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Abstract
Background

Intellectual Disability (ID) is a characterized by significantly impaired adaptive behavior and cognitive
capacity. Currently, high throughput sequencing approaches have led to the identification of genetic
causes for ID in 25-50% of cases, while the causes of inherited ID are less well known. Here, we have
investigated the genetic cause for non-syndromic ID in a Han Chinese family.

Methods

Whole genome sequencing was performed on identical twin sisters diagnosed with ID, their respective
children as well as their asymptomatic parents. Data was filtered for rare variants and in silico prediction
tools used to establish pathogenic alleles. Candidate mutations were validated by Sanger sequencing.
Molecular modelling was conducted to establish the effects of the mutation on the protein encoded by a
candidate coding gene.

Results

A novel heterozygous variant in the ZBTB78 gene ¢.1323C>G (p.His441GIn) was identified. This variant
co-segregated with affected individuals in an autosomal dominant pattern and was not detected in
asymptomatic family members. Molecular studies reveal that a p.His441GIn substitution disrupts the
coordination of a zinc ion within the second zinc finger and disrupts the capacity for ZBTB18 to bind
DNA.

Conclusions

¢.1323C>G mutation in ZBTB18 gene on 1 chromosome may be related with the phenotype of intellectual
disability in this family. WGS is an efficient method to perform molecular diagnosis for hereditary ID. This
is the first report of an inherited ZBTB178 mutation for ID and suggests that mutations that disrupt C2H2
motifs underlie human neurodevelopmental disorder.

Background

Intellectual disability (ID) is a generalized neurodevelopmental disorder characterized by substantial

impairment in intellectual capacity (such as reasoning, learning, problem solving) as well as adaptive

behaviours (such with conceptual, social and practical skills), and affects 1-3% of children [1, 2]. ID can

be diagnosed in isolation or in combination with congenital malformations, as well as with additional

neurological features such as epilepsy, sensory impairment and autism spectrum disorder (ASD). The

severity of ID can range from mild, moderate, severe and profound [3, 4]. Individuals living with an ID
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diagnosis face significant medical, financial, and psychological challenges. Equally the burden of ID on
families, the community and on the health-care system of nations is considerable [5]. The genetic and
phenotypic presentation of ID is extremely heterogeneous [3], with both environmental as well as genetic
causes documented. For example, fetal exposure to alcohol and other teratogens, as well as prenatal
infections, traumatic brain injury, neurologic/brain disorders, nutritional deficiencies, and inborn errors of
metabolism are all known environmental causes for ID [3, 6]. On the other hand, the genetic causes for ID
include chromosomal abnormalities, copy number variation (CNV), as well as single gene mutations that
cause disease in a dominant or recessive fashion.

Traditional testing methods for genetic diagnosis of ID including karyotype, microarray, targeted
polymerase chain reaction (PCR), Fragile X DNA testing for repeat sequences, fluorescent in situ
hybridization (FISH) and mitochondrial DNA testing, have been met with great success [7]. More recently,
Chromosomal microarray analysis (CMA), comparative genomic hybridization (CGH) or SNP arrays, have
been successfully applied as first-tier tests to diagnose genetic causes of childhood ID [2, 8]. Previous
studies on the genetic etiologies of ID have effectively utilized CMA [9-11]. However, intrinsic limitations
are evident to each of these approaches. For example, karyotype and microarray testing only surveys the
genome at low resolution, while PCR, Fragile X testing, FISH, and mitochondrial DNA testing all focus only
on distinct candidate genomic loci for mutation testing. More recently, the rapid development of next
generation sequencing (NGS) approaches for clinical diagnostic applications, such as whole-exome
sequencing (WES) and whole-genome sequencing (WGS) have facilitated a broad and high-resolution
discovery platform to characterize ID genes and their causal mutations [12-21]. To date, over 700 genes
and 130 rare CNVs have been identified as putative genetic causes of X-linked, autosomal-dominant as
well as autosomal-recessive ID and IDassociated disorders [2, 22]. Notably, inherited genetic forms of ID
are rare in occurrence, detected in approximately 5% of cases [23].

In this study, we performed whole genome sequencing of family members with non-syndromic ID to
identify a novel mutation to the ZBTB18 gene that shows an autosomal-dominant pattern of inheritance.

Methods
Subjects Clinical Samples

A non-consanguinous family from the Sichuan province in China with two generations of individuals with
ID was recruited following informed consent (Figure 1). Two affected (llI:1, 1l:2) members received full
clinical evaluation. The blood samples of four affected subjects(ll:2, 11:3, 1ll:1, 1l:2) and the parents of the
affected twins (I:1,1:2) were collected for analysis. Clinical records and radiographic images were
published under the patients’ written permission. The study was approved by the Ethics Committee of
West China Second University Hospital, Sichuan University (No: 2015011) and adheres to the principles
stated in the Declaration of Helsinki.

DNA extraction and whole genome sequencing
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Genomic DNA was isolated from peripheral blood leukocytes, collected from participants using DNA
QlAamp mini kit (Qiagen, Hilden, Germany) according to instructions of the manufacturer. WGS was
performed on samples from 4 affected patients (11:2,11:3,111:1,111:2) and 2 normal family members (I:1,1:2).
Sequencing was carried out with a BGl-seq 500 with 50bp paired-end reads.

Bioinformatics analysis

Sequencing data was analysed using SOAPnuke package [24] to remove adapter sequences and low-
quality reads, following which reads were mapped to the human genome reference (UCSC GRCh37/hg19)
through the Burrows-Wheeler aligner (BWA-MEM, version 0.7.10) [25]. Variant calling was performed
using the Genome Analysis Tool Kit (GATK, version 3.3) [26]. Variant Effect Predictor (VEP) was used to
annotate and classify all the variants [27]. We then screened variants based on their frequency in public
and internal databases (1000 genome, GnomAD, and data not shown) [28], retaining only variants with a
Minor Allele Frequency (MAF) <0.005. Variants with subsequently filtered based on the ID inheritance
model of the pedigree. Finally, pathogenic as well as likely pathogenic variants were identified using Sift
[29] and PolyPhen2 [30].

Sanger sequence validation

Primers for PCR validation of sequence reads were designed using Primer 5.0. Putative candidate
variants were verified by Sanger sequencing to exclude false positive variants. The six family members
(affected individuals 11:2,11:3,111:1,11I:2; unaffected individuals I:1,1:2) were sequenced by bidirectional
Sanger sequencing to determine co-segregation of the candidate mutations. Polymerase chain reaction
(PCR) and sequencing primers are available upon request.

Molecular modelling

Schrodinger Suite 2018-3 was used for molecular modelling. The H441Q mutation was introduced into
the homology model of the ZBTB18-E7 protein-DNA complex [31] using Maestro. The mutated residue, as
well as residues within 6.0 A of the mutation, were energy minimised using Prime.

Results
Clinical features

Four individuals in this family have mild ID. The proband (lll:1), was a 7-year-old male at the time of
examination. A language impairment screening assessment was performed on the child to find that their
overall language ability was at the level of an 11-12 month old. His speech related ability was at the level
of a 9 month old, while auditory related expression was at the level of a 12-13 month old. His capacity for
visual expression was at the level of a 12-13 month old. Magnetic resonance imaging (MRI) scan of the
brain was carried out for the child at 31 months of age which revealed dysplasia of the corpus callosum.
At 6 years of age, the posterior horns of both lateral ventricles were enlarged, the corpus callosum was
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abnormal, and the hippocampus was small. Electroencephalogram (EEG) examination suggested
abnormality.

In the case of subject Ill:2, a general examination was performed at 19 months, with MRI scans revealing
mild paraventricular white matter softening. Application tof the Intelligence Development Diagnostic
Scale test showed a total DQ of 47.2, and the overall level of intelligence development was significantly
lower than that of a typical child of the same age. The ability to cope with people was evaluated at that
of a 9 month old, while the ability to cope with things was evaluated at equivalent to an 8 month old,
while gross motor ability was at equivalent to a 12 month old. The ability of fine motor speech was
equivalent to an 8 month old. Currently, both Ill:1 and 1ll:2 are attending special schools for intellectually
disabled children.

Clinical diagnostic data is not available for subjects 11:2 and II:3, whom are parents of the affected twins.
However, according to their account of early childhood when both had been weaned and were at 1 year of
age, both twins often developed fever with bouts of convulsions lasting three to four cycles. Convulsions
occurred when the body temperature was only 37.5°C, and this was diagnosed as epilepsy. Anti-
convulsion medication Diazepan was effective to reduce the incidence of epileptic episodes. As adults,
both 11:2 and 11:3 are restricted to ordinary housework, such as cooking, washing dishes, sweeping the
floor. Both are unable to perform more complicated tasks alone, such as shopping and paying for goods
and handling money.

Mutation Detection

To identify the causative variants in the ID family, we performed WGS as described (see Methods). High-
quality data was obtained, with mean coverage in excess of 90%, and with average read depth at > 40X
(Table 1).

Table 1
Average depth and coverage of WGS

Sample Q20 Q30 Average depth  Coverage (%)
111 98.05 90.90 4441 92.35
I:2 98.36 92.17 45.28 91.83
I1:2 98.40 92.05 4572 91.81
I:3 98.44 9219 43.09 91.82
I:1 98.47 9242 4397 92.35
:2 98.00 90.65 45.27 91.81

Bioinformatics analysis identified a de novo mutation in both 11:2 and II:3 defined as ¢.1323C>G, in
reference to RefSeq transcript NM_205768.2, located within Exon2 of the ZBTB18 gene. This variant
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segregated perfectly in affected family members, and was not detected in unaffected individuals, where
tested. In addition, Sanger sequencing was also to confirm co-segregation of the heterozygous variant in
these affected members in the pedigree (Figure 2). This variant has not been reported in HGMD database
[32], gnomAD or ClinVar [33] databases, suggesting it is a novel ZBTB78 missense variant. Variant calling
analysis also did not identify/identifies other candidate gene mutations.

The ZBTB18 gene encodes a transcription factor protein that binds DNA in a sequence-specific manner to
influence gene expression during fetal nervous system development [34-38]. The ¢.1323C>G mutation
detected in this family pedigree results in an amino acid substitution from histidine to glutamine at
position 441 (p.His441GIn) of the polypeptide sequence. This variant is predicted to be probably
damaging (Polyphen score 0.997) and deleterious (SIFT score 0). Sequence alignment with vertebrate
orthologues revealed codon 441 of ZBTB18 to be highly conserved from humans to frogs to fish (Figure
3), further suggesting a mutation at this codon may have an impact on the function of the polypeptide.
Moreover, we performed molecular modelling to find that His441 is a zinc-coordinating residue within the
second zinc finger motif of ZBTB18 [31]. As such, a H441Q substitution likely disrupts zinc coordination
critical to the formation of this zinc finger protein folding motif that, in turn, alters the structural stability
of ZBTB18 and affect its capacity to bind DNA for (Fig. 4). Given the putative role of His441 in protein
folding, it is plausible that a p.His441GIn substitution could also alter steady-state levels of the ZBTB18
protein variant, leading to cellular dysfunction.

Discussion

Here, we report a novel heterozygous missense mutation (c.1323C>G, p.His441GIn) to the ZBTB18
(NM_205768.2) gene in a Han Chinese family that segregates with ID in an autosomal dominant fashion.
The variant was detected as a de novo mutation in a monozygotic twin female pair, but not their parents.
Each child of the twin females inherited this variant, and they were born with brain developmental
disorder and ID. To our knowledge, this is the first report of an inherited ZBTB18 mutation for ID.

ZBTB18 is essential to the development of the mammalian brain [39]. The expression and function of
ZBTB18 in neural stem cells and their postmitotic progeny is crucial to the formation and differentiation
of appropriate numbers of neurons and astrocytes within fetal brain [34]. During embryonic cerebral
cortex development, ZBTB18 mediates multipolar-to-bipolar transition of migrating cortical neurons by
negative inhibition of the expression downstream target genes such as Neurog2 and Rnd2[37, 38].
Moreover, ZBTB18 is essential for the growth and organization of the cerebellum and regulates the
development of both GABAergic and glutamatergic neurons [35]. It has been reported that ZBTB18 acts to
repress the expression of pax6, ngn2 and neuroD1, since expression of these three sequential pro-
neurogenic genes can signal intermediate neurogenic progenitors (INP) within the embryonic mouse
cerebellum to differentiate into neurons and initiate migration [36]. Given such critical roles for ZBTB18 in
mammalian brain development, it is perhaps unsurprising that mutations to this gene lead to ID and
human brain disorder.
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The ZBTB18 gene encodes a transcriptional repressor protein comprising an N-terminal BTB (broad
complex tramtrack bric-brac) domain mediating protein-protein interaction, as well as four Cys,His,
(C2H2) type zinc fingers for DNA-binding within its C-terminus, respectively. In humans, genetic mutations
to ZBTB18, including Copy Number Variation, microdeletions, microduplications, as well as Single
Nucleotide Variants (SNVs), are associated with structural brain abnormalities, neuronal migration
disorder and ID [12, 14, 16, 17, 40—-53]. Interestingly, while disease-associated nonsense and frameshift
mutations are documented across the coding sequence, the overwhelming majority of disease-associated
missense mutations are mapped to the C-terminal, C2H2 zinc finger domain, while a small proportion of
such variants map to the BTB domain. Within the coding sequence of the C2H2 zinc finger domain, the
majority of disease-associated ZBTB18 missense variants are clustered map to the second, third and
fourth zinc fingers, corresponding with the importance of these three motifs for DNA-binding [31].
Missense variation to residues within zinc fingers have been shown to impair the capacity of ZBTB18 to
bind DNA and disrupt its function as a site-specific transcriptional repressor [31, 46]. In addition, disease-
associated ZBTB18 variants could have a dominant-negative effect by disrupting the DNA-binding by
circulating wildtype protein in the presence of the mutant protein [46]. Thus, growing evidence indicates
that alterations to DNA-binding and disruptions to transcriptional regulation could represent pathological
mechanisms through which ZBTB78 missense variants cause disease in humans [31].

The novel missense mutation ¢.1323C>G (p.His441GIn) of ZBTB18 s anticipated to be pathogenic based
on the following evidence. Firstly, this variant is not detected in the general population (gnomAD) nor the
National Center for Biotechnology Information (NCBI) single nucleotide polymorphism database (dbSNP)
[54]. Secondly, the mutation leads to substitution of a highly conserved amino acid (His441) with basic
properties, to glutamine that features polar, neutral side chains. Furthermore, two independent
bioinformatics algorhithms (SIFT and PolyPhen2) described this variant as pathogenic. Thirdly, our
molecular modelling studies reveal that His441 is critical as a zinc-coordinating reside in the second zinc-
finger motif. As all four zinc fingers are essential for ZBTB18 to bind DNA [31, 55], a His441GIn mutation
could destabilize the protein, disrupt sequence-specific binding, alter transcriptional regulation in cells, or
all of the above. Indeed, recent studies of a p.Asn461Ser mutation detected in a child with ID [46]
demonstrated that such a variant not only resulted in reduced steady-state levels of the mutant protein,
but also compromised sequence-specific DNA binding and transcriptional repression [31].

The accurate detection of disease-causing mutations in subjects with ID is necessary to provide
appropriate genetic counseling, as well as to inform potential future gene-specific therapies to alleviate
clinical symptoms. Given the extensive genetic heterogeneity of ID, a genome-wide diagnostic approach
is crucial to be able to detect of all types of causative genetic variants, whether such variants are detected
in coding or noncoding loci. Given the ever-improving cost-effectiveness of WGS in clinical diagnostic
sequencing, it is increasingly being used to detect causative mutations [13, 18, 19, 21].

Our study demonstrates that WGS is efficient for detecting genetic causes of hereditary ID. Our finding of
a ¢.1323C>G (p.His441GIn) mutation to ZBTB18 expands the spectrum of mutations that cause inherited
forms of ID, and demonstrates that WGS is highly efficient to provide a precise genetic diagnosis.
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Abbreviations

ID

intellectual disability

CNVs

copy number variants

CMA

chromosomal microarray analysis
NGS

next generation sequencing
WES

whole-exome sequencing
WGS

whole-genome sequencing
MR

magnetic resonance

MRI

magnetic resonance imaging.
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Figure 2
Chimpanzee-ZBTB18 FSCMYTLKRHE EKPYTCTQCGKSFQYSHNLSRHAVVHTREKPHAC
Giant_panda-ZBTBI8 FSCMYTLERHE EKPYTCTOCGKSFQYSHNLSRHAVVHTREKFHAC
Human-ZBTB18 FSCMY TLKRHERTHBGEKPY TCTQCGKSFQYSHNLSRHAVVHTREKPHAC
Mouse-Zbthl8 FSCMYTLKRHE EKPYTCTQOGKSFQYSHNLSRHAVVHTREKPHAC
Xen_laevis-zbthl8 FSCMY TLERHERTHBGEKPY TCTQCGKSFQYSHNLSRHAVVHTREKPHAC
Xen_tropicalis-zbtbl8 FSCMYTLKRHE ERPFTCTQCGRSFQYSHNLSRHAVVHTREKPHAC
Zebrafish-zbtbl8 FSCMY TLKRHERTHBGEKPY TCTTCGKSFQYSHNLSRHAVVHTREKPHAC
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Figure 3

Page 15/16



His437

Figure 4

Page 16/16



