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Abstract
Background: Quantitative image analysis using pre-operative magnetic resonance imaging (MRI) has
been able to predict survival in patients with glioblastoma (GBM). The study explored the role of
postoperative radiation (RT) planning MRI-based radiomics to predict the outcomes, with features
extracted from the gross tumor volume (GTV) and clinical target volume (CTV).

Methods: Patients with IDH-wildtype GBM treated with adjuvant RT having MRI as a part of RT planning
process were included in the study. 546 features were extracted from each GTV and CTV. A LASSO Cox
model was applied, and internal validation was performed using leave-one-out cross-validation with
overall survival as endpoint. Cross-validated time-dependent area under curve (AUC) was constructed to
test the e�cacy of the radiomics model, and clinical features were used to generate a combined model.
Analysis was done for the entire group and in individual surgical groups-gross total excision (GTR),
subtotal resection (STR), and biopsy.

Results: 235 patients were included in the study with 57, 118, and 60 in the GTR, STR, and biopsy
subgroup, respectively. Using the radiomics model, binary risk groups were feasible in the entire cohort
(p<0.01) and biopsy group (p=0.04), but not in the other 2 surgical groups individually. The integrated
AUC (iAUC) was 0.613 for radiomics-based classi�cation in the biopsy subgroup, which improved to
0.632 with the inclusion of clinical features.

Conclusion: Imaging features extracted from the GTV and CTV regions can lead to risk-strati�cation of
GBM undergoing biopsy, while it was redundant for patients with GTR and STR. 

Introduction
Radiomics involve quantitative image analysis aided by computer vision with an emerging role in
medicine and oncology as noninvasive biomarkers [1]. The high-dimensional imaging data can be linked
to a diverse range of biological and clinical endpoints, including histological diagnosis, molecular
characteristics, treatment response, survival outcomes, and toxicity estimation [2]. Magnetic resonance
imaging (MRI) is considered the gold standard imaging modality in central nervous system (CNS) tumors
due to superior anatomical representation of intracranial structures compared to other imaging
modalities as well functional information from advanced sequences like perfusion, diffusion,
spectroscopy [3]. Radiomics research has been widely applied in CNS tumors including gliomas in
characterizing tumor histology (astrocytoma vs. oligodendroglioma), tumor grade (low grade vs. high
grade), risk-strati�cation, and quantitative response assessment [4, 5]. 

Glioblastoma (GBM) is a grade 4 glial neoplasm, associated with poor prognosis with a median survival
of 15 months [6]. Following maximal safe resection, patients are treated with radiotherapy (RT) along
with concurrent temozolomide. Radiation target volumes constitute gross tumor volume (GTV) and the
clinical target volume (CTV) accounting for macroscopic residual disease along with surgical cavity and
microscopic in�ltrative disease in the peritumoral region, respectively [7]. Following RT completion,
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patients are treated with adjuvant temozolomide and serial interval MRIs are performed to monitor
disease status. As a part of RT planning, patients undergo computed tomography (CT) for dose
computation purposes and MRI for delineation of target volumes and organs at risk. A signi�cant body of
work has been undertaken utilizing pre-operative MRI for patients with GBM, demonstrating the feasibility
of prognostication and identifying different subsets of patients with variable outcomes [4]. However,
limited data is available using radiomics on post-surgery or pre-radiation imaging, which can tentatively
provide important insights into biological behavior. In this study, we have undertaken exploratory analysis
to investigate the impact of quantitative features obtained from RT planning MRI, as well as the impact
across different surgical resection subsets. 

Methods
Patient Selection

Patients with newly diagnosed IDH-wildtype GBM treated with RT at Sunnybrook Health Sciences Centre,
Toronto, between January 2014 and December 2018 were considered eligible for the retrospective study.
The institutional ethics committee approved the study, and the requirement for informed consent were
waived. Patients who had T1-weighted gadolinium contrast-enhanced (T1-CE), T2-weighted FLAIR (T2-
FLAIR), and apparent diffusion coe�cient (ADC) MRI sequences and completed the scheduled course of
RT were considered eligible for the study. Patients with prior RT, missing survival information, missing or
motion artifact corrupted images were excluded. 

Radiation Planning Contour Extraction and Image Preprocessing        

Patients were treated with RT and chemotherapy following surgery according to standard protocols [6, 8].
Following consultation and decision for RT, planning CT and MRI was performed for all patients.
Radiation planning MRIs were acquired on GE Signa HDxT 1.5T MRI scanners (GE Medical Systems, WI,
USA) or Philips Ingenia 1.5T systems (Philips Medical, WI, USA). The slice thickness for T1-CE, T2-FLAIR,
and ADC was 1 mm, 2mm, and 5mm, respectively. The RT target volumes were drawn by the responsible
radiation oncologists. GTV encompassed the enhancing residual disease on the T1-CE sequence and the
surgical cavity. CTV included a 1.5 cm expansion beyond the GTV typically encompassing the PTR
identi�ed as hyperintense region on T2-FLAIR, duly edited from anatomical barriers like the falx, tentorium
cerebelli, and bone. A planning target volume of 5 mm was used. All patients were treated on a linear
accelerator device using intensity-modulated RT with image guidance. Typical dose prescriptions
included 60 Gy in 30 fractions over 6 weeks in patients less than 65 years or 40 Gy in 15 fractions over 3
weeks in elderly patients or patients with poor performance status. The decision regarding concurrent and
adjuvant temozolomide was taken by the responsible neuro-oncologist and radiation oncologist. 

Contours for the GTV and CTV that were planned on fused CT/T1-CE images in Pinnacle (Philips Medical,
WI, USA) were exported into Matlab R2018b (The Mathworks, Inc., MA, USA), where the CT-based contours
were transformed to the T1-CE reference frame using the CT/T1-CE registration information. Images were
skull stripped using HD-BET [9], and then the T2-FLAIR and ADC volumes were rigidly registered to the
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corresponding T1-CE volumes using the FMIRB Software Library (FSL) tool FLIRT [10–12]. The contours
and images were resampled to a uniform resolution of 1 mm3, N4 bias �eld corrected [13, 14] and
intensity normalized by histogram matching [15–17] to the T1-CE and T2-FLAIR images acquired on the
GE scanners. Finally, the CTV contours were manually re�ned using ITK-SNAP [18]
(http://www.itksnap.org) to omit the ventricles, prominent sulci, and the skull where applicable, and the
GTV was subtracted from the CTV to generate two disjoint contours.

Feature Extraction    

Radiomic features were extracted from the GTV and modi�ed CTV for each of the three MRI sequences.
Fixed bin width (FBW) quantization was used to discretize pixel intensities within each contour. To
determine the FBW for each modality and contour type, the minimum and maximum intensities were
measured, and the FBW was selected as the maximum width that produced bin counts greater than or
equal to 30. Feature extraction was performed using PyRadiomics [19] software V2.2.0. The feature set
included the following: 18 �rst-order statistical features; 22 gray level co-occurrence matrix features; 16
gray level size zone features; 16 gray level run length matrix features; 5 neighboring gray tone difference
matrix features; and 14 gray level dependence matrix features. Ninety-one features were extracted for the
GTV and CTV for each of the three MR modalities, resulting in a total of 546 radiomic features per
patient. A detailed description of the features can be found on the PyRadiomics website
(https://pyradiomics.readthedocs.io). A schematic of the data processing is shown in Figure 1.

Statistical Analysis    

Risk Modelling

The statistical analysis was performed using R V4.0.3 [20] (http://www.R-project.org). Four independent
models were considered: one including all patients and one for each of the three surgical treatment
subgroups i.e., gross total resection, subtotal resection, and biopsy. Internal validation was performed
using leave-one-out cross-validation. First, a patient was left out, and the radiomic features from the
remaining patients were shifted and scaled to zero mean and unit standard deviation using the caret [21]
package function “PreProcess”, and then the shifting/scaling parameters were applied to the test patient.
Using the package glmnet [22, 23], the radiomics signatures were constructed by least absolute shrinkage
and selection operator (LASSO) Cox regression. To reduce potential over�tting, the regularization weight λ
was optimized to minimize the 10-fold cross-validation error on the training set. The �tted LASSO Cox
model was then applied to the training and test patients and radiomics risk scores were derived by a
linear combination of the features weighed by their model coe�cients. The median of the training
patients’ radiomics risk scores was used as a threshold to assign the test patient to either low or high risk.
Using the survival [24, 25] package, Cox proportional hazard models were �t to the clinical features of the
training data, which included age, GTV volume, and surgical treatment, and linear predictions were made
on the test patient to produce a clinical risk score. Additionally, a combined radiomics and clinical Cox
model was �t on the training data and applied to the test patient to create a combined risk score. All
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modeling steps were repeated from scratch for each left-out patient. A �owchart of the leave-one-out
cross-validation procedure is shown in Supplementary Figure 1.

Evaluation of Predictive Accuracy

Cross-validated Kaplan-Meier curves for high/low overall survival (OS) risk were constructed using the
survival package function “surv�t.” The split into binary risk groups (high and low) were obtained using
the major split as obtained from the algorithm. The date of surgery was considered as baseline for the
survival analysis. To assign statistical signi�cance to the log-rank tests, the permutation distributions of
the log-rank statistics were obtained by randomly permuting the correspondence between radiomic
features and OS and repeating the entire leave-one-out cross-validation procedure 100 times. To test the
hypothesis of predicting OS using radiomic features, the proportion of permuted log-rank statistics
greater than or equal to the un-permuted statistic was taken as the signi�cance level [26]. A weighted log-
rank test was used (G-rho rank test, rho = 1). The cross-validated time-dependent area under the receiver
operator characteristic curves for the radiomics, clinical, and combined risk scores were generated using
the package risksetROC [27], and the integrated areas under the time-dependent curves (iAUC) were
evaluated with the function “risksetAUC.” To evaluate the incremental value of radiomics to clinical in OS
prediction, the null hypothesis that radiomics are independent of OS and clinical variables was tested by
obtaining the permutation distribution of the iAUCs. In this case, the correspondence between radiomic
features and OS were randomly permuted while clinical variables were left un-permuted and the leave-
one-out cross validation procedure was repeated 100 times. The difference in iAUC measures between the
combined and clinical models was used as the test metric. The proportion of iAUC differences with
permuted radiomic features greater than or equal to the un-permuted iAUC differences were taken as the
signi�cance level. Kendall’s τb was used to test the association between the predicted radiomic risk
scores and surgical treatment. Normality of the radiomics risk scores was assessed with the Shapiro-Wilk
test and a one-way ANOVA or Kurskal-Wallis test for risk scores by surgical treatment was used where
appropriate. p-values < 0.05 were taken as signi�cant.

Results
Clinical Characteristics

A total of 235 patients were included in the study. Patients undergoing gross total resection (GTR),
subtotal resection (STR), and biopsy were 24%, 50%, and 26% of the cohort, respectively. The median
interval between surgery and planning MRI was 19 days. The six week long RT course was delivered to
56% of patients. Concurrent and adjuvant temozolomide was used in 91% and 65% of patients,
respectively. The median OS for all patients was 13 months. The detailed clinical and treatment
characteristics for all patients as well as the surgical treatment subgroups are listed in Table 1. 

Radiomics Risk Strati�cation
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The cross-validated Kaplan-Meier survival curves for classifying patients into low- or high-risk groups
according to the radiomics signatures for each of the four patient sub-groupings are shown in Figure 2.
The radiomics signatures derived from the inclusion of all surgery subtypes strati�ed the patients into
low-risk and high-risk groups with G-rho permutation test p-value < 0.01. For the GTR and STR models, the
radiomics signature could not stratify risk groups with statistical signi�cance. In the biopsy subgroup
model, the radiomics signature strati�ed patients into low-risk and high-risk groups (p = 0.04). A boxplot
of the predicted radiomics risk scores as well strati�ed by surgical treatment are shown in Figure 3,
showing signi�cantly higher risk in patients with a higher residual disease post-surgery
(biopsy>STR>GTR). 

Survival Prediction

The cross-validated time-dependent area under the receiver operator characteristic curves of the radiomic,
clinical, and combined models for survival prediction in the patient subgroups are shown in Figure 4. For
the prediction models including all patients, the iAUCs of the radiomics signature was 0.593; the clinical
model was 0.644; and the combined radiomics and clinical model was 0.632. The iAUC difference
(iAUCcombined–iAUCclinical) was -0.012. For the GTR subgroup, the iAUCs of the radiomics signature were
0.576; the clinical model was 0.614; and the combined model was 0.604, with an iAUC difference of -0.01.
For the STR subgroup, the iAUC of the radiomics signature was 0.540; the clinical model was 0.538; and
the combined model was 0.523. The iAUC difference was -0.015. Finally, for the biopsy subgroup, the
iAUC of the radiomics signature was 0.613; the clinical model was 0.522; and the combined model was
0.632. The iAUC difference was 0.11 (permutation test p < 0.01). 

Analysis of the radiomics risk scores derived from the inclusion of all patients showed a moderate to
strong association of radiomics risk with surgical treatment (τb = -0.343, P << 0.01). The Kruskal-Wallis
test revealed a signi�cant difference in the predicted radiomics risks among surgical treatment groups (p
<< 0.001) and a large effect size (η2 = 0.188). Post-hoc multiple pairwise comparisons using Wilcoxon’s
test with Bonferroni p-value adjustment revealed signi�cant differences between the biopsy and STR
groups (P < 0.01); between the biopsy and GTR groups (p << 0.01); as well as between the STR and GTR
groups (p << 0.01). A G-rho rank test of OS for the surgical treatment groups showed a signi�cant
difference in OS (p << 0.01). The survival plot for OS curves strati�ed by surgical treatment is shown in
Supplementary Figure 2.

Discussion
Computational analysis techniques have enabled medical imaging to cross the boundaries of traditional
contribution in diagnostics and serve as noninvasive biomarkers [28]. Since MRI has an integral role at
different stages of management of CNS tumors, quantitative analysis provides an excellent opportunity
for integration with clinical factors to improve prognostication as well as potential treatment
modi�cations. In this study, we have undertaken radiomic analysis of three MRI sequences extracted
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from the standard radiation target volumes performed following surgery as a part of RT planning to
predict overall survival. 

Radiation oncology treatment planning and delivery are deeply intertwined with various morphological
and functional imaging modalities needed for dosimetry computation, delineation of target volumes and
avoidance structures, and guiding treatment delivery. Although cone-beam CT images during RT have
been analyzed in different malignancies like lung or head-neck primaries (26, 27), there is a dearth of
studies regarding the use of pre-treatment RT volumes and corresponding imaging data in radiomic
analysis. As the general principle for RT is the presence of macroscopic tumors within GTV and
microscopic disease within the CTV, a signi�cant amount of biological information is expected to be
contained within the target volumes. It is reasonable to hypothesize that the GTV is likely to contain more
information than CTV volumes when RT is used as the primary modality rather than an adjuvant
treatment. Also, in such a scenario, the imaging parameters obtained following surgery might turn out
challenging with postoperative changes (e.g. gliosis, blood products in the brain), causing obfuscation of
underlying biological information. In patients with GBM, although radiation is considered in the adjuvant
setting, the surgical principle includes maximal safe resection, with macroscopic residual disease often
left behind in proximity to eloquent areas. Therefore, we had considered performing analysis according to
the surgical subgroups to understand the impact of residual disease. Also, it is well known the presence
of microscopic in�ltrative disease in the peritumoral region (PTR) surrounding the enhancing disease in
patients with GBM, which is included within the CTV. Previous work has shown the clinical utility of
radiomic analysis of PTR in GBM, with Prasanna et al. demonstrating quantitative features extracted
from the PTR region alone using pre-operative MRI was able to stratify patients with different survival
outcomes [31]. In our previous work, we have demonstrated voxel-based mapping to identify areas with
in�ltrative disease in the PTR, which correlated with areas of future recurrence [32]. Also, the distinctive
MRI characteristics of the GBM PTR (constituting microscopic disease and edema) as opposed to low
grade glioma (composed of in�ltrative tumor cells) have been demonstrated using radiomics approach
[33].

In the present study, the radiomic features extracted from the radiation target volumes were able to
stratify the survival outcomes into two groups for all the 235 patients (p<0.01) and biopsy subgroups
(0.04). In the other two surgical subgroups (GTR and STR), risk-strati�cation was not possible, which can
be justi�ed by the absence of enough biological information contained with the target volumes (due to
the removal of major bulk of macroscopic disease). When the clinical features were included in the
radiomics model, the combined model performed signi�cantly better (iAUC=0.632) as compared to the
radiomics model (iAUC=0.613) or clinical model (iAUC=0.522) alone. The �ndings from our study are
quite similar to the radiomics study of pre-operative MRI, where the iAUC for radiomics model alone for
overall survival and progression-free survival was 0.652 and 0.590, respectively, which improved to some
extent with the use of clinical features [34]. The radiomics risk score was signi�cantly better in the biopsy
group than the other two subgroups indicating the presence of macroscopic tumor or core (corresponding
to GTV) was the driver of the classi�ers rather than the microscopic disease or the PTR (corresponding to
CTV) in the postoperative setting. One important consideration here is the CTV in the majority of
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instances was not only limited to the T2 hyperintensity but also included the normal signal contained
within the isotropic expansion from GTV edges, which could potentially weaken the relevant imaging
information. 

It may be worthwhile to pursue future studies to limit the feature extraction to only areas of altered FLAIR
signal intensity within the CTV volume. A recently published phase 1/2 trial by Azoulay et al. used a small
CTV margin of 5 mm with hypofractionated RT resulting in equivalent clinical outcomes in GBM,
challenging the traditional concept of larger margins and possibly reducing toxicity [35]. The generation
of e�cient imaging biomarkers from RT planning MRI can pave the way towards precision radiation
oncology work�ow tailoring treatment protocols individually, such as treatment-escalation in high-risk
groups. The advent of MR-LINAC in clinical practice has generated an opportunity to generate and adopt
imaging biomarkers not only before treatment initiation but also to study the temporal changes during
the course of RT. The prospective UNITED trial investigating the role of MR-LINAC guided small-margin
adaptive RT (clinicaltrials.gov identi�er NCT04726397) provides an opportunity to evaluate changes in
radiomic features throughout a course of RT, which may provide additional insight in terms of survival
prediction. Another limitation was the exclusion of MGMT from the clinical model, due to unavailability in
a proportion of patients, which is otherwise known to strongly in�uence the survival outcomes. 

Conclusion
Radiomic features from radiation planning T1 CE, T2-FLAIR, and ADC MRI sequences corresponding to
the GTV and CTV can be used for predicting survival in patients with GBM, particularly in the subgroup
undergoing biopsy. The iAUC of 0.613 was achieved for a radiomics-based classi�cation for predicting
OS in the biopsy subgroup, which improved to 0.632 with the inclusion of clinical features.
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Characteristic All Patients GTR STR Biopsy

No. of Patients 235 (100%) 57 (24%) 118 (50%) 60 (26%)

Gender

Male 149 (63%) 35 (61%) 75 (64%) 39 (65%)

Female 86 (37%) 22 (39%) 43 (36%) 21 (35%)

Age (years)

Median (Range) 63 (20-84) 60 (20-81) 64 (39-84) 63 (34-83)

GTV (cc)

Median (Range) 31.3 (1.19-170) 18.2 (1.19-89.0) 33.3 (7.18-170) 37.4 (3.03-158)

MGMT 

Methylated 49 (21%) 13 (23%) 25 (21%) 11 (18%)

Unmethylated 55 (23%) 9 (16%) 31 (26%) 15 (25%)

Unknown 131 (56%) 35 (61%) 62 (53%) 34 (57%)

Steroid use after surgery

< 2 weeks 31 (13%) 9 (16%) 15 (13%) 7 (12%)

2 weeks or more 183 (78%) 41 (72%) 91 (77%) 51 (84%)

None  7 (3%) 3 (5%) 3 (2%) 1 (2%)

Unknown 14 (6%) 4 (7%) 9 (8%) 1 (2%)

Interval surgery and planning MRI (days)

Median (Range) 19 (4-48) 22 (9-35) 20 (5-46) 15 (4-48)

Radiation

Conventional  132 (56%) 38 (67%) 68 (58%) 26 (43%)

Hypofractionated 103 (44%) 19 (33%) 50 (42%) 34 (57%)

Concurrent Temozolomide

Yes 214 (91%) 55 (97%) 108 (92%) 51 (85%)

No 21 (9%) 2 (3%) 10 (8%) 9 (15%)

Adjuvant Temozolomide 

Yes 152 (65%) 48 (84%) 74 (63%) 30 (50%)

No 83 (35%) 9 (16%) 44 (37%) 30 (50%)
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Figures

Figure 1

Work�ow for image preprocessing and feature extraction.



Page 16/19

Figure 2

Kaplan-Meier plots for the binary risk-strati�ed groups based on the radiomics modeling for all the
patients and individual surgical subgroups.
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Figure 3

Radiomics risk score across the three surgical subgroups.
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Figure 4

Integrated area under curve values with time as the dependent variable (X-axis) for all the patients and
individual surgical subgroups.
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