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Abstract 

Training of artificial neural networks is very expensive, as a large-size database is necessary. 

Moreover, it is usually difficult to find such large-size training databases. Hence, it will be 

interesting to design artificial neural networks that can be used for training with a small-size 

database, while maintaining a similar accuracy for prediction compared to fully connected neural 

networks. We studied neural networks with partial disconnections, additional bypass connections, 

and negative activation nodes, which are found in the neuronal systems of the human brain. By 

combining the fully connected neural network and the above three brain-like elements, we found 

that the modified neural network showed improved prediction accuracy of 13% compared to the 

fully connected one despite the small size of the training database. To analyze the improved 

neural network, the contribution of each node in the hidden layers affecting the total prediction 

accuracy of the neural networks was studied. We also found important local connections that 

improve the prediction accuracy, and discussed the design of a neural network with a small-size 

training database without reduction in prediction accuracy. 
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1. Introduction 

The realization of intelligence systems mainly depends on the size of the training database, that 

is, the larger the size of the training database, the higher the prediction accuracy. However, unlike 

intelligent machines, human beings can learn faster and from fewer examples. This may be 

related to the specific structure of neural networks in the human brain. The formation of specific 

brain structure may have been affected due to evolution, for adaptation to harsh environments, 

such as fear, starvation, and cold [1], given the need to make decisions quickly. The structure of a 

neural network can be divided into the physical geometry of neuronal connections (structural 

connectivity) and the chemical connection strength between the neurons (evoked functional 

connectivity). Thus, although two brains may have the same physical geometry in terms of 

neuronal connections, the shape of the flow of its neuronal signals may vary depending on the 

synaptic strength.  

Human brains show distinguishable spatial distributions of functional areas such as the visual, 

auditory, and prefrontal cortices. It is probable that the connections between neurons are 

governed by several rules, which may affect the formation of each functional area. However, the 

connection rules for the functional areas in the human brain have not been revealed yet. 

According to Hebb’s rule, neurons that fire together, wire together [2]. Hebb’s rule explains how 

associative memory can be formed by changing the strength of the synapses. However, Hebb’s 

rule works within a given neuronal structure, that is, it does not explain how the synapses are 

physically formed between the neurons. It is still unclear whether the synapses between neurons 

are formed randomly or genetically [3-8]. Then, how can neurons located far apart make 

connections to create associative memory? In this case, the direct connection between two 

memories is impossible physically. Instead, they are probably connected indirectly through the 

higher layers in the hierarchical structure.  

Inhibitory neurons exist in addition to excitatory neurons and account for 20–30% of all 

neurons. The role of inhibitory neurons is not clear yet. However, it is expected that they can 



suppress a surplus of neuronal signals and prohibit interference between these signals. In the 

visual cortex, the role of inhibitory neurons is related to orientation selectivity [9-11]. However, 

the principles behind the formation of excitatory–inhibitory networks have not been studied as 

diligently as compared to functional studies of the role of inhibitory neurons. Thus, it is 

interesting to probe why a neural network composed only of excitatory neurons cannot be 

optimized without inhibitory neurons. 

A fully connected artificial neural network (FNN), a machine learning method, is considered to 

be a candidate for realizing artificial intelligence. Notably, the emergence of deep learning with 

big data has accelerated developments of artificial intelligence technology such as image 

classification, voice recognition, and self-driving cars [12-15]. FNNs use the strength of the 

connections between nodes (i.e., weights) in the same manner as the control of the strength of 

synapses in the brain for learning. However, only the numbers of hidden layers and nodes are set 

up, and the types of connections and nodes have not been considered much in studies on FNNs. 

Here, we assumed that the functional connectivity, i.e., trained weight structure, can be 

affected by the structural connectivity. Therefore, we adopted three properties of neural networks 

within the human brain, which are not included in the FNNs and well observed in the neuronal 

network of human brains [16, 17]. The first property is that all nodes in the hidden layers do not 

need to connect fully between adjacent layers. The second property indicates that additional 

bypass connections in the hidden layers can exist between the following adjacent layers or 

beyond. The third property relates to the nodes in the hidden layers, which can be inhibitory 

instead of excitatory (i.e., negative activation nodes; Fig. 1). In the Eq. 1, the main variables 

affecting prediction accuracy in FNNs and brain-like neural networks (BNNs) including the 

above three properties are summarized. Even though these three properties do not represent the 

whole set of neuronal connections in the brain, they can be used as starting points to study how 

the brain can learn from small-size training data sets. Therefore, our goal in this work is to reveal 



the relationship between the size of the training database and the structural connectivity of BNNs 

(Fig. 1). 

Prediction Accuracy ~ fFNN(Nlayers,Nnodes) for FNN,          (1) 

~ fBNN(Nlayers,Nnodes,Ndiscon,Naddition,Ninh) for BNN,       (2) 

where the Nlayers,Nnodes,Ndiscon,Naddition, and Ninh correspond to the number of hidden layers, nodes 

in hidden layers, disconnections, additional bypass connections, and inhibitory nodes, 

respectively. 

  



2. Methodology 

 2.1. Fully connected neural networks. For the optimization of FNNs, 3k FNNs were generated 

depending on a combination of MNIST database size (6 steps of 10k, 20k, …, 60k), number of 

hidden layers (5 steps of 1, 2,…, 5), number of nodes in each hidden layer (10 steps of 100, 

200,…, 1k), and training epochs (10 steps of 100, 200,…, 1k). Additionally, 360 FNNs were also 

generated to study the shape dependence of the hidden layers (6 cases of increase (50-100-150-

200-250) / decrease (250-200-150-100-50) / random (200-50-100-250-150) / zigzag-edge (250-

50-250-50-250) / zigzag-center (50-250-50-250-50) / maximum (250-250-250-250-250), where 

each case has 60 steps depending on the database size and epochs). All FNNs used sigmoid 

activation with bias and a backpropagation learning algorithm was employed with L2 

regularization (0.1), adaptive learning rate (0.001), inertia term (momentum, 0.001), mini-batch, 

and cross-entropy loss functions. We found the gradually decreasing shape of the hidden layers to 

be the most efficient among all 6 cases. Compared to the maximum shape with the maximum 

number of weights, the FNNs with the decreasing shape of the hidden layers (250-200-150-100-

50) showed similar test accuracy. Therefore, we only considered FNNs and BNNs with a 

gradually decreasing shape of hidden layers for comparison in the next section. 

 

2.2. Brain-like neural networks. The three properties of neuronal networks were applied to the 

FNNs (Fig. 1). For the disconnection, we selected connections between nodes in adjacent hidden 

layers to be removed randomly at a given ratio between 0 and 0.5. For additional bypass 

connections between the following adjacent hidden layers, we defined the bypass level to select 

target hidden layers to connect. For instance, level 2 referred to additional bypass connections 

between 250 and 150, 200 and 100, and 150 and 50 in the 250-200-150-100-50 hidden layers (Fig. 

S1(a)). Level 3 indicated additional bypass connections between 250 and 100, and 200 and 50 

(Fig. S1(b)). Similarly, level 4 indicated additional bypass connections between 250 and 50 (Fig. 

S1(c)). As in the disconnection, a ratio between 0 and 0.5 was assumed to select hidden nodes for 



the additional bypass connections randomly. For the inhibitory nodes, the signs of the activation 

values were modified to become negative, and a ratio between 0 and 0.5 was also applied for the 

random selection of inhibitory nodes. To find optimized BNNs showing high prediction accuracy, 

we set up 576 BNNs in a combination of ratios between 0 and 0.5 for the disconnections, 

additional bypass connections, and inhibitory nodes, and the range of between 2 and 4 for the 

level in the additional bypass connections (Table I). Other learning conditions, such as 

backpropagation, sigmoid activation, etc., were the same as those for the FNNs. 

 

2.3. Analysis method. The knockout method has been used for the identification of the role of 

specific neurons in experimental neuroscience [18,19]. Here, the knockout method was developed 

to quantitatively analyze the contribution of each node to the prediction accuracy in BNNs. After 

training the BNNs, all connections from a targeted hidden node were removed (i.e., the node was 

knocked out), and the test accuracy was recalculated. 

 

2.4. MNIST database. The MNIST database is a collection of handwritten digits from 0 to 9 

[20]. It consists of 60k training and 10k test datasets. Each image in grayscale has a dimension of 

28 × 28 pixels and, therefore, the input vectors for FNNs and BNNs had a length of 784. The 

dimension of the output was 10 (0–9). For training, two types of BNNs were used, consisting of 

the hidden layers 250-200-150-100-50 and 100-80-60-40-20 for the test and analysis, respectively. 

Other conditions were the same as those for the other cases using different databases. 

 

2.5. FEI database. The FEI database is a collection of face images [21]. It consists of 2,800 

images obtained from 14 rotational directions of 200 individuals. Each color image has a 

dimension of 640 × 480 pixels. Since the FEI DB has a large vector length of 307,200, the size 

and color of the images were reduced to 40 × 30 (resulting in a length of 1,200) and converted to 



grayscale, respectively. The output dimension depends on the number of individuals used for 

training and the test (1–200). The 13 images for the rotational faces were used for training, and 1 

image for a face in a specific rotation was used for the test. For the training, the BNNs consisted 

of the hidden layers 4000-2000-1000-500-250. Other conditions were the same as those for the 

other cases using different databases. 

 

 2.6. PubChem database. The PubChem database is a collection of information on chemical 

molecules [22]. It consists of 93.9 million compounds, with a simplified molecular-input line-

entry system (SMILES). Eighty-six parameters, including 12 atomic elements, 2 bonding types, 

22 ring structures with heteroatoms, and 50 functional groups, were extracted from SMILES as 

molecular descriptors for input vectors of the FNNs and BNNs [23]. The 20k training dataset was 

selected from CID 1–34,050 organic compounds, and the 56,040 test dataset was also chosen 

from CID 34,051–136,200 compounds. The outputs are oxidation potentials for each compound. 

The oxidation potentials of the training dataset were obtained from high-throughput quantum 

chemistry calculations [23]. For the training, the BNNs consisted of hidden layers 250-200-150-

100-50. Other conditions were the same as those for the other cases using different databases. 

 

 

  



3. Results and discussion 

To study the optimized BNN structure, we initially set up the FNNs with five hidden layers. 

The shape of the hidden layers was optimized by screening 3,480 FNNs using the MNIST 

database. As per the optimized shape, the first hidden layer next to the input layer should be the 

largest among the hidden layers, and the sizes of the following hidden layers should decrease 

gradually. 

Three BNN factors, disconnection, additional bypass connection, and inhibitory nodes, were 

included in the FNNs with the optimized structure of hidden layers. Based on the combinations of 

the three BNN factors, 576 BNN structures with 250-200-150-100-50 hidden layers were 

generated and tested for predictions using the MNIST database (Table I). Here, the 20k database 

was used to test the BNNs for the case of a large-size database training. 

Fig. 2(a) shows the test results for 576 combinatorial BNNs considering the increase in the 

number of inhibitory nodes. Overall, the prediction accuracy gradually decreases as the number 

of inhibitory nodes increases and, therefore, 6 clusters of points appear distinctly. In addition, the 

distribution of accuracy depending on the disconnections and additional bypass connections 

becomes wider as the number of inhibitory nodes increases. However, the order in the prediction 

accuracy is not conserved in the BNNs with the change in the number of inhibitory nodes. For 

instance, the 61st BNN (depicted by the red circle on the left) shows minimum accuracy (95.71%) 

among the 96 BNNs without inhibitory nodes (the 1st cluster). However, the 169th BNN (depicted 

by the red circle to the right), which has the same structure as the 61st BNN, shows higher 

accuracy (96.14%) as well as a relatively higher order among the 96 BNNs with 10% inhibitory 

nodes (the 2nd cluster). At the beginning of this study, we expected that the minus sign activation 

of the inhibitory node would not affect the training results since the product of the minus 

activation and weights can be of the same sign compared to the multiplication between the plus 

sign activation and weights during training. However, the results show that the inhibitory nodes 

can affect the performance of the BNNs. 



Fig. 2(b) shows the test results for 576 combinatorial BNNs in view of the increase in the ratio 

of disconnection. The tendency of prediction accuracy shows little change when the 

disconnection ratio was modified. BNNs showing better prediction accuracy exist even when the 

range of disconnection is 50%. Fig. 2(c) shows the contribution of additional bypass connections 

in the 576 BNNs. Compared to the results for the disconnection, the prediction accuracy increases 

slightly, that is, the negative slopes of 6 clusters become gentler as the ratio of additional bypass 

connections increases. Fig. 2(d) shows the influence of the level of additional connections from 2 

to 4, as indicated by three big clusters in the graph. The dependence of additional bypass 

connection levels is not clear for the prediction accuracy. On the contrary, the contribution of the 

inhibitory nodes is most evident in form of the obvious negative slope in each cluster following 

additional bypass connection levels. The next smaller contribution is apparent in the small 6 

clusters pertaining to the ratio of additional bypass connections inside the larger 3 clusters. 

Notably, the big cluster corresponding to level 3 in the center shows increasing prediction 

accuracy with the increasing ratio of additional bypass connections in the smaller rate of 

inhibitory nodes (red dotted circle). The next cluster is the big cluster on the left, corresponding 

to level 2, which shows increasing prediction accuracy for the increasing ratio of additional 

bypass connections in the higher ratio of inhibitory nodes. However, the 1st and 2nd smaller 

clusters within the big cluster corresponding to level 2 on the left-hand side, and the big cluster of 

level 4 on the right-hand side, show a weak relationship between additional bypass connections in 

the BNN structures and prediction accuracy. Hence, it is expected the additional bypass 

connections related to level 3 will improve the prediction accuracy in the BNNs with 5 hidden 

layers, compared to the FNN. 

In Fig. 3, the role of inhibitory nodes is studied in more detail. Here the activation thresholds of 

inhibitory nodes are changed from 0 to 100 (0, 1, 5, 100). The increased activation thresholds 

mean that the inhibitory nodes activate higher inputs compared to the excitatory (positive) nodes. 

In other words, as the threshold increases, the number of inactive inhibitory nodes increases. Fig. 



3 shows the decrease in prediction accuracy as the activation threshold increases for a high ratio 

of inhibitory nodes. Comparing the thresholds of 5 and 100 in Fig. 3(c) and 3(d), the decrease in 

prediction accuracy becomes saturated after 5. This result may be related to the fact that the sum 

of the size of inputs from the front does not exceed 5; instead, the decrease in prediction accuracy 

may originate from the non-activated inhibitory nodes, similar to the fully disconnected nodes. 

Therefore, the prediction accuracy decreases further compared to the disconnection cases 

consisting of partially disconnected nodes. The wider distribution of the prediction accuracy in 

cases with a higher ratio of inhibitory nodes for all threshold cases indicates the importance of 

inhibitory node distribution in the BNNs. The role of inhibitory nodes may be related to the 

multiple database training in the same neural network. If we assume a neural network with 

different input and output layer nodes and the same hidden layer nodes, we can probably design 

inhibitory node distribution in a neural network for different accuracies depending on the type of 

database. 

To analyze the BNN showing higher prediction accuracy compared to the FNN, we set up the 

576 BNNs based on 100-80-60-40-20 hidden layers and maintained the other parameters as 

before. Moreover, the small size of the MNIST database (1k) was used for training the BNNs to 

discover the relation between the local connections of the BNNs and the size of the database. Fig. 

4(a) shows the different prediction accuracy tendencies compared to the BNNs using a 20k 

training database. It is remarkable that the many BNNs with inhibitory nodes show higher 

prediction accuracy irrespective of their ratio, compared to the FNN with a prediction accuracy of 

69.81%. For the analysis by the knockout method, we selected the BNN with 0.2 as the ratio of 

disconnections for the connections between all hidden layers, 0.5 as the ratio of additional bypass 

connections for level 3 (100  40, 80  20), and 0.5 as the ratio of inhibitory nodes for all 

hidden layers. The prediction accuracy is 77.48%. The total number of weights used in this BNN 

is fewer than that in the FNN, as many as 400 weights. Fig. 4(b) represents the analysis results in 

terms of a bar graph. Each bar graph corresponds to the knockout results of nodes in each hidden 



layer. Notable, the additional bypass connections from the 1st (100  40) and 2nd (80  20) 

hidden layers are shown in separate bar graphs. In each graph, the contribution of the target nodes 

is inversely proportional to the height of the bar; that is, a higher contribution of a knockout node 

induces lower prediction accuracy of the BNN. For the 1st (100  80) and 4th (40  20) hidden 

layers, the contributions of each node for the prediction accuracy are larger than that of each node 

in the 2nd (80  60) and 3rd (60  40) hidden layers. On the contrary, the additional bypass 

connections from the 2nd (80  20) hidden layer show large contributions to the prediction 

accuracy compared to those from the 1st (100  40) hidden layer. The analysis results obtained 

from the knockout method are summarized in the center of Fig. 4(b), and the important 

connections are indicated by curved arrows. Therefore, it is expected that the existence of 

bypassing paths (additional connections) makes neural networks adjustable for the various sizes 

of training databases; that is, these paths protect the overfitting of neural networks from the 

imbalance between the number of weights and the size of the database. When the size of the 

database is small, the additional connections, instead of their normal counterparts, are used 

through the bypass. Therefore, if we can reduce the number of weights in the FNN and add the 

bypassing weights, the adjustability of neural networks for the various sizes of databases will be 

enhanced for a similar computational cost. 

To study the database dependency of the BNNs, we used three kinds of databases: MNIST, FEI, 

and PubChem [8-10]. Since these databases are well studied in the range of vision and material 

science, they are appropriate for the test of BNNs. The characteristics of the three databases are 

listed in Table II. The most evident aspect is that the size of the MNIST and PubChem databases 

is large, whereas that of the FEI database is small. Moreover, the MNIST and FEI databases 

consist of images for digits and faces, respectively, whereas the PubChem database refers to 

molecular properties, that is, it contains descriptors. Therefore, we can study the BNNs depending 

on the size and character of three different types of databases. Fig. 5 shows the prediction 

accuracy for the 576 BNN structures generated by combinations of three BNN factors. For the 



MNIST and PubChem databases, the prediction accuracy is not affected much by the BNN 

structure. On the contrary, the prediction result for the FEI database shows a large dependence on 

the BNN structures. The size of the training FEI database (= 390) is very small compared to that 

of the other two databases (= 20k). An improvement of up to 13% occurs in the prediction 

accuracy for the BNN using the FEI database (Fig. 5(b)), which is a large effect compared to that 

under 1% for the BNNs using the MNIST and PubChem databases. Thus, the design of the BNN 

may be very important when the training database size is small. Furthermore, the type of training 

database affects the dependence of prediction accuracy by the inhibitory nodes. An increase in the 

ratio of inhibitory nodes results in a remarkable decrease in the prediction accuracy of the BNNs 

trained by the FEI database (Fig. 5(a)), which is different from the case of the BNNs trained by 

the MNIST database (size: 1k); they show a slight decrease in the prediction accuracy (Fig. 4(a)). 

 

4. Conclusions 

 

BNNs including three brain-like factors, disconnection, additional bypass connection, and 

inhibitory nodes, were studied to understand the relationship between specific local connections 

and training database size. For a large-size training database such as the MNIST database (size: 

20k), additional bypass connections improve the prediction accuracy. On the contrary, the 

inhibitory nodes worsen the prediction accuracy. For the small-size training MNIST database 

(size: 1k), irrespective of the existence of inhibitory nodes, many BNNs showed better prediction 

accuracy compared to the FNN. The knockout method was used for the quantitative analysis of 

the improved BNN, and the findings showed that the contribution of additional bypass 

connections to the prediction accuracy was high. Finally, we found an improvement of up to 13% 

in the prediction accuracy of specific BNN structures for small-sized databases. In this study, we 

showed the existence of optimized BNNs depending on the size and type of training databases, 

therefore, we are expecting the study of how to find optimized BNN structure efficiently for a 

given specific database in the near future. 



References 

 
[1] D. M. Buss, Evolutionary Psychology: The New Science of the Mind (5th ed.). New 

York, NY, USA: Taylor & Francis, 2015. 

[2] D. Hebb, The Organization of Behavior. A Neuropsychological Theory. New York, NY: 

Wiley, 1949. 

[3] D. Miner and J. Triesch, “Plasticity-driven self-organization under topological 

constraints accounts for non-random features of cortical synaptic wiring,” PLoS Comput. Biol. 

vol. 12, pp. e1004759, 2016. 

[4] H. Markram, “A network of tufted layer 5 pyramidal neurons,” Cerebral cortex vol. 7, pp. 

523–533, 1997. 

[5] S. Song, P. J. Sjöström, M. Reigl, S. Nelson, and D. B. Chklovskii, “Highly nonrandom 

features of synaptic connectivity in local cortical circuits,” PLoS biology vol. 3, pp. e68, 2005. 

[6] R. Perin, T. K. Berger, and H. Markram, “A synaptic organizing principle for cortical 

neuronal groups,” Proc. Natl. Acad. Sci. USA vol. 108, pp. 5419–5424, 2011. 

[7] P. L. Greer and M. E. Greenberg, “From synapse to nucleus: calcium-dependent gene 

transcription in the control of synapse development and function,” Neuron vol. 59, pp. 846-860, 

2008. 

[8] M. Buffelli, R. W. Burgess, G. Feng, C. G. Lobe, J. W. Lichtman, and J. R. Sanes, 

“Genetic evidence that relative synaptic efficacy biases the outcome of synaptic competition,” 

Nature vol. 424, pp. 430-434, 2003. 

[9] R. Shapley, M. Hawken and D. L. Ringach, “Dynamics of orientation selectivity in the 

primary visual cortex and the importance of cortical inhibition,” Neuron. vol. 38, pp. 689–699, 

2003. 

[10] T. C. Jacob, S. J. Moss, and R. Jurd, “GABAA receptor trafficking and its role in the 

dynamic modulation of neuronal inhibition,” Nat. Rev. Neurosci. Vol. 9, pp. 331-343, 2008. 

[11] D. A. Lewis, T. Hashimoto, and D. W. Volk, “Cortical inhibitory neurons and 



schizophrenia,” Nat. Rev. Neurosci. vol. 6, pp. 312-324, 2005. 

[12] Y. LeCun, Y. Bengio and G. Hinton, “Deep learning,” Nature. vol. 521, pp. 436–444, 

2015. 

[13] A. Krizhevsky, I. Sutskever, and G. Hinton, “ImageNet classification with deep 

convolutional neural networks,” In Proc. Adv. Neural Inf. Process. Syst. vol. 25, pp. 1090–1098, 

2012. 

[14] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A. Mohamed, N. Jaitly, A. Senior, V. 

Vanhoucke, P. Nguyen, T. N. Sainath, and B. Kingsbury, “Deep neural networks for acoustic 

modeling in speech recognition,” IEEE Signal Processing Mag. vol. 29, pp. 82–97, 2012. 

[15] M. Bojarski, D. D. Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. D. Jackel, 

M. Monfort, U. Muller, J. Zhang, X. Zhang, J. Zhao, and K. Zieba, “End to end learning for self-

driving cars,” Preprint at https://arxiv.org/abs/1604.07316, 2016. 

[16] T. D. Albright, Cortical processing of visual motion. In F. A. Miles & J. Wallman (Eds.), 

Visual motion and its role in the stabilization of gaze, pp. 177-201, Amsterdam: Elsevier Science, 

1993. 

[17] L. R. Squire, D. Berg, F. E. Bloom, S. du Lac, A. Ghosh, and N. C. Spitzer, Fundamental 

Neuroscience (4th Ed.), pp. 46, Elsevier Inc., 2013. 

[18] J. D. Rothstein, C. A. Pardo, L. A. Bristol, L. Jin, R. W. Kuncl, Y. Kanai, M. A. Hediger, 

Y. Wang, J. P. Schielke and D. F. Welty, “Knockout of glutamate transporters reveals a major 

role for astroglial transport in excitotoxicity and clearance of glutamate,” Neuron. vol. 16, pp. 

675–686, 1996. 

[19] J. Z. Tsien, D. F. Chen, D. Gerber, C. Tom, E. H. Mercer, D. J. Anderson, M. Mayford, 

E. R. Kandel and S. Tonegawa, “Subregion- and cell type–restricted gene knockout in mouse 

brain,” Cell. vol. 87, pp. 1317–1326, 1996. 

[20] Y. LeCun, L. Bottou, Y. Bengio and P. Haffner, “Gradient-based learning applied to 

document recognition,” Proc. IEEE. vol. 86, pp. 2278–2324, 1998. 



[21] C. E. Thomaz and G. A. Giraldi, “A new ranking method for principal components 

analysis and its application to face image analysis,” Image Vis. Comput. vol. 28, pp. 902–913, 

2010. 

[22] PubChem. The PubChem Project, 2015 (released in 2004). [Online]. Available:  

http://pubchem.ncbi.nlm.nih.gov  

[23] M. S. Park, I. Park, Y.-S. Kang, D. Im and S.-G. Doo, “A search map for organic 

additives and solvents applicable in high-voltage rechargeable batteries,” Phys. Chem. Chem. 

Phys. vol. 18, pp. 26807–26815, 2016. 

 

Competing financial interests 

The author declares no competing financial interests. 

  



 
Table 1. Specifications of the training conditions and BNN structures 

 

Parameters Size 
Number 

of cases 
BNN factors 

Range 

(interval) 
Number 

of cases 

Hidden layers 5 1 Disconnection 0–50 (10) 6 

Node shape Decrease 1 

Additional 

bypass 

connection 

0–50 (10), 3 levels 18 

Training/Test 

database 

20k/10k 

(MNIST) 

390/30 (FEI) 

20k/56,040 

(PubChem) 

3 Inhibitory node 0–50 (10) 6 

Epochs 500 1 
Total cases 

(deduplication) 
 576 

 

 

  



 

Table 2. Characteristics of the three databases used in this study 

 

Database MNIST FEI PubChem 

Type 
Handwritten Digit 

Image 
Face Image 

Chemical Compounds 

database 

Dimension 28 × 28 640 × 480 × 3 1 × 86 

Number of Data 
60,000 (Training) 

10,000 (Test) 

2,800 

(200 persons × 14 

directions) 

93.9 million 

(Compounds) 

 

 

 

 

  



 

 

 

Figure 1. (Left) Three brain-like factors included in the FNNs for the BNN test. Red dotted 

arrows, blue arrows, and a red arrow denote disconnected connections, additional bypass 

connections, and an inhibitory connection, respectively. An orange circle denotes an 

inhibitory node. (Right) Schematics of the BNN structure with three brain-like factors and 

the relationship between DB size and BNNs.  

  



 

 

     

    
 
Figure 2. Prediction accuracy for 576 BNN samples using the MNIST database. The sample 

order is rearranged according to (a) inhibitory nodes, (b) disconnections, (c) additional bypass 

connections, and (d) additional bypass connection levels. The horizontal dotted line is the 

prediction accuracy of the FNN. As the number of inhibitory nodes changes, the order in the 

prediction accuracy is not conserved in the BNNs. For instance, the 61st BNN (red circle on 

the left) shows minimum accuracy (95.71%) among the 96 BNNs without inhibitory nodes 

(the 1st cluster). However, the 169th BNN (red circle to the right), which has the same 

structure as the 61th BNN, shows higher accuracy (96.14%) as well as a relatively higher 

order among the 96 BNNs with 10% inhibitory nodes (the 2nd cluster). 
  



 

    

    
 

Figure 3. Prediction accuracy for 576 BNN samples using the MNIST database. The accuracy 

depends on the activation thresholds in the inhibitory nodes. The horizontal dotted line is the 

prediction accuracy of the FNN. The arrangement of sample order is the same as Fig. 2(a). 
  



 

 

 
 

Figure 4. (a) Prediction accuracy for 576 BNN samples using the small-size MNIST database 

(1,000), where the horizontal dotted line is the prediction accuracy of the FNN. The 

arrangement of sample order is the same as Fig. 2(a). (b) The quantitative analysis of the 

contribution of hidden nodes to the prediction accuracy is conducted using the knockout 

method for the red circled sample in (a). The important connections are indicated by curved 

arrows. 
 

  



 

 

    

 

Figure 5. (a) Prediction accuracies for 576 BNN samples using the MNIST, FEI, and 

PubChem databases. (b) Prediction accuracies for 96 BNN samples without inhibitory nodes; 

the scale of vertical axis is enlarged from (a). The horizontal dotted line is the prediction 

accuracy of the FNN (red: MNIST, purple: FEI, black: PubChem). The arrangement of sample 

order is the same as Fig. 2(a). 
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Fig. S1 Additional bypass connection levels of additional connections, (a) level 2, (b) level 3, 

and (c) level 4 
 

 

 
 


