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Abstract 
The efficacy of government interventions in epidemic has become a hot subject since the onset 15 

of COVID-19. There is however much variation in the results quantifying the effects of 

interventions, which is partly related to the varying modelling approaches employed by existing 

studies. This paper therefore aims to examine how the choice of modelling approach would 

affect the estimation results of intervention effects, by experimenting with different modelling 

approaches on a same data set composed of the 500 most affected U.S. counties. We compare the 20 

most frequently used methods from the two classes of modelling approaches, which are Bayesian 

hierarchical model from the class of computational approach and difference-in-difference from 

the class of natural experimental approach. We find that computational methods are likely to 

produce larger estimates of intervention effects due to simultaneous voluntary behavioral 

changes. In contrast, natural experimental methods are more likely to extract the true effect of 25 

interventions. Among different difference-in-difference estimators, the two-way fixed effect 

estimator seems to be an efficient one. Our work can inform the methodological choice of future 

research on this topic, as well as more robust re-interpretation of existing works, to facilitate both 

future epidemic response plans and the science of public health. 

Introduction 30 
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In fighting COVID-19, non-pharmaceutical interventions aiming at reducing mobility and 

contact have been implemented by governments around the world repetitively. Given the strong 

(and mostly negative) impact of these interventions on economy and social life, the efficacy of 

interventions has become a hot subject of study1-5, which is informative for both future epidemic 

response plans and the science of public health. However, there is much variation in the analysis 5 

results quantifying the effects of the interventions, which prevents researchers and policy makers 

from drawing clear and reliable conclusions (estimates with the reproduction number as the 

outcome of interest are summarized in Table S1). There are two major sources of such variation: 

the first is the sample data (countries, regions) used in the analyses, as the effects of interventions 

might be naturally different in different local contexts influenced by the intensity of enforcement, 10 

lifestyle, culture and so on; the second is the modelling approach, which might capture different 

structures in the data thus needs careful evaluation. 

 

The modelling approaches employed by existing analyses can be grouped into two classes: those 

that incorporate a natural experimental design and those that do not (review of the methods used 15 

in 23 highly relevant studies in Table S1). The former usually employ tools from the field of 

econometrics or biostatistics which have been developed for identifying causal influences in 

public policy and medical issues. The natural experimental design is featured by comparing 

regions that implemented or relaxed an intervention in a period (treatment group) to regions that 

did not (control group), given that the latter group is similar enough to the former group to be 20 

considered as the counterfactual. The dominant method used has been difference-in-difference4,6-

11, a method that identifies causal treatment effect through comparing pre-and post-treatment 

performance of control and treatment groups12; and occasionally synthetic control13 and 

interrupted time series analysis14. The second class of analyses do not incorporate a treatment-

control comparison but focus on maximizing model fit to observed data based on assumed model 25 

structures. Specific methods that have been used include Bayesian hierarchical model2,3,15-19, 

generalized linear regression5,20-25 and certain machine learning models5.  

 

The assumed advantage of natural experimental design lies in the ability to rule out common 

temporal changes in the treatment and control groups, which might otherwise be mistaken as the 30 

treatment effect, thus identify the true effect of an intervention. To be more specific, if there is a 

natural trend in the epidemic happening together with an intervention effect, researchers would 

be able to rule it out by subtracting the epidemic course of the treatment group with that of the 

control group. In the case of COVID-19, multiple processes could lead to such a natural trend, 
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including increased precautionary behavior driven by the severity of the epidemic, decrease in 

the proportion of susceptible population, virus variants, etc.9. 

 

This paper therefore aims to empirically examine how the choice of modelling approach would 

affect the estimation results of intervention effects, by experimenting with different modelling 5 

approaches on a same data set. We focus on the most frequently used methods from the two 

classes, which are difference-in-difference from the class of natural experimental methods and 

Bayesian hierarchical model from the class of more computational methods (can be checked in 

Table S1). It should be noted that among the non-natural experimental methods, generalized 

linear regression is also frequently used, however, most of the model settings are not able to 10 

capture the causal relationships and only association can be claimed from the analysis 

results20,21,24,26. More specifically, in terms of Bayesian hierarchical model, we use the model 

developed by Brauner et al. (2021), which is a later modification in a group of similar models3,19. 

This model uses infection case and death data in each region to backward infer daily 

reproduction numbers and then the impacts of interventions on the reproduction number. In 15 

terms of the difference-in-difference method, we test two estimators. The first is the two-way 

fixed effect estimator, which is a widely used difference-in-difference estimator in policy 

analysis and the most used one in relevant studies12. The estimation is implemented through a 

linear model with the outcome of interest as dependent variable and intervention status per 

region per day as well as region and day fixed effects as independent variables. Estimating the 20 

linear model is equivalent to comparing the changes in treatment and control groups before and 

after intervention when there are two groups and two time periods. However, this estimator could 

be biased if there are multiple time periods and the treatment effect changes over time, which is 

possible in the case of COVID-19 as the compliance to interventions may change (e.g. it may 

take some time for compliance to increase, and compliance may also decrease as time goes)19,27. 25 

To accommodate the heterogeneous effect, we further experiment with a new difference-in-

difference estimator that is robust to temporally heterogeneous treatment effect28,29. The robust 

estimator directly compares the epidemic course after n days of intervention status change in all 

possible pairs of treatment and control groups across the entire study period and computes the 

average treatment effect (n  0).  30 

 

We take the United States as the case and analyze the effect of government interventions using 

county-level data of 500 counties with the largest number of infections. We use data from the 

first pandemic wave, that is, from March to August 2020, since intervention effect estimates in 
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later periods could be confounded by more factors including lockdown fatigue, virus variants and 

vaccination. Six widely applied government interventions are evaluated, which are stay-at-home 

order, school closure, childcare closure, non-essential retail closure, banning small-size 

gatherings (below 10 people), and banning large-size gatherings (above 10 people) (Fig. 1). 

 5 

Accurate knowledge of the effectiveness of government interventions is key to cost-effective 

policy making not only for controlling the on-going COVID-19 but also for future public health 

crisis. By directly experimenting with three main stream estimation methods, this work aims to 

facilitate a better understanding on the strength and weakness of relevant modelling approaches 

and the potential bias of reported results. While we cannot fully encompass all possible 10 

methodology, our analysis is nonetheless informative on refining the analysis on this issue and 

grounding decision making on sound scientific evidences. 

 

Fig. 1. Epidemic course and interventions in the sample counties in the United States. (A) 
Dynamics of daily Rt in the sample counties. (B) Dynamics of the six interventions. The 15 

interventions switched between none (0), partial restriction (0.5) and full restriction (1) during 

the study period. The widths of lines in the graphs are proportional to the number of counties in 

the corresponding status on the corresponding day. 

Result 
Existence of common behavioral trends 20 

Since the key difference between natural experimental and non-natural experimental methods 

lies in the use of a control group to rule out universal trend in the epidemic, we start by testing 

whether such trend exist and whether it correlates with the implementation or relaxation of 

interventions. Among the possible contributors to the universal trend, we focus on residents’ 
behavioral changes, which is supposed to be a major contributor and the information is available 25 
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through Google’s COVID-19 Community Mobility Reports that provides daily indicators on the 

movements of residents in a region (the county level for the United States)30. 

 

By regressing the county-specific daily mobility indicators on day variables and intervention 

status, we find a statistically significant day effect on most days in our study period, indicating a 5 

non-zero common change in the amount of travel conducted by residents in different counties on 

each day (Fig. 2). There was first an upward common trend in the time staying at home from 

March to mid-April, followed by a gradual decrease afterwards, yet by the end of the period, the 

time staying at home was still higher than before the pandemic. Actually, the day effects account 

for a larger proportion of the total variance in mobility than government interventions, as the 10 

adjusted R2 of the model is 0.22 with only intervention status as explanatory variables and 

increases to 0.66 when day effects are added (full results in Table S2). Correlation tests show 

that this common behavioral trend is statistically significantly correlated with the status of 

interventions (Pearson’s r=0.02~0.39, all statistically significant at 0.001 level). The positive 

correlation suggests that the estimation of intervention effects could be upwardly biased by 15 

simultaneous spontaneous behavioral changes without proper controlling measures, which 

confirms the concern behind natural experimental methods. 

 

Fig. 2. Trend of the common change in residents’ mobility. Grey lines are the daily values of 

the Google mobility indicator in the sample counties and the black line is the common daily 20 

mobility change shared by the counties. Please note that the baseline in the Google mobility 

indicator is the median value on each day of the week from the 5-week period Jan 3 to Feb 6, 

2020, in other words, different baselines are used for different days of the week.  

 

Comparison of model results 25 
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The intervention effect estimates produced by the three methods are shown in Fig. 3, which are 

different from each other given the diverse modelling strategies. Generally speaking, the semi-

mechanistic model produces the largest estimates on interventions’ effects in reducing Rt, which 

is consistent with our reasoning that non-natural experimental methods are likely to produce 

larger estimates. Three interventions are estimated to have a statistically significant impact on 5 

reducing Rt, which are school closure (reducing Rt by -67.4%, 95% confidence interval: -69.7 to -

64.8%), childcare closure (reducing Rt by -17.6%, -24.5 to -9.7%), and non-essential retail 

closure (reducing Rt by -6.9%, -14.9 to -1.2%). The particularly large effect of school closure 

might be related to the interaction between the sequence of interventions and structure of the 

model31. 10 

 

However, none of these three interventions are found to have a statistically significant impact 

according to the two difference-in-difference estimators, which could be a consequence of 

excluding spontaneous behavioral changes by the natural experiment design. Generally, 

estimation results acquired from the two difference-in-difference estimators are closer to each 15 

other than to the results of the semi-mechanistic model (differences are not statistically 

significant). Stay-at-home order is found to have the most prominent effect in reducing Rt by 

both of the two difference-in-difference estimators: -6.6% (-10.6 to -2.5%) as estimated by the 

two-way fixed effect estimator and -17.3% (-31.7 to 0%) as estimated by the robust estimator, 

which nonetheless are not statistically different (z-statistics = 1.27). The wider confidence 20 

interval of the latter could be because the estimation is on a day-by-day basis so that a smaller 

sample is used in estimating the impact of implementing or relaxing an intervention for n days (n 

 {0 ~ 21}), resulting in more uncertainties. Besides, banning small-size gatherings is also found 

to statistically significantly reduce Rt by the two-way fixed effect estimator (-5.1%, -9 to -1.1%), 

while its estimate is associated with a wide confidence interval when using the robust estimator. 25 

The other interventions are not found to have a statistically significant impact by both estimators. 

All the interventions satisfy the parallel pre-trend assumption, which means that the epidemic 

course in the control group is similar to that of the treatment group before intervention status 

changes, so that the former can be proper counterfactuals for the latter (details on the 

methodology and results of parallel pre-trend test in Supplementary Method and Table S3&4). 30 

 

Since the difference between the results from the two difference-in-difference estimators should 

stem from the temporally heterogeneous intervention effects, we then examine the day-by-day 

estimates of intervention effects produced by the robust difference-in-difference estimator (Fig. 



 

7 

 

3B). The results suggest that the intervention effects do change with the length of 

implementation. Among the two interventions that are found to have significant impacts on 

reducing Rt in the two-way fixed effect model, stay-at-home order shows an increasing effect 

over time, which might be caused by the gradual change of behavior and enforcement measures; 

and small-size gathering ban demonstrates a V-shaped trend, suggesting a loss of effect after 5 

initial effectiveness.  

 

Fig. 3. Intervention effect estimates from different modelling approaches. (A) Comparison 

of the results from the three approaches, with 50% and 95% confidence intervals. (B) Time-

varying intervention effects estimated by the robust difference-in-difference estimator. Point 10 

estimates of percentage changes in Rt with 95% confidence intervals are shown.  

Discussion 
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The wide use of non-pharmaceutical interventions in COVID-19 provides large-scale natural 

experiments on the impacts of various public health measures, which are valuable information 

for fostering the knowledge in relevant fields such as public health, urban resilience, public 

policy and informing future policy making. Diverse methodologies have been developed to 

evaluate the efficacy of interventions in COVID-19. By testing three major modelling methods 5 

on the epidemic data from the United States, we demonstrate that quite different estimates of 

intervention effects could be acquired with different methods. Particularly, methods without 

explicit comparison of treatment and control groups tend to over-estimate intervention effects, as 

we find there is non-negligible spontaneous behavioral change happening together with the 

interventions. This is further testified by comparing our estimates to previous analyses—our 10 

estimates from difference-in-difference methods are generally smaller than estimates from non-

natural experimental methods2,17,20,23, though this comparison is not absolutely valid due to 

varying geographical extents of the studies. The results suggest that estimates produced by 

methods with a natural experimental design could be more reliable, despite of differences caused 

by variance in details of modelling approaches. Our work can inform the methodological choice 15 

of future research on this topic as data are still accumulating, and also facilitate more robust re-

interpretation of existing works. 

 

Regarding to the two estimators with natural experimental design, the one robust to temporal 

heterogeneity in intervention effects is methodologically more superior. However, since much 20 

less observations are available for each n-day effect estimate, there could be less certainty about 

the estimate thus wider confidence intervals are produced. Considering that the results from the 

two difference-in-difference estimators are not statistically significantly different, the two-way 

fixed effect estimator is a preferable choice, which also has the advantage of fast computing. On 

our data, it takes 42 CPU hours (2.6 GHz) to finish bootstrapping 100 times for the estimation of 25 

one intervention. Nonetheless, if longer period data is collected and used, the robust estimator 

might be able to draw narrower confidence intervals thus become a more preferable choice. 

 

Nonetheless, when employing the two-way fixed effect estimator, one should be aware of the 

possible bias, which is jointly influenced by the intervention effect in each treatment-control pair 30 

and their distribution across time28,29. Therefore, the difference between the results of the two 

difference-in-difference estimators in our analysis might not hold for other countries and time 

periods thus could not be taken as a reference. Neither might the temporal trends of intervention 
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effects in this analysis (Fig. 3B) hold in alternative contexts, which could be influenced by the 

dynamics of enforcement intensity and compliance. 

 

A limitation to our methodological analysis could be the potential signaling or spillover effect of 

interventions. The former refers to the possibility that increased intervention in treatment regions 5 

makes people in the control group alerted and more cautious, or the reversed in the reopening 

stage9. The latter refers to the possibility that intervention in treatment regions also reduces (or 

increases in reopening) infections in the control group due to change in cross-region travel7. Both 

cases would deflate the intervention effect estimates in all the methods.  

 10 

Although significant bias is found with non-natural experimental models in estimating 

intervention effects, this can be modified by including model elements that simulate voluntary 

behavioral changes in response to the severity of epidemic. Our conclusions on modelling 

approach comparison may also apply to the evaluation of intervention effects in other areas 

which involve massive behavioral changes such as disaster recovery and crime mitigation.  15 

 

Method 

Data 

The analysis involves daily infection case and death data, county-level mobility data, and 

government intervention data on 500 counties with the most infection cases in the United States 20 

between March 13 and August 15 2020. The infection case and death data is downloaded from 

the COVID-19 Data Repository by the Center for Systems Science and Engineering (CSSE) at 

Johns Hopkins University32. The information on people’s mobility is from Google’s COVID-19 

Community Mobility Reports30. The time of implementing and relaxing interventions is collected 

manually from the official websites of state governments, which is the major level of 25 

government in charge of intervention policy making in COVID-19 in the United States. We do 

not account for the few cases in which county or local governments take alternative actions than 

the orders of state governments, which are only occasional7. The interventions are coded 0, 0.5 

or 1 based on the intervention status in each region on a given day: 0 if there was no relevant 

restriction, 1 if a full restriction was implemented, and 0.5 if there was a partial restriction (e.g. 30 

recommending instead of enforcing a restriction, shortening opening hours or limiting occupancy 

instead of a complete closure).  
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Testing common behavioral trends 

We examine whether there is a common behavioral trend across all sample counties using 

Google’s COVID-19 Community Mobility Reports. This dataset provides the daily percentage 

change in the visits to different categories of places (or the time spent at places of residence) 5 

comparing with baselines (different baselines for each day of the week, using the median value 

from the 5-week period Jan 3 to Feb 6, 2020). We focus on the ‘residence’ indicator, referring to 
the percentage change in the time spent at home, since it can reflect the overall change of 

mobility. Next, we test whether there is a ‘common component’ in the time people staying at 
places of residence each day across counties after controlling for interventions, by regressing the 10 

mobility indicator against the daily status of interventions in each county and a series of binary 

variable indicating each day of the study period (i.e. day-fixed effect). If there is a day effect, 

then the coefficient for the day variable should be significantly different from zero. The 

regression model is expressed as follows 

  (1) 15 

where mc,t denotes the value of the mobility indicator in county c on day t; xi,c,t denotes the status 

of intervention i in county c on day t and i denotes coefficients; I is the set of interventions 

being studies; t denotes the shared change of mobility on day t; ec,t is the error term. i and t are 

estimated using ordinary least square method. 

 20 

Experiment 1. Bayesian hierarchical model 

We use the model developed by Brauner et al. (2021), which is an extension of the original 

model proposed by Flaxman et al. (2020). The semi-mechanistic model is composed of a series 

of equations that link intervention status to instantaneous reproduction number, and then to the 

total number of infections and the number of observed cases and deaths. The key equations are 25 

as follows. 

  (2) 

  (3) 

  (4) 
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  (5) 

  (6) 

  (7) 

where Ro,c and Rt,c denote the basic reproduction number in county c and the instantaneous 

reproduction number on day t in county c; xi,t,c denotes the status of intervention i in county c on 5 

day t and I is the number of interventions; i,c denotes the effect of intervention i in county c, 

which is assumed to be county-specific and independent multiplicative on Rt,c. i,c is assumed to 

follow a normal distribution i,c ~ Normal(i, 2
i) and the prior distributions for i and i are i 

~ Asymmetric Laplace(m=0, =0.5, =10) and i ~ Half Student-T(=3, =0.04). In Eq. 3, gt,c 

denotes the daily growth rate of infections and M(·) is a moment-generating function; the 10 

equation can be solved with information on the generation interval, which is the time between 

successive infections in a transmission chain. In Eq. 4 to 7, N(C)
t,c and N(D)

t,c denote the number of 

infections that subsequently become confirmed cases or reported deaths, respectively; g,c is the 

daily growth rate; (.),c is a noise term; PC(delay) and PD(delay) are the distribution of the delay 

from infection to confirmation and from infection to death, respectively. (.),c is assumed to 15 

follow a normal distribution (.),c ~ Normal(0, N) and a prior distribution is placed on N ~ Half 

Student-T(=3, =0.15). N(C)
0,c and N(D)

0,c are placed with uninformative priors. The model 

estimates the posterior distributions of the parameters, including the effects of interventions 

(i,c), using a Markov Chain Monte Carlo sampling algorithm. More details about the model can 

be found in Brauner et al. (2021). 20 

 

Experiment 2. Difference-in-difference: Two-way fixed effect estimator 

Two-way fixed effect model is a widely used modelling method to implement difference-in-

difference analysis12. The model regresses the outcome of interest on the treatment variable and, 

at the same time, controls for unit fixed effects and time fixed effects, the latter of which helps 25 

rule out the common trends in intervention and control groups at each time point. The model is 

expressed as follows. 

  (8) 

where log(Rc,t) denotes the log-transformed instantaneous reproduction number in county c on 

day t; xi,c,t denotes the status of intervention i in county c on day t and i denotes their 30 
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coefficients; c and t denote the unit and time fixed effects, respectively; and c,t is the error 

term. We estimate robust standard error in a way that allows c,t to correlate at the county level33. 

 

We use log(Rc,t) as the dependent variable to match with the Bayesian hierarchical model, whose 

parameter estimation is interpreted as the proportional change of Rt by interventions. The 5 

coefficients of intervention variables in this model can be interpreted in the same way by taking 

exp(i). Daily Rt in each county is estimated with the method proposed by Cori et al.34, with a 7-

day sliding time window to smooth infection numbers and parameters of the serial interval of 

infections based on previous epidemiological investigation of COVID-19 (mean=7.5 days, 

standard deviation=3.4 days)35. Rt estimates with coefficient of variation greater than 0.3 are 10 

excluded from further analysis (mainly due to small case numbers in the corresponding time 

window).  

 

Experiment 3. Difference-in-difference: Robust estimator 

The heterogeneity robust difference-in-difference estimator is proposed by de Chaisemartin and 15 

D'Haultfoeuille28. This estimator estimates the average treatment effect of implementing an 

intervention for k days (k  0) across all the regions where an intervention switched from level d 

(d{0, 0.5, 1}) on t-1 to d’ (d’{0, 0.5, 1}, d’ d) on t and remained d’ at least till day t+k 

(switching regions), using the regions where the intervention remains d between t-1 and t+k as 

controls (stable regions). Since the treatment effect is estimated through explicit matching 20 

between switching and stable regions and analyzing their difference after a given number of days 

of treatment, temporal heterogeneity will not create bias. The estimator is computed as follows 

 

   (9) 

  25 

(10) 

 

  (11) 

   

where DIDi,k denotes the estimated effect of intervention i after k days of implementation; 30 

t{1,…,T} denotes the observed dates; Di,c,t denotes the status of intervention i in county c on day 

t; Ni,d,d’,t,k and Ni,d,d,t,k denote the number of switching counties and stable counties between day t 
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and t+k. If either Ni,d,d’,t,k or Ni,d,d,t,k is 0, then DIDi,d,d’,t,k is defined as 0. ei,c,t,k denotes the change 

of the outcome variable, which is the logarithm of instantaneous reproduction number, between 

switching and stable counties after controlling for the impact of other interventions (X’i,c,t); ei,c,t,k 

is estimated through Eq.11 with ordinary least square using only stable observations;  is a vector 

of coefficients and b is the constant. The standard error of DIDi,k is estimated by bootstrapping 5 

for 100 times. Further, to account for the correlation of errors at the day level4,36, we utilized 

block bootstrap with days as blocks.  

 

To compare with the estimates obtained with the other two methods, we further compute the 

average intervention effect across k days and the corresponding standard error. The average 10 

effect is taken as the mean of DIDi,0 to DIDi,k and the standard error is computed as follows. 

 

   (12) 

where sei,0-k denotes the standard error of the average effect after k days of intervention i, sei,a 

denotes the standard error of DIDi,a; and covi,a,b denotes the covariance between DIDi,a and 15 

DIDi,b. We estimate DIDi,k for 21 days after an intervention, which is a common length of 

interventions in practice. 
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