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Abstract
Background

Previous studies on brain connectivity in clinical and dimensional autism have largely focused on
selective connections and yielded inconsistent results. This study aimed to overcome these limitations.
Global �ber tracking allowed a more unbiased assessment of white matter connectivity and utilizing a
within-twin pair design introduced implicit control for genetic and environmental factors shared by twins
and allowed conclusions regarding their impact.

Methods

The study examined the within-twin pair associations between structural brain connectivity of
anatomically de�ned brain regions and both clinical autism spectrum diagnoses and dimensional
autistic traits in 85 twin pairs (n=170; 56% monozygotic; 25 individuals with autism spectrum diagnosis).
Structural connectivity was estimated using diffusion tensor imaging and linear regression models were
�t, adjusted for IQ, other neurodevelopmental and psychiatric conditions and multiple testing.

Results

Overall, both clinical and dimensional autism phenotypes were associated with localized reductions in
structural connectivity, despite comprehensively controlling for possible confounders, including all factors
shared by twins. Twins ful�lling autism spectrum diagnostic criteria showed decreased brainstem-cuneus
connectivity compared to their co-twins without the diagnosis. Further, twins with higher autistic traits
showed decreased connectivity of the left hippocampus with the left fusiform and parahippocampal
areas. These associations pointed into the same direction in mono- and dizygotic sub-cohorts, but were
only signi�cant in dizygotic twins.

Limitations

The recruitment approach of selecting primarily twin pairs discordant for autistic traits prevented a
quantitative estimation of genetic and environmental contributions to brain correlates of clinical and
dimensional autism. Further, assessing twins and excluding individuals with an IQ below 75 limited the
generalizability of the �ndings. The statistical power allowed detecting medium-size or larger effects of
dimensional autism. Finally, due the relatively small number of twin pairs discordant for a clinical autism,
the results for clinical autism need to be interpreted with caution.

Conclusions

Reduced brainstem-cuneus connectivity might point towards alterations in low-level visual processing in
clinical autism while reduced connectivity in networks crucial for visual and especially face processing
seem to be more associated with dimensional aspects of autism. The results further suggest that the
observed associations were potentially in�uenced by both genes and environment.
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Background
Clinical autism, here de�ned as ful�lling diagnostic criteria for an autism spectrum disorder, is
characterized by challenges in social and communication functioning along repetitive behaviors,
restricted interests, and alterations in sensory processing (1). Clinical autism is associated with low
employment rates, increased risk of anxiety and depressive disorders, and premature mortality (2). The
heterogeneity of clinical autism and the dimensionality of autism-de�ning symptoms makes it
challenging to establish reliable biomarkers for assessment and intervention purposes. Research
indicates that clinical autism is the extreme end of continuously distributed autistic traits (3), here
referred to as dimensional autism. Studying biomarkers in association with both dimensional and clinical
autism is a meaningful approach because dimensional markers assess the quantity of a phenomenon
and provide hence important additional information in addition to diagnostic markers. In this study, we
therefore investigated brain connectivity in association with both, clinical and dimensional autism.

It is generally assumed that atypical brain development leading to altered brain connectivity underlies the
clinical autism phenotypes (4). The nature of these connectivity alterations is however still largely
unknown since neuroimaging �ndings have hitherto remained inconclusive. Early models of altered brain
connectivity in clinical autism suggested overarching cerebral under-connectivity, particularly between
distal cortical brain regions (see e.g. (6)). However, these models have been challenged by �ndings
indicative of functional over-connectivity in individuals diagnosed with clinical autism (6, 7). This
inconsistency can partly be explained by phenotypic variation of clinical autism and methodological
heterogeneity (6). Furthermore, age seems to modulate autism-related connectivity atypicalities: A
developmental model brain connectivity in clinical autism suggests wide-spread over-connectivity in early
infancy, mirroring �ndings of early brain overgrowth, followed by altered neurodevelopmental trajectories
with regional over- or under-connectivity later in life (7). Finally, environmental factors in�uencing the
etiology of clinical autism, such as parental age or preterm birth (8), might modulate the brain-structural
and functional alterations associated with the condition.

Structural connectivity correlates of clinical and
dimensional autism
Structural brain connectivity is commonly studied using Diffusion Tensor Imaging (DTI), which takes
advantage of the fact that water molecules diffuse along white matter �bers (i.e. anisotropically). A
recent meta-analysis of voxel-based morphometry across 14 DTI studies, including 297 individuals
diagnosed with clinical autism and 302 neurotypical (NT) individuals, revealed decreased Fractional
Anisotropy (FA), indicative of reduced white matter integrity, in the left splenium of the corpus callosum
and the right cerebral peduncle, possibly re�ecting sensorimotor impairments (9). In contrast, a review of
16 studies applying ‘tract based spatial statistics’ (TBSS), where FA data from DTI images are projected
onto a prede�ned skeleton of prominent �ber tracts, identi�ed more wide-spread reductions in white
matter connectivity in older children, adolescents and adults diagnosed with clinical autsim compared to
matched controls (10). The uncinate and arcuate fasciculi, the inferior longitudinal fasciculus, the inferior
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fronto-occipital fasciculus and the cingulum – tracts that are crucial for language and face/emotion
processing, episodic memory, object recognition and attention control – were particularly affected (10). In
a population-based sample of 604 6-to-10 year-old children, FA within the left superior longitudinal
fasciculus and axial diffusion in the corpus callosum and the corticospinal tract were negatively
associated with dimensional autism, suggesting that some autism-related changes in white matter
microstructure might show a dose-like effect, increasing with increasing levels of dimensional autism
(11).

Utility of twin designs for assessing autism brain
biomarkers
Given the genetic heterogeneity of clinical and dimensional autism and the di�culties to control for all
possible confounding variables, twin studies provide the unique opportunity to implicitly control for the
genetic and environmental factors shared by twins. These familial factors might co-occur with (clinical)
autism without being part of the condition’s phenotype and might have biased the results of previous
studies (12). Within-pair associations are adjusted for 100% of genetic factors in monozygotic (MZ)
twins, except for post-twinning mutations, and on average half of the genetics in dizygotic (DZ) twins.
Comparing associations within MZ vs DZ twins can thereby help to differentiate genetic and
environmental in�uences on brain structure and function (13). For instance, a meta-analysis of 48 brain
imaging twin studies in NT twins indicated strong genetic impact on cortical morphometric measures and
FA of most brain structures, and environmental in�uence on cortical thickness of the uncus, left
parahippocampal gyrus, and insula as well as FA in the callosal splenium (14). Interestingly, the latter
structures have also been implicated in ASD (9, 10, 15).

Only a few studies assessed twin pairs discordant or concordant for clinical autism, showing, for
instance, that twins ful�lling diagnostic criteria for clinical autsim and their co-twins who did not showed
similar reductions in gray and white matter volume and cortical folding (e.g. 22,23). This suggests that
these autism-related brain alterations might be largely genetic. However, results have varied between
studies, most samples have been small and partly overlapping, and no within-pair comparisons have
been performed. One recent larger twin study reported that cortical thickness and cerebellar white matter
volume were more in�uenced by environmental factors in twins with clinical autism compared to NT
twins, whereas the genetic and environmental in�uence on other brain-structural measures was similar in
both twins with and without clinical autism (18). A previous twin study from our group revealed autism-
related intrinsic functional brain connectivity alterations within twin pairs between core hubs of the
salience network (19), while this study is the �rst assessing autism-related structural brain connectivity in
twins.

Methods
In this study, we applied a global tracking approach, allowing reconstructing the entire white-matter
connectome without making predetermined anatomical assumptions (20), and twin design for a
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hypothesis-free assessment of autism-related structural brain connectivity alterations, unbiased by
familial confounders. While within-twin pair analyses are perfectly controlled for age, within-pair
association between autism and brain connectivity can be modulated by age (19). Hence, we investigated
potential interaction effects between clinical and dimensional autism and age on brain connectivity in a
follow-up analysis.

Participants
A total of 170 individuals (8-36 years) from the Roots of Autism and ADHD Twin Study Sweden (RATSS)
(21) were included into the study. In RATSS, twins are predominantly recruited from the population-based
Child and Adolescent Twin Study Sweden (CATSS) (22), prioritizing pairs being screened positively for
signi�cant autism symptom discordance based on a parent interview. This study included 44 MZ and 37
DZ twin pairs and 4 twin pairs where zygosity was undetermined, 25 individuals ful�lled diagnostic
criteria for clinical autism, belonging to 17 clinical autism diagnosis discordant (6 MZ and 11 DZ twin
pairs) and four concordant twin pairs (3 MZ and 1 DZ twin pair). Further 31 individuals had one or more
other neurodevelopmental conditions (NDD) (primarily Attention De�cit Hyperactivity Disorder, ADHD, or
speci�c learning disorders) and further 27 individuals had one or more other psychiatric diagnosis
(mainly affective disorders). The remaining 87 included individuals were NT, de�ned as not ful�lling
criteria for any NDD or psychiatric diagnosis. For autistic traits, 74 twin pairs (38 MZ, 36 DZ) differed in
the exposure (by at least 1 point on the Social Responsiveness Scale-2, SRS-2) and 50 twin pairs (23 MZ
and 27 DZ) differed by at least 7 points, which is above measurement error (23). Sample characteristics
are summarized in Table 1. Of originally 420 individuals in the complete RATSS cohort, 230 had to be
excluded mainly because they or their co-twin had missing or too low quality data (for a detailed
description see the Exclusion procedure section in the supplementary text, section 1.1).
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Table 1
Sample characteristics

  Total sample

(N=170)

ASD

(N=25)

other diagnoses*
(N=58)

NT

(N=87)

Female / male sex 96 / 74 13 / 12 22 / 36 87 / 48

MZ / DZ /
unknown

88 / 74 / 8 11 / 13 / 1 28 / 27 / 3 49 / 34 / 4

NDD / psych. 31 (17) 7 / 11 31 / 41 -

Age range years 8-36 11-31 8-36 8-33

Mean age (SD) 19.32 (6.38) 17.4 (5.69) 19.28 (6.71) 19.9 (6.31)

Mean SRS-2 (SD) 33.38 (28.37) 79.40 (25.23) 31.74 (20.99) 21.25 (18.6)

Mean IQ (SD) 103.34
(14.42)

104.76
(19.14)

101.16 (13.32) 104.38 (13.56)

Note. *other diagnoses means here ful�lling any diagnoses other than ASD; MZ = monozygotic, DZ =
dizygotic, NDD = ful�lling criteria for neurodevelopmental disorders other than ASD, psych. = ful�lling
criteria for psychiatric diagnoses (primarily anxiety disorders and depression); NT = neurotypical
(de�ned as not ful�lling diagnostic criteria for any of the assessed neurodevelopmental or psychiatric
diagnoses)

Diagnostic assessment
Twins underwent comprehensive assessment according to the RATSS protocol (21), including �rst choice
standardized diagnostic instruments for clinical autism, such as the ‘Autism Diagnostic Interview –
Revised’ (ADI-R) and the ‘Autism Diagnostic Observation Schedule’ (ADOS or ADOS-2). Other NDD and
psychiatric diagnoses were determined based on a multitude of sources, including the ‘Kiddie Schedule
for Affective Disorders and Schizophrenia’, the ‘Diagnostic Interview for ADHD in adults’ and the
‘Structured Clinical Interview for DSM-IV’ (SCID, axis I). General intellectual ability was assessed with the
Wechsler Intelligence Scale for Children or Adults, 4th Editions (WISC-IV/WAIS-IV) and the composite IQ
score was calculated based on three verbal comprehension and three perceptual reasoning subtests.

Assessment of dimensional autism
Dimensional autism was assessed using the parent report SRS-2, see supplementary text, section 1.2. for
psychometric characteristics), using total raw scores as recommended for research settings (23).

Image acquisition and processing
An approximately 50 minute MRI session in a 3 Tesla MR750 GE-scanner included a 5 minute T1-
weighted Spoiled Gradient Echo anatomical scan (176 slices, TR = 8.2 sec, FOV = 240 mm, voxel size =
.94 x .94 x 1.00 mm3), and a diffusion imaging sequence with 60 spatial directions and a b-value of 1000
s/mm² (61 slices, TR = 8.0 sec, FOV = 220 mm, voxel size = 2.29 x 2.29 x 2.3 mm3).
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After quality control and pre-processing, streamline counts between 56 atlas regions (Supplementary
Table 1) of the LBPA40 atlas (24) were extracted for each individual and normalized (please see
supplementary text, sections 1.3. and 1.4.). After data reduction (see supplementary text, section 1.5), 903
connections were included. For these, the median raw streamline count across NT participants ranged
between 35 and 5177 streamlines.

Statistical analyses
First we conducted explorative analyses on group differences and within-pair differences in dimensional
autism and IQ, which are summarized in the Supplementary text, sections 2.1 and 2.2.

As the main analyses, we performed linear regressions in the generalized estimating equations
framework with connectivity strength measured as streamline counts as dependent variable and clinical
or dimensional autism as independent variables. Using an identity link function and conditioning on a
unique twin pair id, we conducted within-pair analyses where each individuals were compared to their co-
twins. Thus, confounding (and mediating) factors that are stable between the twins, i.e. all genetic and
environmental factors shared by twins, were adjusted for by design (see e.g. 21). We �tted models for 903
selected connections, adjusting multiple comparisons using false discovery rate (FDR, Benjamini-
Hochberg method), as well as IQ, NDD diagnosis other than clinical autism, and psychiatric diagnosis.
Twin pairs discordant for the main predictor contribute directly to the estimate (76 pairs were discordant
for dimensional autism and 17 for clinical autism) while the remaining pairs in�uenced the standard
errors and affected the estimate indirectly if they were discordant for any of the covariates. Standardized
estimates were calculated, which can be interpreted as effect size estimates. In a follow-up analysis, the
interaction terms between clinical or dimensional autism and age were added to the models.

In order to complement our within-pair analysis, we also performed linear regressions across the cohort
using the same statistical framework, treating twins as individuals but adjusting standard errors for twin
clustering, and summarized these secondary results within the Supplementary text, section 2.5.

Results

Associations of clinical and dimensional aspects of autism
and structural connectivity
The statistics of all within-pair associations with clinical or dimensional autism surviving the FDR
correction are summarized in Table 2 and visualized in Figure 1.
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Table 2
Within-pair associations between structural connectivity and ASD

Sample Anatomical regions β SE Z p corr. p uncorr.

ASD diagnosis  

MZ+DZ brainstem - L cuneus -.502 .115 -4.358 .012 1.3*10−5

DZ -.574 .121 -4.751 .002 2.0*e−6

MZ -.467 .210 -2.222 1.000 .026

Autistic traits

MZ+DZ L hippocapus - L parahyppocampal
gyrus

-.362 .071 -5.136 2.5*10−4 2.8*10−7

DZ -.510 .070 -7.320 2.2*10−10 2.5*10−13

MZ -.190 .127 -1.495 1.000 .135

MZ+DZ L hippocapus - L fusiform gyrus -.396 .078 -5.112 2.9*10−4 3.2*10−7

DZ -.389 .081 -4.785 .002 1.7*10−6

MZ -.529 .160 -3.303 .863 9.6*10−4

Note. β = standardized regression coe�cient, SE = standard error, Z = z-statistic, p corr. = FDR-
corrected p-value; signi�cant associations (p < .05) marked in bold. The within-pair association
estimate is directly in�uenced by twin pairs who differ in the exposure (ASD diagnosis or SRS-2) and
indirectly by pairs differing only in covariates. For ASD diagnosis, 17 twin pairs (6 MZ and 11 DZ)
differed in the exposure. For autistic traits, 74 twin pairs (38 MZ, 36 DZ) differed in the exposure (by at
least 1 point on the SRS-2).

Ful�lling diagnostic criteria for clinical autism was signi�cantly associated with decreased structural
connectivity between the brainstem and the left cuneus, both within all twin pairs (corrected p value < .05)
and DZ twin pairs (11 discordant pairs, corrected p-value < .01). The association was also observable in
MZ pairs (6 diagnosis discordant pairs), but did not survive the correction for multiple comparisons. The
CIs of the DZ and MZ estimates overlapped.

There were two signi�cant negative associations between dimensional autism and structural connectivity
strength involving the hippocampus (corrected p-values < .001) that were similar in both the whole
sample and the sub-sample of DZ twins (corrected p-values < .01), whereas the estimate was still
negative but not signi�cant in MZ twin pairs. Also here, the CIs of the DZ and MZ estimates overlapped.

The covariates effects are summarized in Supplementary text, section 2.3. Uncorrected Z-values of the
associations between clinical or dimensional autism on connectivity are summarized in Supplementary
text, section 2.4 and visualized in Supplementary Figures 1 and 2.
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Modulating effects of age on the association between ASD
and structural connectivity
The interaction between age and clinical autism was signi�cant for 13 connections. Among these,
however, were none of the connections observed in the main analysis for clinical autism, but primarily
intra-hemispheric fronto-occipital connections (see Table 3). These interaction effects were all negative,
and no interactions between age and dimensional aspects of autism survived correction for multiple
comparisons. The uncorrected Z-values of these interaction effects are visualized in Supplementary
Figures 3 and 4.

Table 3
Interactions between ASD diagnosis and age that survived FDR correction

Anatomical regions β (95% CI) SE Z p corr. p uncorr.

L sup. occipital g. – L postcentral g. -.114 (-.157, -.071) .022 -5.175 2.1*10−4 2.3*10−7

L mid. occipital g. – L precentral g. -.128 (-.170, -.087) .021 -6.004 1.7*10−6 1.9*10−9

L inf. occipital g. – L sup. front. g. -.169 (-.234, -.103) .033 -5.069 3.6*10−4 4.0*10−7

L inf. occipital g. – L mid. front. g. -.181 (-.238, -.124) .029 -6.253 3.6*10−7 4.0*10−10

L inf. occipital g. – L precentral g. -.156 (-.219 -.093) .032 -4.866 .001 1.1*10−6

L fusiform g. – L mid. front. g. -.119 (-.169 -.070) .0025 -4.707 .002 2.5*10−6

R inf. occipital g. – R sup. front. g -.193 (-.254, -.132) .031 -6.193 5.3*10−7 5.9*10−10

R inf. occipital g. – R mid. front. g. -.141 (-.205 -.077) .033 -4.323 .014 1.5*10−5

R cuneus – R sup. front. g. -.114 (-.166 -.062) .027 -4.311 .015 1.6*10−5

R cuneus – R mid. front. g. -.115 (-.162 -.069) .024 -4.833 .001 1.4*10−6

R lingual g. – R sup. front. g. -.122 (-.168 -.076) .024 -5.167 2.2*10−4 2.4*10−7

R lingual g. – R mid. front. g. -.126 (-.182 -.071) .028 -4.448 .008 8.7*10−6

R putamen – R angular g. -.083 (.119 -.047) .018 -4.538 .005 5.7*10−6

Note. Statistics of the Age*ASD diagnosis interaction effects surviving FDR correction. β = 
standardized regression coe�cient, 95%CI = 95% con�dence interval, SE = standard error, Z = z-
statistic, p corr. = FDR-corrected p-value, p uncorr. = uncorrected p-value.

Discussion
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In this study, we investigated changes in brain connectivity associated with clinical and dimensional
autism, using global �ber tracking and applying a within-twin pair design where familiar factors are
implicitly controlled for. Both clinical and dimensional aspects of autism were associated with reduced
connectivity beyond the in�uence of familial factors. However, different connectivity alterations appear to
be relevant for the clinical autism based on present diagnostic algorithms compared to dimensional
autism. The results are discussed in more detail below.

Clinical autism and structural connectivity
Twins with ful�lling diagnostic criteria for clinical autism had reduced white matter connectivity between
the brainstem and the left cuneus compared to their co-twins without a diagnosis. While several lines of
evidence suggest a brainstem involvement in clinical autism, the direct evidence for brainstem alterations
from postmortem histological and in-vivo neuroimaging studies in humans remains limited (25), likely
because the majority of brain imaging studies focused on predetermined cortical regions of interest. The
brainstem hypothesis of autism suggests that atypical early brainstem development in clinical autism
has cascading effects on cortical development, resulting in alterations in sensory processing that might
be causal to other autism core symptoms (25). For instance, the superior colliculus of the brainstem and
its interaction with cortical visual regions has been linked to visual exploration during visual search (26).
Such changes in low-level visual processing could have a secondary effect on higher-order visual
processing and cognition. The cuneus is an occipital brain region contributing to the dorsal visual stream,
involved in form, motion and spatial processing and is a central, integrative hub within a functional visual
brain network (27). This region has previously been implicated in clinical autism in a large study (394
individuals with clinical autism diagnosis and 473 controls), where lower effective (directed) connectivity
of cuneus / precuneus to temporal brain regions involved in face processing to the was found in relation
to both clinical autism diagnosis and autism symptom severity in the clinical group (28).

Our �nding of reduced connectivity between the brainstem and cuneus in individuals clinical autism
compared to their co-twins might indicate an atypical development of early aspects of the visual pathway
in clinical autism, which in turn may in�uence low-level perception and, in consequence, social
information processing. These alterations might be considered a trait marker of autism, i.e. a marker of
the dichotomous presence of clinical diagnosis, regardless of symptoms severity.

Dimensional autism and structural connectivity
Our results suggest that twins with more pronounced autistic traits tend to have reduced white matter
connections from the left hippocampus to the left parahippocampal gyrus and to the left fusiform gyrus.
The left hippocampus is crucial for (episodic) memory (29) and is, via the parahippocampal gyrus,
connected to the brain’s Default Mode Network (30), which is believed to be involved in self-referential
thinking (31). Connectivity between the hippocampus and the fusiform gyrus is crucial for facial
emotional processing (32), and reduced connectivity between these regions (33) and altered
microstructure of the hippocampus-fusiform pathway (more densely packed but thinner ) (34) has been
observed previously in individuals diagnosed with clinical autism compared to controls. The human
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fusiform gyrus contains the fusiform face area (FFA) which is crucial for face perception (35). Since
challenges in facial emotional processing are a core feature of clinical autism, many functional brain
imaging studies on autism investigated the FFA during face processing. A meta-analysis of 50 fMRI
studies concluded that the left FFA and the left parahippocampal gyrus are more strongly activated in
individuals with clinical autism during social cognition tasks, most of which involving face stimuli (36).
However, since the fusiform gyrus function is not restricted to face processing but includes for instance
also object recognition and space processing (37), its connectivity to the hippocampus is also relevant
for non-social visual processing, such as memory-guided visual exploration in visual search (38).
Therefore, the reduced connectivity between hippocampus and fusiform gyrus in association with
dimensional autism observed in this study might re�ect alterations in visual processing, including but not
restricted to facial emotional processing. These might be regarded as a state marker of autism, a marker
of quantitative autistic trait severity.

Modulating effect of age
Some associations between clinical autism and connectivity between intra-hemispheric connections,
involving primarily fronto-occipital connections, were signi�cantly modulated by age (Table 3). These
negative interactions indicate that the effect of clinical autism on brain connectivity between these
regions decreased with increasing age, in line with developmental models of clinical autism (7, 19). These
interaction effects should be interpreted with caution, due to the limited number of twin pairs discordant
for clinical autism. Still – if validated in further studies – this is a clinically interesting observation in that
it might re�ect compensatory mechanisms affecting structural network organization, potentially taking
place during adolescence and early adulthood.

Genetic vs environmental in�uences
In this study, genetic and environmental factors shared by twins are implicitly controlled. However,
comparing associations between MZ and DZ sub-cohorts can allow conclusions regarding the in�uence
of non-shared genetic and environmental factors, because MZ twins are largely genetically identical,
while DZ twins share on average half of their genes. When splitting the sample into sub-samples of 46
MZ and 37 DZ twin pairs, the associations between clinical and dimensional autism and brain
connectivity remained signi�cant within DZ but not MZ twins. However, the estimates were quite similar
and their CIs overlapped between MZ and DZ sub-cohorts, allowing no �rm conclusions with respect to
genetic in�uence on this association. For the latter, larger MZ and DZ samples might be necessary. Since
the associations pointed into the same direction in both MZ and DZ twins but were statistically weaker in
MZ twins, we speculate that both, genetic and non-shared environmental factors contributed to these
within-pair associations.

Limitations
Focusing primarily on twin pairs with marked differences in autistic traits made this study more sensitive
for detecting within-pair associations with autism phenotypes, but also prevented us from classic twin
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modeling of the quantitative genetic and shared vs non-shared environmental effects since these
estimated would have been biased.

Power analysis for our twin analysis is not straight forward, due to the non-independence of observations
and due to our recruitment strategy, however, we aimed to approximate the questions using G*Power
(version 3.1.9.2), assuming N = 76 pairs differing in autistic traits by at least one point on the SRS.2.
While the sample is comparatively large for a neuroimaging twin study on autism, our power calculation
indicated a power of 85.6 in order to detect medium sized effects (β > .3) at α = .05.

A larger sample (N = 714 discordant twin pairs) would have been required to detect small effects (β = .1)
at a power of 80%. Further, the FDR-correction for the relatively large number of tested connections (>900)
might have increased the likelihood for type-II errors. For an overview over also sub-threshold effects (Z-
maps), please see the supplementary material (Supplementary Figures 1-4). These revealed visually
relatively similar patterns of both increased and decreased connectivity in association with both, clinical
and dimensional autism, indicating that rather than differing fundamentally in their effects on overall
connectivity pattern, clinical and dimensional autism might only differ in respect to their strongest
associations with structural connectivity.

Our study had a wide age range and an even distribution of males and females, increasing the
generalizability across ages and sexes, but this variability might on the other hand prevented us from
detecting sub-group speci�c effects. In contrast, excluding individuals with an IQ<75 and individuals with
insu�cient brain imaging data quality has likely reduced the noise in the data, but restricted the sample
largely to individuals in the normal IQ-range. Moreover, twin cohorts differ from non-twin cohorts in
several ways. For instance, twins are more frequently born prematurely and suffer more often from
growth restrictions (39). Hence, we cannot exclude the possibility that they also differ from non-twin
samples in terms of brain connectivity.

Conclusions
Using a data-driven approach and a within-twin pair design, we found evidence for reduced connectivity
between brainstem-occipital connectivity as a possible trait marker of autism, and reduced connectivity
between regions involved in visual and especially face processing as a possible state marker of autism,
beyond familial confounding and across sexes and ages. These associations were signi�cant in DZ
twins alone and attenuated in MZ twins despite pointing into the same direction, potentially indicating
both genetic and environmental contributions. Negative interactions effects between clinical autism and
age on brain connectivity might re�ect compensatory processes.

Abbreviations
DZ
dizygotic
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FA
fractional anisotropy
FFA
fusiform face area
FOV
�eld of view
IQ
intelligence quotient
MRI
magnetic resonance imaging
MZ
monozygotic
NDD
neurodevelopmental disorder
NT
neurotypical
TR
repetition time
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Figures

Figure 1

Within-pair associations that survived FDR-correction in the whole sample. ALL = within-pair association
within the whole sample, DZ = within dizygotic twins, MZ = within monozygotic twins. Lower/upper =
lower and upper bound of the 95% con�dence interval. Note that although none of the associations
survived correction within the MZ sub-sample, the con�dence intervals do not cross the zero line for the
association between autistic traits and the L hippocampus – L fusiform gyrus connection and for the
association between ASD diagnosis and brainstem – L cuneus connection. The forest plots (left side)
were created in RStudio3.5.1, using the package “forestplot”. Examples of the according connections
(right side) were created using functions within the NORA platform (http://www.nora-imaging.com).
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