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Abstract
Objective: Oblique lateral locking plate system (OLLPS) with the locking and reverse pedicle track screw
con�guration is a novel internal �xation designed for oblique lumbar interbody fusion(OLIF). It is placed
in a single-position through the oblique lateral surgical corridor to reduce operative time and subsequent
complications of prolonged anesthesia and prone positioning. The purpose of this study was to verify the
biomechanical effect of OLLPS.

Methods: The intact �nite element model of L1–S1 Intact  was established based on CT images of a
healthy male volunteer. The L4-L5 intervertebral space was selected as the surgical segment. The surgical
models were established separately according to the OLIF surgical procedures and the different internal
�xations: (1) stand-alone OLIF (SA); (2) OLIF with 2-screw lateral plate (LP-2); (3) OLIF with 4-screw lateral
plate (LP-4); (4) OLIF with OLLPS (OLLPS); and (5) OLIF with bilateral pedicle screw �xation (BPS). After
validating the intact model, the physiological loading was applied to the superior surface of L1 to
simulate �exion, extension, left bending, right bending, left rotation, and right rotation motions. The
evaluation indexes included the L4/5 range of motion (ROM), the L4 maximum displacement, and the
maximum stress of the superior and inferior endplate, cage, and supplemental �xation.

Results: In OLIF surgery, OLLPS provided multiplanar stability which was similar to that of BPS.
Compared with LP-2 and LP-4, OLLPS had the better biomechanical properties in enhancing the instant
stability of the surgical segment, reducing the stress of the superior and inferior endplates of the surgical
segment, and reducing the risk of cage subsidence.

Conclsions: With the minimally invasive background, OLLPS can be an alternative to BPS in OLIF and has
a better prospect of clinical promotion and application.

Introduction
Advances in minimally invasive technology open up a new era of spine surgery. Oblique lumbar interbody
fusion (OLIF) is widely used in the treatment of degenerative diseases of the lumbar spine because of its
advantages such as minimally invasive indirect decompression, e�cient interbody fusion and rapid
postoperative rehabilitation. The OLIF procedure uses the natural gap between the anterior border of the
psoas major and the abdominal vessel to access the lateral aspect of the vertebral body for interbody
fusion, eliminating the need for expensive neurological monitoring and allowing multiple segmental
fusions with a single small incision using the "sliding window" technique.1 The application of large size
cage has good results for the correction of spinal force lines, but the high postoperative rate of the cage
subsidence is an unavoidable problem. A clinical study by Abe et al.2 reported a 9.03% rate of cage
subsidence. However, Zeng et al.3 found a subsidence rate up to 19.8% in patients who underwent stand-
alone OLIF surgery during postoperative follow-up. Indirect decompression failure after cage subsidence
may cause a range of clinical symptoms, high reoperation rate, huge �nancial and health burden. In
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patients with a high risk of cage subsidence, OLIF with supplementary �xation may be a more prudent
solution.

Even though OLIF is an effective treatment, there is still no consensus regarding the ideal supplemental
�xation. Different �xation methods have been reported in the literature, for example, posterior �xations
include pedicle screw �xation, modi�ed cortical bone trajectory (CBT) screws, transfacet screw �xation,
and lateral �xations contain anterolateral screw �xation, lateral plate.4–8 Bilateral pedicle screw �xation
has been regarded as the gold standard, but it may bring about adjacent spondylosis or damage to
paravertebral structures.8–10 Furthermore, pedicle screw placement requires turning the patient from a
lateral to a prone position during surgery and the additional posterior surgical incision, which increases
the perioperative risk. The lateral �xation can avoid the induced problems of intraoperative patient
�ipping and reduce operative time and risk. The shape of lateral plate is more rounded and blunt than the
anterolateral screw �xation, which is less invasive to the surrounding tissues and more promising for
application. However, the biomechanical stability of the 2-screw lateral plate currently used in OLIF has
been questioned, and the acceptance of clinical application is low.11–13 We plan to improve the design of
the lateral plate to enhance its biomechanical properties. An in vitro biomechanical experiment by
DenHaese et al.12 con�rmed the superior biomechanical properties of the 4-screw lateral plate compared
to the 2-screw lateral plate. In a clinical study, Sardhara et al.14 proposed a new theory of reverse pedicle
screw �xation (RPSF), which relies on the special trajectory of the lateral screws to achieve 3-column
�xation (Fig. 1). We designed the oblique lateral locking plate system (OLLPS) for the OLIF procedure by
using the angular stability of the locking screw structure and the RPSF theory, combining the
understanding of the connotations of OLIF (Patent No. ZL 202022949889.1). In this study, the
biomechanical properties of OLLPS were evaluated to provide a biomechanical basis for its clinical
application by establishing 3-dimensional surgical models with various internal �xation and using �nite
element analysis.

Materials And Methods

Oblique lateral locking plate system (OLLPS) design
The oblique lateral locking plate system (OLLPS) consists of a palm-leaf fan-shaped plate and 4 angle-
speci�c locking screws (Fig. 2). The OLLPS is easy to assemble and compatible with OLIF cage, mainly
for the L2-L5 intervertebral space.15 The OLLPS design is based on the concept of Biological
Osteosynthesis for bone trauma. We may consider the superior and inferior bony endplates of the
surgical segment as the two ends of the fracture. Accordingly, intervertebral fusion can be considered as
the healing of the fracture. The stability of conventional lateral plates is achieved by the friction between
the bone surface and the plate. Most of the lumbar vertebral body surfaces have irregular morphology,
and the �xable range of the oblique anterior side of the lumbar spine is narrow, resulting in the inability of
the conventional lateral plate to closely adhere to the vertebral body. The stress is too concentrated at the
contact surface between the screw and the plate, with the risk of the loose screw, broken screw, and
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internal �xation failure.16 The OLLPS screws are threaded into the lateral plate at a speci�c angle,
providing angular stability and weight load can be distributed by the screw and lateral plate, which can
share the endplate stress. The placement of OLLPS is referenced to a bone trauma locking plate, does not
have to closely adhere to the vertebral bone surface, does not require excessive exposure, causes minimal
damage to the vertebral periosteum.

 The length of the lateral plate is limited by the distance between the superior and inferior segmental
artery after the placement of the intervertebral cage. The width of the actual operating area of the surgical
corridor is thus a major parameter, determining the width of the plate. The OLIF clinical anatomical
studies give us detailed design parameters, and we set the lateral plate width at 22 mm, length at 30 mm-
42 mm (in 4 mm increments), and thickness at 5 mm. The overall design of the anatomical lateral plate
has a streamlined curved appearance, with a 30° arc on the coronal and axial positions. The screws are
designed as 6.0 mm diameter solid or hollow cancellous bone screws, and the length is set at 30 mm-60
mm (in 5 mm increments). The thread of the screw body is far deep and shallow �shbone spur type
tapered thread, which can effectively increase the contact area of the screw/bone interface and increase
the screw holding force.

The special trajectory of the screw is the main point of the OLLPS design. Based on the theory of RPSF,
we used a 3-dimensional topology optimization method to set the two ventral screws (screws #1 and #3
in Fig. 2) to reverse the pedicle trajectory, pointing to the cortical bone area at the junction of the
contralateral pedicle and vertebral body, but without penetrating the contralateral bone cortex. However,
the space in the region is limited and cannot accommodate multiple screws at the same time, While we
design OLLPS to jointly use in multiple segments. Therefore, we adjusted the screw trajectory for
topological optimization. Speci�cally: screws #1 and #4 are at an angle of 25° to the horizontal centerline
of the plate (to extend the screw force arm and increase the contact area of the screw/bone interface)
and at an angle of 5° to the vertical centerline of the plate (screw #1 points to the ventral cortical bone
area of the contralateral pedicle region to prevent overlapping of the trajectories of screws #1 and #3 of
the upper and lower �xation plates when multiple segments are used together); screws #2 and #3 are at
an angle of 0° to the horizontal centerline of the plate (parallel to the endplate, increasing the endplate
support) and 15° angle to the vertical centerline of the plate (screw #3 points to the contralateral pedicle
area). Any two screw trajectories are not in the same plane and form an angle with each other, forming a
multi-dimensional multi-axial locking.
The plate and screws of OLLPS are made of titanium alloy (Ti6Al4V). The risk of subsidence is minimal
when the cage is placed in zones II and III, and OLLPS is also usually placed laterally anterior to the
vertebral body corresponding to this.17,18 Operators determine the correct orientation of the lateral plate
by the non-asymmetric clamping notches on both sides of the plate during the placement operation and
use a guide to assist in screw placement based on navigation or �uoroscopic assistance. We recommend
that the #3 reverse pedicle screw should be �rstly placed, followed by the oblique contralateral #2 screw
to ensur e that the lateral plate is �at against the surface of the vertebral body, and then the remaining
screws are placed in sequence.  
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Construction of an intact lumbar �nite element model
A healthy male volunteer (34 years old, weight 70 kg, height 175 cm, no previous lumbar spine disease)
was recruited for this study, and 439 images were obtained using GE 64-slice spiral CT for continuous
thin-section scanning of the L1-S1 vertebrae (slice thickness 0.625 mm) after signing an informed
consent. The CT images in Dicom format were sequentially imported into Mimics 23.0 (Materialise Inc.,
Leuven, Belgium), 3-Matic (Materialise Inc., Leuven, Belgium) software to establish models and perform
the smooth restoration. The smoothed model was processed using SolidWorks 2017 CAD (SolidWorks
Corporation, Concord, MA, USA) to construct the endplates, annulus �brosus, nucleus pulposus, and facet
joints. The solid model was meshed using HyperMesh (Altair Technologies Inc., Fremont, CA). Finally,
ANSYS (Ansys Inc., Canonsburg, PA, USA) was used for material property de�nition, model assembly, and
�nite element analysis. 

The �nite element model (Fig. 3) includes the L1-S1 vertebral body, intervertebral disc and ligament
system. The vertebral body includes cortical bone, cancellous bone, bony structures of the posterior
column, and endplates, with 1mm thick cortical bone and 0.5mm thick endplates.19,20 44% of the nucleus
pulposus and 56% of the annulus �brosus compose the intervertebral disc.20 The ligament system
includes the anterior longitudinal ligament, posterior longitudinal ligament, ligamentum �avum,
interspinous ligament, supraspinous ligament, capsular ligament, and intertransverse ligament, which
were set up as spring elements subjected to tensile loading only. The �nite element model was meshed
using the tetrahedral and hexahedral elements, except for the ligaments. The mesh size was chosen to be
1.5mm after the mesh sensitivity test. The intact model had a total of 511,826 elements and 276,996
nodes. The �nite element model was assumed to be a homogeneous, continuous, and isotropic linear
elastic material,20 and the material properties of the components are shown in Table 1. 

Table 1

Material properties used in the �nite element models from the literature.11,21-23 
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Structure Young’s
modulus(MPa)

Poisson’
ratio

Cross- sectional area
(mm2)

Density
(kg/mm3)

Bone        

Cortical bone 12,000 0.3   1.7e-6

Cancellous bone 100 0.2   1.1e-6

Endplate 500 0.25   1.2e-6

Intervertebral disc        

Nucleus pulposus 1 0.49   1.02e-6

Annulus �brosus 4.2 0.45   1.05e-6

Ligaments        

Anterior longitudinal 20 0.3 63.7 1.0e-6

Posterior longitudinal 20 0.3 20 1.0e-6

Ligamentum �avum 19.5 0.3 40 1.0e-6

Interspinous 11.6 0.3 40 1.0e-6

Supraspinous 15 0.3 30 1.0e-6

Intertransverse 58.7 0.3 3.6 1.0e-6

Capsular 32.9 0.3 60 1.0e-6

Implants        

Pedicle screws and rods
Ti-6A1-4V

110,000 0.3   4.5e-6

Lateral plate and screws
Ti-6A1-4V

110,000 0.3   4.5e-6

Cage PEEK 3500 0.3   1.32e-6

 

Construction of the surgical �nite element models
Cage and internal �xation were performed with a tetrahedral element (Solid187). The L4-L5 intervertebral
space was used as the surgical segment, and the annulus �brosus, nucleus pulposus, and cartilage
endplates were removed. On this basis, a stand-alone OLIF (SA) model was constructed based on the
CLYDESDALE (Medtronic Sofamor Danek USA, Inc.), with 6° of anterior convexity, 50 mm in length, 18
mm in width, and 12 mm in anterior height, and made of Polyetheretherketone (PEEK). The internal
�xation models were all constructed based on the SA model (Fig. 4). The OLIF with 2-screw lateral plate
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(LP-2) model was constructed based on the Pivox Oblique Lateral Spinal System (Medtronic Sofamor
Danek USA, Inc.), in which the plate is 34.6 mm length, 12 mm width, 5.4 mm thickness, and the screws
are 45 mm length and 5.5 mm outer diameter (15° angle between the screw and the horizontal centerline
of the plate, 0° angle between the screw and the vertical centerline of the plate). The OLIF with 4-screw
lateral plate (LP-4) model was constructed on the basis of the LITe plate system (Stryker USA, Inc.) with
the plate length of 28 mm, the width of 21 mm, the thickness of 4.5 mm and the length of the screws of
45 mm, 5.5 mm outer diameter (the two screws on the ventral side were at an angle of 20° to the
horizontal centerline of the plate, with a vertical centerline angle of 0° and the two screws on the backside
were parallel to the endplate with a vertical centerline angle of 0° ). The OLIF with oblique lateral locking
plate system (OLLPS) model was constructed based on the oblique lateral locking plate system with the
plate length of 32 mm, the width of 22 mm, the thickness of 5 mm, and the length of the screws of 45
mm, 6.0 mm external diameter (the screws tilt angle as described previously). The OLIF with bilateral
pedicle screw �xation(BPS) model was constructed based on the CDH SEXTANT II (Medtronic Sofamor
Danek USA, Inc.) with the pedicle screws diameter of 6.5 mm, length of 45 mm and the diameter of the
rods of 5.5 mm, length over the upper and lower pedicle screw spacing. All materials of internal �xation
were titanium alloy (Ti6Al4V), and the material properties of the implants are shown in Table 1. 

Contact, boundary and loading conditions
The connection between the constructed model disc/cage and the superior and inferior endplates was
made by means of the no separation contact. The contact surface of the cage and the endplate had a
toothed anti-dislocation structure with a friction coe�cient of 0.8.24 Frictional contact existed between
the facet joints, the screw/bone interface, and the interspace between the screws and threaded holes (no
sliding between the screws and the threaded holes in the OLLPS model), and the friction coe�cient was
set at 0.2 to simulate the immediate postoperative state. The inferior surface of the S1 vertebra was �xed,
which means that all nodes of the inferior endplate of the S1 vertebra were constrained from moving in
any direction. A 150 N axial compressive preload was set on the upper surface of the S1 vertebra to
simulate physiological load in upright state, and a pure moment of 10 N·m was applied to simulate the
model in six directions: (1) �exion (FL); (2) extension (EX); (3) left bending (LB); (4) right bending (RB); (5)
left rotation (LR); and (6) right rotation (RR). The L4/5 ROM and maximum displacement of L4 were
recorded for all surgical models and compared with the intact model. The maximum stress of the
superior and inferior endplates, cage, and supplemental �xation were analyzed in each surgical group.
The idealized model of the lumbar spine was symmetrical in the sagittal plane from left to right. The
angles of left bending and right bending, left rotation and right rotation should be the same. However, the
realistic human lumbar spine does not have 100% symmetry, and the mobility and stress can vary.25

Therefore, the results of the lumbar spine in �exion, extension, left bending, right bending, left rotation,
and right rotation were recorded separately in this study.

Results
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Finite Element Model validation 
The L1-S1 segment range of motion (ROM) for different motions of the intact model under a 150 N axial
compression preload and a 10N·m moment load was measured and compared with the outcomes of in
the vitro experiment conducted by Yamamoto et al.26 (Table 2). The total L1-L5 ROM of the intact model
in �exion-extension, lateral bending, and rotational mobility was measured by applying a 7.5 N·m
moment load and compared with the �nite element model investigated in Dreischarf et al.27 (Fig. 5A). The
L4/5 intervertebral disc pressure (IDP) was tested with pure compressive forces of 300 and 1000 N, which
was compared with in vitro experimental data of Brinckmann & Grootenboer28 and the calculated results
of the �nite element model of Zhang et al.29, respectively (Fig. 5B). More segments and approaches were
used in our validation than in other similar studies, and the results obtained were in good agreement with
those reported in the literature, ensuring the validity of the intact model. 

Table 2

The comparison of the ROM between our �nite element model and the previous in vitro experimental
study. 

Spinal
levels

  Flexion Extension Left
bending

Right
bending

Left
rotation

Right
rotation

L1-L2 Yamamoto et
al.26

5.8±0.6 4.3±0.5 4.7±0.4 5.2±0.4 2.6±0.5 2.0±0.6

Present study 5.95 4.51 4.93 5.46 2.73 2.10

L2-L3 Yamamoto et
al.26

6.5±0.3 4.3±0.3 7.0±0.6 7.0±0.6 2.2±0.4 3.0±0.4

Present study 6.72 4.52 7.35 7.35 2.31 3.15

L3-L4 Yamamoto et
al.26

7.5±0.8 3.7±0.3 5.7±0.3 5.8±0.5 2.7±0.4 2.5±0.4

Present study 7.87 3.88 5.98 6.09 2.83 2.62

L4-L5 Yamamoto et
al.26

8.9±0.7 5.8±0.4 5.5±0.5 5.9±0.5 1.7±0.3 2.7±0.5

Present study 9.32 6.09 5.77 6.34 1.78 2.83

L5-S1 Yamamoto et
al.26

10.0±1.0 7.8±0.7 5.3±0.4 5.7±0.4 1.5±0.2 1.3±0.2

Present study 10.45 8.19 5.56 5.98 1.57 1.36

All values were expressed in degrees. Loading condition: a compression force of 150 N and pure
moment of 10N·m;26 ROM: range of motion.
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L4/5 ROM
Fig. 6A shows the results of L4/5 ROM of the surgical models under the combined loading of 150 N and
10 N·m. The ROM was decreased relative to the intact model in all motion modes. Compared with the
intact model, SA showed the minimum reduction in mobility with 51.61% in FL, 52.55% in EX, 55.11% in
LB, 58.83% in RB, 22.47% in LR, and 21.91% in RR. The ROM of the L4/5 segment was further decreased
after the placement of the internal �xation. The ROM of LP-2 was decreased by 59.33%, 57.96%, 69.50%,
66.09%, 46.07%, and 41.70% of the intact model in FL, EX, LB, RB, LR, and RR, respectively. The ability to
limit lumbar mobility slightly increased in LP-4 group compared with LP-2 group, but is still inferior to
OLLPS and BPS. The ROM of OLLPS was decreased by 73.93%, 70.28%, 81.28%, 79.81%, 67.98%, and
65.02% of the intact model in FL, EX, LB, RB, LR, and RR, respectively. BPSR provided the maximum
reduction of ROM compared with the intact for all motions, in which was decreased by 87.66%, 85.39%,
79.90%, 79.18%, 65.17%, and 64.31% of the intact spine in FL, EX, LB, RB, LR, and RR, respectively.
Considering that the most frequent lumbar motions were �exion and extension, BPS had the best overall
performance in restricting lumbar motion. Despite this, the restrictive effect of OLLPS on the operated
segment was signi�cantly improved relative to LP-2 and LP-4, and the ability to restrict lumbar motion in
all directions was higher than 60%, which was comparable to BPS in restricting lateral bending and
rotational activities. 

L4 Maximum Displacement
The maximum displacement nephogram of L4 with various �xation options in six motion modes are
shown in Fig. 7. The maximum spatial displacement of the superior vertebral body of the surgical
segment relative to the inferior vertebral body indirectly re�ected the stability of the surgical segment. It
may be simply interpreted as the smaller the displacement degree is, the more stable it is. However, the
results of relative displacement contained not only the displacement change of the surgical gap but also
the displacement increment caused by the vertebral deformation, which was less reliable than ROM, but
can be used as an auxiliary criterion for ROM evaluation of lumbar spine stability.30 Compared with the
intact model, the L4 vertebral displacement in the surgical models was decreased in six motion modes.
The data of the three lateral �xation modalities showed a stepwise performance, in short, OLPPS was
better than LP-4 and LP-4 was better than LP-2. OLPPS was slightly better than BPS in limiting lumbar
motion during lateral bending and rotational movements of the lumbar spine, whereas BPS was better in
�exion and extension (Fig. 6B).

Endplate Stress
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Fig. 8 describes the maximum stress in the superior and inferior endplates of the surgical segment. Fig. 9
visualizes the stress distribution of the L5 superior endplate. The maximum stress of the L5 superior
endplate in LP-2 group was 3.1366 Mpa, 1.6019 Mpa, 1.7887 Mpa, 1.7381 Mpa, 3.3066 Mpa, and 3.7018
Mpa in FL, EX, LB, RB, LR, and RR, which was decreased by 37.45%, 21.51%, 47.55%, 41.45%, 57.14%, and
57.61% of SA, respectively. The maximum stress of the L5 superior endplate in LP-4 group was decreased
by 41.94%, 58.65%, 59.37%, 61.75%, 74.72%, and 89.50% of SA, respectively. The decrease of OLPPS and
BPS in endplate stress was greater than that of LP-2 and LP-4. Among all surgical models, OLLPS had
the lowest endplate stress of L5 in bending and axial rotation, which was 0.7064 Mpa in left bending,
0.8225 Mpa in right bending, 1.0522 Mpa in left rotation, and 0.7493 Mpa in right rotation, respectively,
and the decreases was 79.29%, 75.35%, 86.36%, and 91.42% of SA. The maximum stress of L5 endplate
of BPS in �exion and extension was the lowest in the surgical model with 2.6235 Mpa and 0.4034 Mpa,
respectively, which decreased by 47.68% and 80.23% compared to SA. The L5 superior endplate stress of
OLLPS in lateral bending and axial rotation was slightly lower than that of BPS, which was reduced by
2.0%, 7.93%, 1.45%, and 7.10% in LB, RB, LR, and RR, respectively. Fig. 8 shows that the stress of the L5
superior endplate was generally higher than that of the L4 inferior endplate under the same internal
�xation and motion conditions. This implied that the risk of cage subsidence is higher in the L5 superior
endplate than in the L4 inferior endplate. This result was consistent with the clinical study by Hu et al.31,
who found that the subsidence probability of the superior endplate was signi�cantly higher than that of
the inferior endplate during the clinical radiographic follow-up of the surgical segment. Fig. 9 clearly
shows that the stress of the L5 superior endplate was concentrated in the epiphyseal ring and cortical
compact of the vertebral endplate in contact with the cage.  

Cage Stress
Fig. 10A shows the cage stress with various �xation options in six motion modes. The cage stress of SA
was maximum in all models, especially in left and right rotation, which was reduced after the
implantation of any internal �xation. The cage stress of LP-2 was slightly lower than that of SA, and the
cage stress of LP-4 was lower than that of LP-2. Among all surgical models, BPS had the lowest cage
stress in the �exion-extension motion state, and OLLPS had the lowest cage stress in the left-right
bending and left-right rotation states. In the comparison of BPS, OLLPS had 8.86%, 12.56%, 3.76%, and
13.85% lower cage stress in left bending, right bending, left rotation, and right rotation, respectively. Fig.
11 shows the nephogram of the cage stress with various �xation options. The stress distribution was
concentrated at the periphery of the cage in all motion states (especially in the dorsal region), which
corresponded to the high-stress region of the endplate.   

Supplemental Fixation Stress
The maximum stress of supplemental �xation is shown in Fig. 10B. The maximum stress of OLLPS in FL,
EX, LB, RB, LR and RR was 51.899 MPa, 27.206 MPa, 41.478 MPa, 40.127 MPa, 36.143 MPa and 50.483
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MPa, respectively, which were higher than that of LP-2, LP-4 and BPS. The maximum stress of LP-2
appeared in LR and RR, and the maximum values of LP-4, OLLPS and BPS appeared in FL and RR.
Further analysis reveals that the maximum stress of LP-2 and BPS occurred at the interface between the
superior screw and the bone, and the maximum stress of OLLPS occurred in the plate (Fig. 12). OLLPS
was endured higher stress than other internal �xations, but was far below than the fatigue strength 310-
610 MPa and yield strength 789-1013 MPa reported in the literature for titanium internal �xation. 16 The
maximum stress of BPS was smooth in all motions, and there was no sudden increase in stress in one
motion mode, suggesting a balanced biomechanical performance in all directions of motion of the
lumbar spine.

Discussion
Biomechanical properties are the important element of the novel internal �xation research. There are two
mainstream biomechanical assessment methods: one is in vitro cadaveric biomechanical experiments;
the other is �nite element analysis. In vitro cadaver biomechanical experiments are di�cult to implement
because of the strict requirements for cadaver conditions and laboratory equipment. With the
advancement of �nite element analysis technology, the reconstruction of �nite element models for the
lumbar spine based on normal human CT images has become the accepted method for biomechanical
analysis. Through the simulation of different internal �xation models, the comparative analysis of the
activity of surgical segments and the stress characteristics of each structure after applying physiological
load can help us understand the biomechanical characteristics of the current internal �xation methods. In
the study, the biomechanical properties of the combined application of OLLPS and OLIF were discussed
for the �rst time. We innovatively introduced the concept of Biological Osteosynthesis for bone trauma
into vertebral fusion and introduced the angle stabilization structure and reverse pedicle screw trajectory
design on the basis of conventional lateral plate �xation to improve the stability of OLLPS.

The retrospective study by Silvestre et al.15 �rstly named and discussed the OLIF procedure. 179 patients
who underwent OLIF were included in his study, the results indicate that a mean intraoperative bleeding
of 56.8 ± 131.3 mL, a mean operative time of 32.5 ± 13.2 min, and postoperative complications mainly
consisting of incisional pain (4 cases, 2.2%) and lower extremity symptoms due to sympathetic nerve
chain injury (3 cases, 1.7%). Compared with PLIF in traditional posterior open surgery, OLIF had
signi�cant advantages such as a smaller surgical incision, shorter anesthesia time, less intraoperative
bleeding, less postoperative pain, and faster postoperative recovery.32 Compared with MIS-TLIF, a
posterior minimally invasive procedure, OLIF can provide better correction of sagittal parameters and
clinical outcomes, more satisfactory restoration of vertebral space height, and earlier intervertebral
fusion.33–36 During the clinical applications of lumbar interbody fusion, the importance of the posterior
lumbar ligamentous complex for maintaining spinal stability has been increasingly recognized.37 The
reports of postoperative intractable low back pain caused by the injuries of bony structures, muscles, and
ligaments in the posterior lumbar region were also common. Stand-alone OLIF can minimize structural
damage to the posterior lumbar spine.8,38,39 However, cage subsidence has been a problem in the stand-
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alone technique. The clinical application effects and complications of stand-alone OLIF can be explained
in biomechanical studies. According to the mechanism of fracture healing, the relative stability of the
fracture end is a prerequisite for healing. Our study suggested that SA had the least decrease of ROM in
all motion modes and internal �xation modalities, which resulting in the least ability to maintain lumbar
spine stability. Our results were consistent with the in vitro biomechanical �ndings by Laws et al.40 The
reduction of ROM in SA �exion-extension and lateral bending mode is better in rotation mode, which is
associated with the design of the fusion cage convex angle and the transverse placement of the lumbar
coronal line.

The purpose of supplemental �xation for lumbar fusion is to stabilize the lumbar spine, reduce the
mobility of the surgical segment, create a stable external environment for fusion, share the stress of the
endplate, and reduce the incidence of cage subsidence.11 The results of this study suggested that all
�xation modalities enhanced the stability of the lumbar spine structure compared to the SA model, but
the degree of stability varied considerably in the different supplemental �xation modalities. BPS had the
greatest ability to maintain the stability of the lumbar spine in the immediate postoperative period.
However, in our opinion, the effect of the combination of OLIF with BPS is 1+1 <2. As mentioned, the
damage to the posterior lumbar structures associated with posterior internal �xation plays a subtractive
role. Re-positioning to the prone position is traditionally required for placing BPS, which extends operative
time by an average of 45 to 60 minutes.41 Prolonged anesthesia in the prone position leaves patients at
risk for complications, such as increased blood loss, peripheral nerve injuries, di�culties in airway access
and postoperative infection.42,43 The design of OLLPS is based on the idea that 1+1>2. OLLPS is placed
in a single-position through the oblique lateral surgical corridor to give full advantage to the OLIF
procedure for non-injury to the posterior lumbar structures and reduce operative time and subsequent
complications of prolonged anesthesia and prone positioning. The lateral plate has an inherent
de�ciency in achieving bilateral equalization, but the big size cage crossing the epiphysis ring can
diminish this de�ciency. Previous studies showed that lateral plate increased the stiffness of the lumbar
spine in bending and rotation but had little effect in �exion and extension.11,40,44 In our study, lateral
�xations of LP-2, LP-4, and OLLPS were more restrictive for lumbar lateral bending and axial rotation. In
the treatment of long bong fracture, locking plate systems have been proved to have signi�cant
advantages in stability and bone regeneration.45 Our �ndings suggest that the idea of angular stability is
also bene�cial in lateral plate. OLLPS demonstrated superior stability in lateral bending and axial rotation
following implantation. The junctions between the screws and the plate of LP-2 and LP-4 are equivalent
to a rotatable portal axis, and as the lumbar spine move, the screws and the plate can rotate relative to
each other, especially in �exion and extension. The locking structure of OLLPS combines the screws with
the plate as a single unit, with all the screws and plate acting synergistically to counteract lumbar motion,
and the plate does not need to be pressed against the vertebral bone surface, thus protecting the
periosteal blood supply. The multidimensional angular stabilization layout of the OLLPS screws and the
plate/screws locking structure an improved its ability to limit lumbar �exion and extension compared with
the existing lateral internal �xation LP-2 and LP-4. The screws of OLLPS have a thicker diameter than that
of LP-2 and LP-4, and the special inclined trajectory and surface threads of the screws increase the
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contact area of the screw-bone to provide a tighter bond with cancellous bone, which improves the
holding power and �xation of the OLLPS on the vertebral body. Screw-locked structural stability was not
signi�cantly decreased in the osteoporotic patients.46 The different biomechanical behavior depends on
the direction of loads acting on the screws.46 For motion in �exion/extension, the longitudinal axis of the
OLLPS screws intersects the lumbar rotation axis at a small angle, while the BPS is orthogonal to the
rotation axis. The torque of OLLPS screws against lumbar �exion and extension is less than the BPS.
Therefore, the OLLPS is less capable of limiting lumbar �exion/extension than the BPS. For lateral
bending and axial rotational motion, the longitudinal axis of the OLLPS screws is orthogonal to the
rotation axis, and the reverse pedicle screw trajectory gives it a longer lever arm for resisting lumbar
motion. Therefore, the OLLPS is comparable to the BPS in limiting lumbar lateral bending and rotational
activity. In our study, the results of the maximum displacement of the superior vertebral body
corroborated with the ROM results of the surgical segment.

It had been reported that cage subsidence was closely related to the endplate stress and cage stress of
the fused segment.47,48 According to the stress-growth curve of the vertebral body cells, the higher the
compressive stress is, the more inhibited the growth of vertebral body cells is.49 The bone density of the
epiphyseal ring at the periphery of the vertebral endplate was much higher than that of the central region
of the endplate, which providing the greatest resistance to cage subsidence.50 During the fusion process
of the OLIF, the epiphyseal ring and cortical compact have the effect of supporting the cage, and the
cancellous bone contributes to the fusion with the intervertebral cage. A longer and wider cage has larger
contact area, more dispersed stress and lower subsidence risk.51–53 Although compared with traditional
banana-shaped or bullet-shaped cages, the cage of stand-alone OLIF across the epiphyseal ring of
endplate reduces the risk subsidence. However, without supplementary �xations, the weight load may be
distributed directly on the cage and endplate surfaces, increasing the possibility of endplate collapse and
cage subsidence, and the protentional complications associated with endplate collapse and cage
subsidence remain a concern, especially in osteoporotic patients.13,54 The results of Zhang et al.11

showed that the lateral plate can reduce the stress of the fusion cage and the endplate when the lumbar
lateral bending, but it has little effect in other motion modes. A recent FEA article reported that LP-2
signi�cantly reduced cage and endplate stress in lateral bending and axial rotation.13 Our results showed
that when LP-2 was implanted, the endplate and cage stress decreased in a stepwise manner and the risk
of cage subsidence was reduced compared with the SA model. The L5 endplate stress of OLLPS
decreased by 43.82%-91.42% of SA, which was better than that of LP-2 and LP-4. The decrease of OLLPS
was similar to that of BPS in lateral bending and rotational modes, and the risk of cage subsidence was
low, but the stress sharing in �exion and extension was less than that of BPS. According to the stress
transmission mechanism of angle-stabilized structures, the locking screws form a �xed angle with the
plate, which facilitates the transfer of stress from the screws to the plate.55 Compared with traditional
screws, all locking screws acted synergistically to resist stresses like a single-beam structure, which could
distribute the load uniformly on the plate.56 Our results show that the OLLPS internal �xational stress is
larger than other internal �xations, mainly concentrated in the titanium plate, rather than the screw-bone
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contact, and is far lower than the titanium fatigue strength and yield strength of titanium alloy. Our model
simulates the immediate postoperative state, and the internal �xation stress would be further reduced
with the completion of fusion.

There is no lateral locking plate designed for the OLIF procedure on the market, and the related research is
still in a blank state. The OLLPS we studied is minimally invasive and inserted through the OLIF approach
to avoid soft tissue injuries such as dorsal muscles, ligaments, and articular capsules. Sardhara et al.14

has demonstrated the feasibility of RPSF using the 2-screw lateral plate in clinical cases. Gragnaniello et
al.57 also reported good clinical results by applying OLIF combined with the 4-screw lateral plate in
patients with good bone density. Compared with LP-2 and LP-4, OLLPS could better maintain the
immediate stability of the surgical segment, effectively reduce the stress of the superior and inferior
endplates of the surgical segment, and reduce the risk of cage subsidence. In lateral bending and axial
rotation, OLLPS is slightly better than BPS in reducing the stress of the surgical segment endplate and the
fusion cage. The ability of OLLPS to limit lumbar �exion and extension is not good as that of BPS. In
clinical practice, we routinely recommend that patients wear a lumbar brace after lumbar interbody fusion
surgery. Some studies have reported that lumbar braces can restrict lumbar sagittal motion well, which
could compensate for the OLLPS limitation of lumbar mobilities and expand the clinical applicability of
OLLPS.58,59 The OLLPS angular stabilization structure transfers body loads directly to the lateral plate via
screws, allowing early weight-bearing of the surgical segment with no risk of �xation failure at the
plate/screw junction and facilitating early patient recovery.60 Certainly, the superiority of OLLPS is
balanced with its relatively di�cult implantation technology. The use of multi-axis screws can be
considered to facilitate the implantation operation through their adaptability and multi-directional screw
trajectory.

Our study had some limitations. Firstly, our model did not reconstruct the paravertebral soft tissues to
assess the effect of muscle on spinal biomechanical function, which was a common problem faced by
all �nite element analysis. Secondly, we did not assess the effects of osteoporosis and bone loss,
because different degrees of BMD may have different results. Moreover, the model was limited to detect
the instant features of static biomechanics after surgery. Despite the limitations existed, in this study we
applied more comprehensive methods to validate the validity of the �nite element model than in previous
studies, and simulations of different internal �xation modalities were performed under the same
experimental conditions. Therefore, our model was valid to evaluate the biomechanical properties of
OLLPS.

Conclusions
Our study con�rms that the locking structure and the reverse pedicle track screw can enhance the
biomechanical properties of the lateral plate. OLLPS was superior to LP-2 and LP-4 in maintaining
postoperative lumbar stability and reducing endplate and cage stress. OLLPS provided multiplanar
stability similar to that of BPS and had a slightly better ability to reduce endplate and fusion stress during
lumbar lateral bending and rotational activities than BPS. OLLPS is designed to save more patients from
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additional injury, which has good prospects for promotion and research, but extensive in vitro and clinical
trials will need to demonstrate the application effect. In addition, more innovative techniques and
instruments will need to facilitate the OLLPS placement operation, and its mechanical properties, such as
long-term stability and fatigue resistance, need to be further investigated.
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Figures

Figure 1
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The novel concept of lateral lumbar �xation through reverse pedicle screw (RPSF). The trajectory of
superior screws was directed at 20 to 30 degrees upward towards the contralateral pedicle. The trajectory
of inferior screws was directed parallel to the upper endplate towards the contralateral pedicle. Source:
Adapted from Sardhara et al.14

Figure 2

OLLPS simulation placement schematic. A: anterior; P:posterior
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Figure 3

Detailed �nite element model of lumbar spine L1–S1. (A) Anterior and (B) lateral view of the normal �nite
element model. C Facet joints, Endplate and Intervertebral disc.

Figure 4

Finite element model of OLIF with different internal �xations. (A) Intact; (B) stand-alone OLIF (SA); (C)
OLIF with 2-screw lateral plate (LP-2); (D) OLIF with 4-screw lateral plate (LP-4); (E) OLIF with oblique
lateral locking plate system (OLLPS); (F) OLIF with bilateral pedicle screw �xation (BPS).
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Figure 5

(A) Validation of computationally the intact model total L1-L5 range of motion under a pure moment of
7.5 N·m. FL, �exion; EX, extension; LB, left bending; RB, right bending; LR, left rotation; RR, right rotation.
Source: Adapted from Dreischarf et al.27 (B) Intradiscal pressure response validation comparing L4/5
results from the intact model to in vitro values from Brinckmann and Grootenboer28 and the results of
�nite element model responses investigated in Zhang et al.29
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Figure 6

(A) ROM at the surgical level with various �xation options in six motion modes. (B) Maximum
displacement of L4 with various �xation options in six motion modes. SA: stand-alone OLIF; LP-2: OLIF
with 2-screw lateral plate; LP-4: OLIF with 4-screw lateral plate; OLLPS: OLIF with oblique lateral locking
plate system; BPS: OLIF with bilateral pedicle screw �xation.
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Figure 7

Maximum displacement nephogram of L4 with various �xation options in six motion modes.
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Figure 8

Maximum stress of the L4 inferior endplate and L5 superior endplate in six motion modes.
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Figure 9

Stress distribution for the L5 superior endplate in six motion modes.
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Figure 10

(A) Maximum stress of the cage with various �xation options in six motion modes. (B) Maximum stress
of various �xation options in six motion modes.
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Figure 11

Stress distribution of the cage with various �xation options in six motion modes.
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Figure 12

Stress distribution of OLLPS in six motion modes.


