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Abstract

Background

Nitrogen (N) is an essential nutrient element that is involved in almost every aspect of a plant's
physiological mechanism. Therefore, the current research aims to determine the optimal amount of N
fertilizer to bamboo seedlings for better nutrient management practices to minimize N pollution in
bamboo forests. We evaluated the physiological response of Dendrocalamus latiflorus Munro grown
under five varying levels of N fertilizer; such as NO, N1, N2, N3, N4, and N5 (0, 1.5, 3.0, 4.5, 6.0, and 7.5

g-pot™, respectively).
Results

N4 treatment had a significant effect on the number of shoots, which was greatly correlated with net
photosynthetic rate (P,,) and photosynthetic pigment (Car, Chls, and Chl a/b) as well as N-related indices

[leaf N, leaf ammonium N (NH,*-N), and nitrate reductase (NR)]. N supply significantly increased soil
carbon and N contents, which could be conducive to the accumulation of leaf chlorophyll content,
improving leaf photosynthesis mechanism, and accelerating N metabolism and conversion through an
enzymatic reaction.

Conclusions

Overall, the N application of 6 g-pot™ was advantageous to improve physiological characteristics and
shoot production of seedlings. As a consequence, we suggest that optimal nitrogen supply can be
effective to improve soil fertility to attain high bamboo production.

Background

Nitrogen (N) is an essential macronutrient element that is required by plants in higher amounts relative to
other essential nutrients (Kirova et al. 2005). N is involved in almost every aspect of a plant’s
physiological metabolism being a most essential nutritional component (Kishorekumar et al. 2020a). At
the physiological level, N may trigger both the NO; assimilatory mechanism and the regulation of carbon
(C) metabolism that can provide C skeletons and reductants for this process (Stitt 1999). At the
developmental stage, N regulates activities such as leaf expansion (Walch-Liu et al. 2000), root
branching (Forde & Lorenzo 2002), and resource allocation between shoot and root growth (Scheible et
al. 1997). N and other elements in the plant are responsible for the synthesis of amino acids, proteins,
nucleic acids, chlorophyll, and other compounds (Talukder et al. 2016, Wen et al. 2020). Furthermore, N
can also regulate the adaptation mechanism of plants to the environment and play an important role in
the adaptation of plants to adversity (Krouk et al. 2010). Simultaneously, exogenous N can significantly
affect the N metabolism in plants as well as a certain degree of impact on its related enzymatic activities,
thereby affecting plant growth (Xing et al. 2018).
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N, being a necessary component, has the potential to change plant proteins as well as plant
photosynthesis (Kishorekumar et al. 2020b, Liu et al. 2020). In general, when the N concentration
increases, the leaf’s photosynthetic rate (P,) and transpiration rate (7;) increases while the intercellular
CO, concentration (C) decreases (Li et al. 2017, Mu & Chen 2021). Furthermore, increasing the quantity
of N fertilizer used may enhance the chlorophyll content of leaves and. In addition, increasing the amount
of N fertilizer can also increase the leaf's chlorophyll contents and alleviate the reduction in
photosynthetic efficiency (Zhou et al. 2017a). Previous studies have shown that N fertilizer application
can effectively increase the chlorophyll contents and net photosynthetic rate of agricultural or
horticultural crops, such as rice (Kurai et al. 2011, Zhou et al. 2017b), wheat (Kataria & Guruprasad 2015),
peanut (Liu et al. 2019b), etc. As a result, in the current research, we attempt to gain insight into the
photosynthetic capacity of Dendrocalamus latiflorus Munro grown under varying N levels.

Soil is a part of the ecosystem, where the contents of essential nutrients can not only reveal the utilization
of soil nutrients but also explore the regulatory and metabolic balance mechanisms of elements such as
C and N in plants and soil (Kleinhenz et al. 2003). Since, both the C and N are essential nutrient elements
in the soil and are required for plant growth and development (Krapp & Castaings 2012). Plants uptake
the nutrients from the soil via roots, which are greatly influenced by the external environment, especially
by fertilizers (Bargaz et al. 2018). Therefore, the nutritional changes (C and N) in plants can explore the
nutrient distribution ratio and status of plants, as well as the internal connection between soil and plants.

N metabolism is one of the important physiological metabolic processes in plants (O'Brien et al. 2016).
Nitrate reductase (NR) is the main N metabolizing enzyme of higher plants. The metabolic enzyme
activity of plant leaves and roots is related to the accumulation of N in plants (Fu et al. 2020b).
Glutamine synthetase (GS) is the first enzyme to be isolated, purified, and identified from plants, and it is
also the first enzyme to be found to be related to the storage form of plant N (Seabra & Carvalho 2015).
GS converts the inorganic ammonia absorbed by plants into an organic form in glutamine (GIn) and
glutamic acid (Glu) as N donors in the biosynthesis of N-containing organics in higher plants (Yang et al.
2016). NR and GS are all inducible enzymes that affect the metabolism and transformation of N in
plants, which play an important role in the absorption and transformation of nutrient elements to affect
plant growth.

Fertilization is an important measure to improve bamboo cultivation. As one of the main factors affecting
bamboo growth, N has a great influence on the growth and development of bamboo. Previous research
showed that optimum N fertilization can effectively improve photosynthetic capacity, growth, and
productivity of shoots and timber in bamboo forests (Xu et al. 2014, Gao et al. 2016). At present, N
fertilization in bamboo forests is relatively systematic in China, but the phenomenon of soil deterioration
and environmental degradation caused by fertilization still exists (Zhu & Chen 2002). Increased use of N
fertilizers will also exacerbate the increase in nitrous oxide (N20) emissions from the soil (Xu et al. 2014).
In order to increase the yield of bamboo forests and protect the ecological environment, it is necessary to
further improve the utilization efficiency of N fertilizer in bamboo forests.
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D. latiflorus Munro has become the main cultivated bamboo species for shoots in China by the features
of its strong adaptability, long shoot period, and high yield of bamboo shoots. D. /atiflorus Munro has a
large leaf area and continuous rainfall in the early stage of bamboo shoots in southern China, which
would exacerbate the lack of sunlight in the forest understory. Nutrient management can also alleviate
the stress caused by low light, improve the photosynthetic capacity of bamboo, and increase its
productivity. Therefore, in the current study, D. /atiflorus Munro seedlings were established under various
levels of N-based fertilizer, to assess its efficacy on shoot growth. The study will provide valuable insights
into optimum N requirements for the growth of D. /atiflorus Munro. The main goals of our experiment
were (i) to distinguish the effect of different levels of N on physiological and biochemical attributes of D.
latiflorus Munro; (ii) to identify the effect of N application on soil properties and the growth pattern in D.
latiflorus Munroj; (iii) to determine the reasonable amount of N applied to bamboo shoots.

Materials And Methods

Study sites

The greenhouse experiment was carried out in College of Forestry, Fujian Agriculture and Forestry. The
study site is located (119°13'51.18" E, 26°05'4.35" N) in Fuzhou, Fujian province, China (Figure. 1). The
site has a subtropical monsoon climate, with an annual average temperature of 19.9 °C, an extreme
maximum temperature of 42 °C, and a minimum temperature of 0 °C. The annual average sunshine is 1
755.4 h, and the frost-free period is more than 360 days.

Plant material and soil

Two-year-old seedlings of D. /atiflorus were grown in PVC pots with a diameter of 30 cm and a height of
33 cm. The potting substrate material was yellow soil and peat (volume ratio 3:1) with a weight of 15 kg
per pot. The basic properties of soil were as follows: pH value, 5.77; organic C, 13.67 g-kg™'; total N, 0.35
g-kg’; total phosphorus (P), 0.50 g-kg™'; total potassium (K), 50.01 g-kg™. The basic growth attributes

of D. latiflorus Munro seedlings cultured from October 2018 were as follows: mean height, 105.51 cm;
mean DBH, 4.67 mm; north-south crown, 71.11 cm; east-west crown, 68.95 cm.

Experiment design

In the current research, we used five N treatment combinations; NO, N1, N2, N3, and N4, like 0, 1.5, 3, 4.5, 6,
7.5 g of N in each pot, respectively. N was applied three times such as April (30%), May (40%), and June
(30%) 2019, respectively. The amount of exogenous N applied to the seedlings of D. /atiflorus Munro
seedlings has been presented in Table 1. All treatments were replicated 15 times. Leaf gas exchange
parameters were measured after six months, after that, the leaf tissues were collected for the estimation
of chlorophyll content, N-related indices, and C content. Soil samples were also collected to measure N-
related indices and C content.
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Urea (mass fraction 46%) was applied as N fertilizer, calcium superphosphate (P,05, mass fraction 12%),
and potassium chloride (K,0, mass fraction 60%) were used as phosphate and potassium fertilizer,
respectively. Among them, phosphate and potassium fertilizer were applied only once, and the dosages
were 6 and 1.5 g-pot™, respectively. Weeding and other cultural practices were carried out regularly during
the entire experiment.

Investigation of the bamboo shoots

After every two days, the number of shoots from each replicate was recorded from beginning to end. The
bamboo shoots were harvest after they attained a height of approximately 50 cm.

Determination of leaf gas exchange parameters and chlorophyll content

Li-6400 photosynthesis system (Li-Cor Inc., Lincoln, USA) was used to determine the gas exchange
parameters [leaf net photosynthetic rate (P,), stomatal conductance (Cond), intercellular CO,

concentration (C), transpiration rate (7,), and water use efficiency (WUE)] from 2-3 mature functional

leaves during consecutive sunny days. The LED (red and blue) light source was used with 1600 pmol-m
2.1 photosynthetically active radiation (PAR). The readings were collected from all replicates, however,

before the measurement, the sampling leaves were induced under a light intensity of 1600 pmol-m?2-s™
PAR for 20-30 min.

Following the assessment of gas exchange parameters, fresh leaves were cut to determine the
concentrations of the photosynthetic pigments. After the separation of the midrib, the fresh leaves were
cut into pieces and weighed 0.2 g. A mixed solution (pure acetone: absolute ethanol: distilled water = 4.5:
4.5:1) of 25 ml (Gao 2006) was used to extract the photosynthetic pigments directly in the dark for 48 h.
Chlorophyll a (Chl a), b (Chl b), total content (Chls), and carotenoid (Car) contents were calculated by
optical density (OD) values according to the equations of Lichtenthaler (Lichtenthaler 1987), and the
ratios of Chl a/b and Car/Chls were further calculated.

Determination of leaf N Indices and C content

After the extraction of leaf chlorophyll, part of fresh leaves was chopped, mixed, weighed, stored in liquid
N, and then stored at -80°C refrigerator for measuring. Fresh leaves were used to estimate the glutamine
synthetase (Gs), nitrate reductase (NR), leaf ammonium N (NH,*-N), and nitrate N (NO5-N) using the kit
manufactured by Suzhou Keming Biotechnology Co., Ltd. After chopping and mixing, another part of
fresh leaves was oven-dried at 105°C for 15 minutes and later at 85 °C to dry to constant weight.
Furthermore, the dried samples were grinded with an ultra-high-speed pulverizer (HUANGCHENG HC-300Y,
China) and sieved through a 0.149 mm sieve. The total C and N contents were determined using an
element analyzer (VARIO MAX, ELEMENTAR, Germany), and their ratio was further calculated.

Determination of soil C and N indices

Page 5/22



Similarly, the fresh soil samples were taken from a distance of 10 cm and a depth of 10 cm around the
bamboo stump. After removing stones and roots, each soil sample was separated into two portions: One

portion was used to determine soil NH,*-N and NO5™-N using the chemical kits. The other was air-dried,
grinded, and sieved to 0.149 mm to determine total C and N contents using an element analyzer (VARIO
MAX, ELEMENTAR, Germany), and their ratios were also calculated.

Data Analysis

All the data were expressed as means and standard errors. Analysis of variance (one-way ANOVA) was
performed using SPSS 20.0 to determine the effect of N treatments, and Tukey HSD test was used to
identify significant differences (a=0.05) between mean values. Origin 9.5 and Prism 8.0 were used for
graphical illustrations.

Table 1: The amount of exogenous N (g-pot™) applied to D. /atiflorus Munro seedlings.

Fertilization times  Treatments (g-pot”)
CK N1 N2 N3 N4 NS
0 0 045 090 135 180 225
0 0 060 0.12 180 240 3.00
0 0 045 090 135 180 225
0

Total amount 150 3.00 450 6.00 7.50

Results

Impact of N application on bamboo shoots

We noticed that N application significantly influenced the number of bamboo shoots (Figure 2). D.
latiflorus Munro established under N4 treatments increased their shoots up to 68.75% (P¥0.05) compared
to NO.

Leaf photosynthetic pigments concentrations under various N application rates

Under various N application rates, the leaves photosynthetic pigments (Car, Chls, and Chl a/b)
concentrations increased as depicted in Figure 3. Compared to NO, under N4 and N5, the increases of
100% and 109.60%, 99.08% and 110.52%, 14.01% and 13.13% (PX0.05) were observed for Chls, Car, and
Chl a/b, respectively (Figure 3A—-C). Besides, for Car/Chls ratio, compared to NO, seedlings established
under the N application did not show any difference (Figure 3D).

Leaf gas exchange parameters under various N application rates
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The N application had a significant (P10.05) effect on leaf P, (Figure 4A). Specifically, N4 and N5
treatments resulted in a significant rise in leaf P, relative to NO, whereas N4 was found the most effective

over all other treatments combinations. In addition, the rise in Cond was parallel to the N application rate
(Figure 4B) and seedlings established under N4 greatly (P#0.05) enhanced their plant Cond (106.57%) as
compared to NO. In contrast, compared to NO, none of N based treatments influenced the C and

T, significantly (Figure 4C, D). Besides, seedlings under N4 exhibited a relatively greater WUE compared to
all other treatments (Figure 4E).

The N and C indices of leaf and soil under various N application rates

Compared to NO, N treated seedlings accumulated significantly (P10.05) greater soil N and C contents
(Figure 5). Overall, N4 treated seedlings responded with maximum concentrations for leaf N and C

contents (31.97 and 433.23 g-kg™, respectively) (Figure 5A, B). In contrast, the N5 treatment for the
contents of soil N and C were higher relative to other treatments (Figure 5D, E). Except for N5, the leaf C/N
ratio decreased under N application as the level of concentration increased (Figure 5C). Additionally,
seedlings amended with N4 treatment responded with maximum soil C/N ratio (Figure 5F).

Leaf GS and NR activities under various N application rates

The activities of leaf GS and NR were highly influenced by N application (Figure 6). Compared to NO, GS
activities greatly (P¥0.05) increased by 140.55% and 121.13% under N3 and N4 treatments (Figure 6A). N
application showed no significant impact on NR activities, while N3 and N4 enhanced NR activities by
82.73% and 70.43%, respectively, when compared to NO (Figure 6B).

Leaf and soil NH,*-N and NO3™-N under various N application rates

N application determined higher leaf NH,*-N in seedlings compared to NO (Figure 7A). N1, N2, and N3

treatments showed a significant (P10.05) impact on soil NH,*-N, while N4 decreased soil NH,*-N by
18.88% compared to NO (Figure 7C). In contrast, there was a decline under N application amended
seedlings for leaf and soil NO5-N (Figure 7B, D).

Evaluation of all indices under different N treatments by principal component analysis (PCA)

Principle component analysis (PCA) revealed that the cumulative variance contribution rate of the first
two principal components reached 74.47%, suggesting an overall variation of the data (Fig. 8). PCT1
showed that the number of shoots had a highly positive correlation with photosynthetic pigments (Car,
Chls, and Chl a/b), gas exchange parameters (P,, Cond, T,, and WUE), and C and N metabolism related
indices (GS, NR, LC, LN, L-NH,™ and S-NH,*). Except for LC/N, S-NO3", and S-NO4", all indices exhibited
with PC1 were favorable following N4 treatment, whereas NO was negatively correlated with LC/N, S-NOg,
and S-NO5".
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Discussion

In the current study, we noticed that different N levels impacted the number of shoots, leaf photosynthetic
characteristics, soil and leaf N-related indices in D. /atiflorus Munro seedlings. The optimal N application
can substantially increase leaf N and photosynthetic pigments, as well as improve plant photosynthetic
efficiency and leaf physiological activities (Peng et al. 2021). The increase in soil C and N contents is
conducive to the accumulation of leaf chlorophyll content, improving leaf photosynthetic capacity, and
accelerate C and N metabolism and conversion (Manna et al. 2005, Zhang et al. 2019) ultimately
increasing the number of shoots, which was also confirmed by our research.

The formation of bamboo shoots is inseparable from the intensity of photosynthesis, N utilization, and
transportation (Dordas & Sioulas 2008). Increasing the application of N fertilizer up to some extent may
increase the chlorophyll contents, prolong the function period of the leaves, and improve the
photosynthetic efficiency, thereby increasing the production capacity of the plant (Liu et al. 2019a, Fu et
al. 2020a). The current study concluded that N application enhanced the chlorophyll accumulation and
improved the photosynthetic efficiency in leaves (Figures 3, 4). For instance, N4 treatment had a positive
effect on the accumulation of leaf chlorophylls and A, in leaves (Figures 3, 4), indicating that optimal N
supply can effectively increase leaf chlorophyll contents, which was conducive to improving the
photosynthesis mechanism of D. /atiflorus Munro seedlings.

In plants, nutrient elements play a vital role in maintaining leaf C balance and sustaining photosynthetic
efficiency (Matthews et al. 2017). In the current research, N application significantly increased P, to fix
relatively large amounts of C for photosynthesis (Figure 4A), which is closely related to N assimilation
and metabolic processes (Huang et al. 2013, Zhang et al. 2017). We reported that N4 was advantageous
compared to other N treatments in terms of increasing P, to enhance the C sequestration ability of D.
latiflorus Munro (Figure 4A). Higher Cond leads to enhancing leaf photosynthetic biochemical pathways
and the accumulation of photosynthetic products (Lichtenthaler et al. 20074, Lichtenthaler et al.

2007b). Compared with NO, the values of Cond, C, T, and WUE increased in a certain degree of N
treatments (Figure 4B-D), which can improve photosynthetic performance in the growth of D. /atiflorus
Munro.

N application can effectively increase the contents and reserves of soil organic C and total N

content (Huang et al. 2013). The C:N ratio in the soil can reflect the utilization efficiency of the soil, and
the application of fertilizer can affect the nutrient element in the soil (Vitousek 1982). In our research, N
treatments significantly improved N availability and increased soil N contents (Figure 5D). Similarly, N
provided a carbon source and improved environment in the soil, which promoted the conversion of
organic C and increased the organic C content (Cheng et al. 2020), where all N treatments significantly
increased soil C content compared to NO (Figure 5E). Additionally, previous studies have shown that there
is a positive correlation between soil C and N content and crop yield (Wang et al. 2019, Zhang et al.
2019). Our research found that shoot, SC, and SN all had positive correlations (Figure 8).
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In addition, some studies have shown that the application of N fertilizer significantly increases the N
accumulation in leaves, thereby reducing the C to N ratio of the leaves (Liu et al. 2014, Wu et al. 2019),
which are consistent with our research (Figure 5A—C). These changes would be conducive to increasing
productivity, as well as changing the degradation and mineralization of leaves, which in turn would be
conducive to the return of C and N to the soil (Stubbs et al. 2009, Pierik et al. 2011), to ensure the supply
essential nutrient to meet the needs of bamboo shoot production.

NR and GS are the key enzymes for N assimilation and ammonia assimilation in plant physiological
processes (Xie et al. 2014, Lin et al. 2017). Zhu et al. (2016) found that fertilization can effectively
promote the N metabolism of Phyllostachys edulis, and enhance the activities of both NR and GS, which
is related to the direct promotion of fertilizers and the absorption of N by plants. Our research came to the
same conclusion that the activities of NR and GS were enhanced with the application of N fertilization
(Figure 6), which can improve transformation of N metabolism directly. Furthermore, N application would
encourage plants to absorb more N to synthesize more NR and GS indirectly.

Compared to NO, the soil and leaf NH,*-N was at a significant level under N supply (Figure 7). Soil NH,*-N
was greatly reduced under N4 treatment with comparison to NO5-N (Figure 7C, D), indicating that roots of
seedlings had higher absorption of NH,*-N. The enhanced NR activity under N application could promote
the reduction of NO5™to more NH,* (Maeda et al. 2014), which possibly promoted to accumulation of
NH,*-N of leaves in our research (Figures 6B, 7A). Additionally, compared with other N treatments, the

enhanced activity of GS under N4 treatment could be conducive to catalyzing inorganic NH,*-N to
producing more organic N (Figure 6A), which could provide sufficient N not only for bamboo shoot
production but also to synthesize more chlorophyll to ensure the photosynthesis of seedlings (Cruz et al.
1993). However, NO5-N of soil and leaves had an insignificant negative correlation with bamboo shoots
(Figure 8), which had an adverse effect on shoots. Our research was consistent with the previous findings
that NH,*-N can promote leaf chlorophyll synthesis and increase plant production (Sanchez-Zabala et al.
2015, Heuermann et al. 2021).

The PCA analyzed with strong correlations may be screened out and can be used to assess D. /atiflorus
Munro adaptation to varying N levels. According to the PCA results, N4 treatment seems to be
advantageous for shoots growth (Figures 2, 8), owing to increased leaf photosynthetic characteristics
and soil nutrients availability. In addition, the increased number of bamboo shoots under N4 treatment
exhibited strong correlations with chlorophylls pigments and leaf N-related indices (Figure 8), which may
regulate the photosynthesis mechanism and promote N accumulation in D. /atiflorus Munro to fulfill the
requirements of a greater number of bamboo shoots.

Conclusions

Exogenous N has varying degrees of influence on the photosynthetic characteristics, nutritional element
contents, and N metabolism-related indices of D. /atiflorus Munro seedlings. We conclude that applying N
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fertilizer (6 g-pot”) to maximize the growth and shoot production of D. /atiflorus Munro seedlings is
advantageous. We elucidated the N absorption mechanism of the bamboo seedlings as well as the
related physiological change mechanism after the application of N fertilizer. These findings not only
provide a theoretical basis for improving the N utilization efficiency of D. /atiflorus Munro but also the
production of high-yield and high-quality bamboo shoots in the future.
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Figure 2

The number of bamboo shoots under various N application rates. N1: 1.50 g-pot-1, N2: 3.00 g-pot-1, N3:
4.50 g-pot-1, N4: 6.0 g-pot-1, N5: 7.5 g-pot-1. Different letters indicate significant differences (P < 0.05) of
mean between different nitrogen treatments.
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Figure 3

Impact of N application rate on leaf photosynthetic pigments. (A) Chls - total chlorophylls, (B) Car —
carotenoids, (C) Chl a/b — chlorophyll a/b ratio, and (D) Car/Chls - carotenoid / total chlorophylls,
respectively. N1: 1.50 g-pot-1, N2: 3.00 g-pot-1, N3: 4.50 g-pot-1, N4: 6.0 g-pot-1, N5: 7.5 g-pot-1. Different
letters indicate significant differences (P < 0.05) of mean between different N treatments.
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Figure 4

Leaf gas exchange parameters under different N application rates. (A) Pn — net photosynthetic rate, (B)
Cond - stomatal conductance, (C) Ci — intercellular CO2 concentration, (D) Tr — transpiration rate, and (E)
WUE - Water use efficiency, respectively. N1: 1.50 g-pot-1, N2: 3.00 g-pot-1, N3: 4.50 g-pot-1, N4: 6.0 g-pot-
1, N5: 7.5 g-pot-1. Different letters indicate significant differences (P < 0.05) of mean between different N

treatments.
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Figure 5

Total nitrogen and carbon indices of leaf and soil. (A) leaf nitrogen, (B) leaf carbon, (C) leaf C/N, (D) soil
total nitrogen content, (E) soil total carbon content, and (F) soil C/N — Soil C/N ratio respectively. N1: 1.50
g-pot-1, N2: 3.00 g-pot-1, N3: 4.50 g-pot-1, N4: 6.0 g-pot-1, N5: 7.5 g-pot-1. Different letters indicate
significant differences (P < 0.05) of mean between different N treatments.
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Impact of various N application rates on GS and NR activities. (A) GS - glutamine synthetase, and (B) NR
— nitrate reductase. N1: 1.50 g-pot-1, N2: 3.00 g-pot-1, N3: 4.50 g-pot-1, N4: 6.0 g-pot-1, N5: 7.5 g-pot-1.
Different letters indicate significant differences (P < 0.05) of mean between different N treatments.
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Figure 7

Ammonium nitrogen (NH4+-N) and nitrate nitrogen (NO3-N) of leaf and soil. (A) leaf NH4+-N, (B) leaf
NO3-N, (C) soil NH4+-N, and (D) soil NO3-N respectively. N1: 1.50 g-pot-1, N2: 3.00 g-pot-1, N3: 4.50
g-pot-1, N4: 6.0 g-pot-1, N5: 7.5 g-pot-1. Different letters indicate significant differences (P < 0.05) of mean
between different N treatments.

Page 21/22



10
. L-NO,- SN
WUE
- sc
_ GS
O,
4
S 2 |/ i
AN 4 I Al

g *NO | /,:._g_‘::.'{_-—'_'-i;_-_‘ glhsI i
@ 0 — ar s stoot— LN
N \N>
2 i

4 \ Cond

6 SN e

-8

o SCIN !

12

20 15 10 5 0 5 10 15
PC1(54.18%)
Figure 8

Biplot of principal component analysis of the first two principal components of all tested parameters and
N levels. Shoot — the number of shoots, Chls — total chlorophylls, Car — carotenoids, Chl a/b -
chlorophyll a/b, Car/Chls — carotenoid/chlorophyll, Pn — net photosynthetic rate, Cond — stomatal
conductance, Ci — intercellular CO2 concentration, Tr — transpiration rate, WUE — Water use efficiency, GS
- glutamine synthetase, NR — nitrate reductase, LN — leaf nitrogen, LC — leaf carbon, LC/N — leaf C/N
ratio, SN — soil nitrogen, SC - soil carbon, SC/N - soil C/N ratio, L-NH4+ — leaf ammonium N, L-NO3- -

leaf nitrate N, S-NH4+ — soil ammonium N, and S-NO3- — soil nitrate N.
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