holds the following uncertainty disturbance relation

δA0
δA0|A1

≥ DA0→A1
. (1)

The proof is presented in the supplemental materials (SM). From relation Eq.(1), a nonzero

disturbance (right hand side) caused by measurement A0 requires a nonzero uncertainty in mea-

suring A0 and a non-zero sum uncertainty. Thus we shall refer this figure as the principle of no

disturbance without uncertainty (NDWU) and Eq.(1) as NDWU relation. Applied to the basic

two-level systems, it turns out that Eq.(1) provides us a unified understanding on local structure of

state space, temporal correlation, and spatial correlation in quantum theory.

The first essential difference between the theories is how they describe a single system. Clas-

sical states allow a realistic description, while the quantum states are represented by positive de-

fined operators in Hilbert’s space. The geometrical structure of state space lies at very heart of

physical properties. Taking quantum mechanics for example, the local state space of subsystems

completely determines the correlation in a bipartite quantum systems 12. In GPTs, the geomet-

rical structures of state space of strong and weak self-duality are intimately related to steering,

teleportation, and nonlocality.

In the consideration of self-dualities, it is important to include unnormalized states, that is,

defining a space Ω+ whose elements ω = λS for S ∈ Ω and λ ≥ 0 15, 18. The strong self-duality

defined as

Definition 1 (strong self-duality) A system is strongly self-dual iff there exists an isomor-
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phism T : M → Ω+ which is symmetric and positive, i.e., p[e|T (f)] = p[f |T (e)] ≥ 0 for all

e, f ∈ M.

Strong self-duality is an elementary structure for a quantum system, where states and mea-

surements are equivalent to each other up to a normalization, and T can be defined as identity

map, namely, T (e) = e. Then the strong self-duality follows from the Born rule: p[e|T (f)] =

tr(e · f) = p[f |T (e)], ∀e, f ∈ M and Ω+. Noting that Aa
i and Sa

Ai
should be taken as dif-

ferent objects in GPTs, we can generalize the identity map as T :
∑

piaA
a
i →

∑

piaSa
Ai

, where

the sum is taken over setting i and value of observable a and the extremal measurements Aa
i in

the decomposition is mapped to the prepared eigenstate Sa
Ai

. A sufficient and necessary condi-

tion for the strong self-duality is a symmetry condition: p(Aa′

i |Sa
Aj
) =p(Aa

j |Sa′

Ai
), for all extremal

event Ai, Aj and outcome a, a′. The condition is necessary: p[Aa′

i |T (Aa
j )] = p(Aa′

i |Sa
Aj
) =

p[Aa
j |T (Aa′

i )] = p(Aa
j |Sa′

Ai
), the condition is sufficient, for two arbitrary measurement

∑

pia · Aa
i

and
∑

qia′ ·Aa′

i we have p[
∑

pjaA
a
j |T (qia′A

a′

i )] =
∑

pjaq
i
a′p[A

a
j |T (Aa′

i )] =
∑

pjaq
i
a′p[A

a′

i |T (Aa
j )] =

p[
∑

qia′A
a′

i |T (
∑

pjaA
a
j )]. In the following, we show that Eq.(1) can lead to the symmetry condition

for two-level measurements, where a, a′ ∈ 0, 1.

Theorem 2 For any two-level extremal measurement, Eq.(1) leads to a local structure of

p(Aa′

1 |Sa
A0
) = p(Aa

0|Sa′

A1
). (2)

We note that, by proving the Theorems 2 the number of independent transfer probabilities can be

reduced from four to one (see SM). For the sake of simplicity, we remove all the non-independent

transfer probabilities and adhere to the notations: c = p(A0
1|S0

A0
)− p(A1

1|S0
A0
) = 2p(A0

1|S0
A0
)− 1
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Figure 2: Spatial correlation and temporal correlation: In the spatial scenario, the separation of

measurements is in space where observers can performs local measurements on the shared parti-

cles. This scenario can be also viewed as: an event happening, say, on Bob’s side give rise to a

conditional state is prepared on Alice side, then she performs measurement on the conditional state.

For the temporal scenario, the separation is in the time domain - a first measurement is performed

on original state and a second one is performed on the output state from the previous measurement.

.

and 〈Aa〉 =p(A0
a|S)− p(A1

a|S), Eq.(1) becomes

(〈A0〉+ 〈A1〉)2
2(1 + c)

+
(〈A0〉 − 〈A1〉)2

2(1− c)
≤ 1. (3)

We note this relation is indeed an uncertainty relation, where c characterizes the incompatibility

between measurements and the distributions in terms of expectation are constrained.

While uncertainty and disturbance are needed for any violation of Bell’s inequalities, their

relations captured by Eq.(1) or Eq.(3) place some constraint on their violations. We consider

the simplest temporal and spatial Bell’s inequalities, i.e., the famous CHSH inequality and LG

inequality 26 that deal with two-level measurements. The maximum quantum violation for them
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are known as Tsirelson’s bound (2
√
2) and Lüders’ bound (3

2
) which are obtained when employing

the kinds of measurement considered in Eq.(1). In contrast, the maximum violation for GPTs are 4

5 and 3 respectively. We now show that the local relation Eq.(3) regarding a subsystem can explain

not only Tsirelson’s bound but also Lüders’ bound.

The CHSH inequality considers a spatial Bell’s scenario as shown in Fig.2, where a bipartite

system is distributed to space-like separated observablers, Alice and Bob can randomly perform

one of two dichotomic measurements {Aν} and {Bµ} (ν, µ = 0, 1) with outcomes a, b = 0, 1 , on

the particles, the joint probability is denoted by {p(ab|νµ)} where ν and µ are the settings. CHSH

inequality holds for any local hidden value theory and reads,

∑

a,b,µ,ν

(−1)a+b+µνp(ab|νµ) ≤ 2.

Since the measurements are space-like separated, without loss of generality and placed in

some reference frame, one may assume that Bob first performs a measurement Bµ, obtains b with

probability p(b|µ), then simultaneously a conditional state is prepared on Alice’s side described by

ωb|µ. Alice then measures Aν and obtains a in probability p(νa|ωb|µ) which is written as p(νa|µb)

for short. Thus a joint distribution p(ab|νµ) is decomposed into p(b|µ) · p(νa|µb), where p(b|µ) =
∑

a p(ab|νµ), p(νa|µb) = p(ab|νµ)
p(b|µ)

. Following this analysis, we rewrite lhs of CHSH inequality

as
∑

b,µ,ν(−1)b+µνp(b|µ) · (〈A0〉b|µ + (−1)b〈A1〉b|µ), where 〈Ai〉b|µ is the expectation value of Ai

in conditional state ωb|µ. We note that the Eq.(3) bounds the expectations in the lhs of Eq.(4) as
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〈A0〉 ± 〈A1〉 ≤
√
2± 2c. Clearly, Tsirelson’s bound follows since

∑

b,µ,ν

(−1)b+µνp(b|ν) · (〈A0〉b|ν + (−1)ν〈A1〉b|ν)

≤
∑

b,µ,ν

p(b|ν) · |(〈A0〉b|ν + (−1)ν〈A1〉b|ν)|

≤
∑

b,ν

p(b|ν)
√

2 + (−1)ν2c

≤
√
2 + 2c+

√
2− 2c ≤ 2

√
2

In the last inequality, the lhs is maximized over all c, and Tsirelson’s bound is obtained when

c = 0, namely, p(Aa′

1 |Sa
A0
) = 1

2
. Note that this is the case for the maximum violation in quantum

theory where the two measurements on either side are multi-unbiased and maximum incompatible.

We now shift our attention to temporal correlations. We consider measurements on a single

party at different times as shown in Fig.2. In analogy to the spatial correlation, temporal correlation

also reveals rich nonclassical correlation structure. However, little is yet known about why its

violation is limited. We now show that Eq.(3) can recover the Lüders’ bound for the LG inequality

that reads:

〈A1A2〉+ 〈A2A3〉 − 〈A1A3〉 ≤ 1,

where 〈A1A2〉 :=
∑

aa′(−1)a+a′p(Aa
1|S)p(Aa′

2 |ωa|A1
), and ωa|A1

denote the post-measurement s-

tate conditioning on event Aa
1. By the considering extremal measurements, ωa|A1

= Sa
A1

. We can

expand the correlation the 〈A1A2〉 and remove the independent transfer probabilities

〈A1A2〉 =
∑

a=a′

p(Aa
1|S)p(Aa′

2 |Sa
A1
)−

∑

a 6=a′

p(Aa
1|S)p(Aa′

2 |Sa
A1
)

= 2p(A0
2|S0

A1
)− 1 = c12
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Eq.(4) depends only on the independent transfer probabilities between A1, A2, and A3 but not on

the input state. Thus one can take the input state arbitrarily. Here we take it as an eigenstate as S0
A1

,

so that the uncertainty of measurement A1 is zero and introducing no disturbance to any following

measurement at all, and the Eq.(4) can be casted into 〈A2〉 + 〈A2A3〉 − 〈A3〉 ≤ 1, which formula

sometimes is taken as an equivalent version of LG inequality27. Denoting 〈A2A3〉 = c23, then we

have

〈A2〉+ c23 − 〈A3〉 ≤
√
2− 2c23 + c23 ≤

3

2
,

where we use the constraint 〈A0〉 ± 〈A1〉 ≤
√
2± 2c again. Then we have explained the CHSH

and the LG inequalities, where our NDWU relation manifests its power.

Historically, the study on uncertainty principle and the study on quantum nonclassical cor-

relations often reinforces each other. The interpretation of uncertainty principle calls for an inde-

terministic description of quantum theory. Bell’s theorem put this indeterministic assumption on a

solid ground, while the following study triggers a question as why quantum correlation is nonlocal

but not sufficient nonlocal to be maximum. It is also found that post-quantum and nonlocal theories

must incorporate the properties of indeterminism and invasiveness, which are the key concepts re-

spectively relating to preparation uncertainty and measurement uncertainty. Here, we provide new

evidences for the effect of this reinforcement. We find there is an intricate connection between

uncertainty and disturbance for quantum theory that reveals an previous unnoticed facet of uncer-

tainty principle. Our connection is rephased in an operational manner, when applied to the basic

two-level systems, it provides a universal understanding on the key structure of state space, and

on why quantum correlation are limited in both the spatial and the temporal Bell’s scenario for the
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basic two-level systems, bridging the global properties to the local properties. As the connection

lies at the very heart of quantum characteristic properties, we claim it as a principle.

Correspondence Correspondence should be addressed to Sixia Yu (email:yusixia@ustc.edu.cn) and Liang-

Liang Sun (email:sun15@mail.ustc.edu.cn).
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Methods

1 Proof of Theorem 1.

Suppose that a finite-level quantum system is prepared in state ρ and two projection measurements

correspond to two orthonormal bases {|Aa
0〉〈Aa

0|} and {|Aa′

1 〉〈Aa′

1 |}. By denoting 〈Aa
0|Aa′

1 〉 = Λa′a

we have expansion |Aa′

1 〉 =
∑

a Λa′a|Aa
0〉. As a result

p(Aa′

1 |S) = 〈Aa′

1 |ρ|Aa′

1 〉 =
∑

s,t

Λ∗
a′sΛa′t〈As

0|ρ|At
0〉 =

∑

s 6=t

Λ∗
a′sΛa′t〈As

0|ρ|At
0〉+ p(a′|S ′)

where p(a′|S ′) =
∑

a p(A
a
0|S) · p(Aa′

1 |Sa
A0
) with p(Aa

0|S) = 〈Aa
0|ρ|Aa

0〉 and transfer probabilities

are symmetric

p(Aa′

1 |Sa
A0
) = p(Aa

0|Sa′

A1
).

Finally we calculate

DA0→A1
=

∑

a′

∣

∣p(Aa′

1 |S)− p(a′|S ′)
∣

∣

=
∑

a′

∣

∣

∑

s 6=t

Λ∗
a′sΛa′t〈As

0|ρ|At
0〉
∣

∣

≤ ∑

a′

√

∑

s 6=t |Λ∗
a′sΛa′t|2

√

∑

s 6=t |〈As
0|ρ|At

0〉|2

≤ ∑

a′

√

∑

s 6=t p(A
t
0|Sa′

A1
)p(As

0|Sa′

A1
)
√

∑

s 6=t p(A
s
0|S)p(At

0|S)

=
∑

a′

√

1−∑

s p(A
s
0|Sa′

A1
)2
√

1−∑

t p(A
t
0|S)2

= δA0|A1
δA0

.

Here the first inequality is due to Cauchy inequality, the second inequality is due to the fact that the

state is positive semidefinite so that in the basis {|Aa
0〉} it holds |〈As

0|ρ|At
0〉|2 ≤ 〈As

0|ρ|As
0〉〈At

0|ρ|At
0〉.
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2 Proof of Theorem 2.

The transfer probabilities are symmetric, i.e., p(Aa
0|Sa′

A1
) = p(Aa′

1 |Sa
A0
), for two-outcome pro-

jection measurements if the NDWU relation holds for all pairs of projection measurements —

Considering normalization conditions, there are four independent transfer probabilities (which is

independent of the initial state)

p(A0
1|S0

A0
) =

1 + c1

2
, p(A0

1|S1
A0
) =

1 + c2

2
, p(A0

0|S0
A1
) =

1 + c′1
2

, p(A0
0|S1

A1
) =

1 + c′2
2

.

It is symmetric if and only if c1 = −c2 = c′1 = −c′2. By denoting the expectation values 〈A0〉S =

p(A0
0|S) − pS(A

1
0|S) and 〈A1〉S = p(A0

1|S) − p(A1
1|S) for two projection measurements in an

arbitrary state S , the NDWU relation Eq.(1) becomes

1

2

(

√

1− c′21 +
√

1− c′22

)

√

1− 〈A0〉2S ≥
∣

∣

∣

∣

〈A1〉S − c1 + c2

2
− c1 − c2

2
〈A0〉S

∣

∣

∣

∣

for the sequential measurement scenario A0 → A1 while

1

2

(

√

1− c21 +
√

1− c22

)

√

1− 〈A1〉2S ≥
∣

∣

∣

∣

〈A0〉S − c′1 + c′2
2

− c′1 − c′2
2

〈A1〉S
∣

∣

∣

∣

for the sequential measurement scenario A1 → A0. Let us take at first the state S0
A1

, i.e., the state

on which measurement A1 gives a definite value 0. In this case 〈A0〉S0

A1

= c′1 and 〈A1〉S0

A1

= 1 and

noting that transfer probabilities are state independent, we obtain

1− c1 + c2

2
− c1 − c2

2
c′1 ≤ 1

2

(

√

1− c′21 +
√

1− c′22

)

√

1− c′21

≤

√

1−
( |c′1|+ |c′2|

2

)2√

1− c′21

≤ 1− |c′1|+ |c′2|
2

|c′1| ≤ 1− c′1 − c′2
2

c′1
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where the first inequality is due to NDWU relation, the second inequality is due to the concavity

of function
√
1− x2, and the third inequality is due to inequality

√
1− x2

√

1− y2 ≤ 1 − |xy|.

By taking the state to be S = S1
A1

, i.e., the state on which measurement A1 gives a definite value

1, we have 〈A0〉S1

A1

= c′2 and 〈A1〉S1

A1

= −1 so that

1 +
c1 + c2

2
+

c1 − c2

2
c′2 ≤ 1

2

(

√

1− c′21 +
√

1− c′22

)

√

1− c′22

≤

√

1−
( |c′1|+ |c′2|

2

)2√

1− c′22

≤ 1− |c′1|+ |c′2|
2

|c′2| ≤ 1 +
c′1 − c′2

2
c′2.

As a result we obtain

(c1 − c2)(c
′
1 − c′2) ≥ (|c′1|+ |c′2|)2 ≥ |c′1 − c′2|2 ≥ 0.

Similarly from the A1 → A0 scenario we obtain

(c1 − c2)(c
′
1 − c′2) ≥ (|c1|+ |c2|)2 ≥ |c1 − c2|2.

If c′1 = c′2 or c1 = c2 we have c′1 = c′1 = c1 = c2 = 0 then we already have symmetric transfer

probabilities. If c1 6= c2 and c′1 6= c′2 we obtain both c1−c2 ≥ c′1−c′2 and c′1−c′2 ≥ c1−c2, by noting

they have the same sign, so that c1−c2 = c′1−c′2. As a result we have both c1+c2 ≥ 0 and c1+c2 ≤ 0

giving the desired symmetry property of transfer probabilities c1 = −c2 = c′1 = −c′2 = c. The

NDWU relation becomes

√
1− c2

√

1− 〈A0〉2 ≥ |〈A1〉 − c〈A0〉|.

This inequality can be reformulated into

(〈A0〉+ 〈A1〉)2
2(1 + c)

+
(〈A0〉 − 〈A1〉)2

2(1− c)
≤ 1
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which is exactly NDWU relation Eq.(3) for two-outcome projection measurements.
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Figures

Figure 1

Sequential measurements scheme and direct measurement: (a) a �rst extremal measurement A0 is
performed on a physical state S, then the post-measurement state is submitted to a following
measurement A1. (b) Had not be disturbed, a direct measurement A1 is performed on state S. By the
distributions from scheme (a) we can characterize the uncertainty of measurement A0, by the distance
between statistics from measurement A1 in two scenarios we de�ne the disturbance leaded by A0 to A1.



Figure 2

Spatial correlation and temporal correlation: In the spatial scenario, the separation of measurements is in
space where observers can performs local measurements on the shared particles. This scenario can be
also viewed as: an event happening, say, on Bob’s side give rise to a conditional state is prepared on Alice
side, then she performs measurement on the conditional state. For the temporal scenario, the separation
is in the time domain - a �rst measurement is performed on original state and a second one is performed
on the output state from the previous measurement.
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