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Abstract 20 

In this study, the effect of two water reducer polymers with smooth and rough surfaces on the 21 

compression strength of Ordinary Portland cement (OPC) was investigated. Three different 22 

initial ratios between water and cement (w/c) 0.5, 0.6, and 1 were used in this study. The amount 23 

of polymer contents varied from 0 to 0.06 % (%wt) for the cement paste with initial w/c of 0.5 24 

and the polymer contents ranged between 0 to 0.16% (%wt) for the cement paste with initial w/c 25 

of 0.6 and 1 were investigated. SEM test was conducted to identify the impact of polymers on 26 

the behavior of cement paste. The compression strength of OPC cement was increased 27 

significantly with increasing the polymer contents. Because of a fiber net (netting) around 28 

cement paste particle was developed when the polymers were added to the cement paste which 29 

leads to decrease the void between the particles, binding the cement particles, therefore, 30 

increased the viscosity and compression strength of the cement rapidly.  In this analysis, the 31 

hardness of cement paste with polymer contents has been evaluated and modeled using four 32 

different model technics. More environmentally sustainable construction, and lower cost than 33 
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conventional building materials and early age strengths of the cement. To overcome the 34 

mentioned matter, this study aims to establish systematic multiscale models to predict the 35 

compression strength of cement paste containing polymers and to be used by the construction 36 

industry with no theoretical restrictions. For that purpose, a wide data a total of 280 tested 37 

cement paste modified with polymers, has been conducted, analyzed, and modeled. Linear, 38 

Nonlinear regression, M5P-tree, and Artificial Neural Network (ANN) technical approaches 39 

were used for the qualifications. In the modeling process, the most relevant parameters affecting 40 

the strength of cement paste, i.e. polymer incorporation ratio (0-0.16% of cement's mass), water-41 

to-cement ratio (0.5-1), and curing ages (1 to 28 days). According to the correlation coefficient 42 

(R), mean absolute error and the root means a square error, the compression strength of cement 43 

paste can be well predicted in terms of w/c, polymer content, and curing time using four various 44 

simulation techniques. Among the used approaches and based on the training data set, the model 45 

made based on the Non-linear regression, ANN, and M5P-tree models seem to be the most 46 

reliable models. The sensitivity investigation concludes that the polymer content is the most 47 

dominating parameter for the prediction of the compression strength of cement paste with this 48 

data set.   49 

Words of key: Cement paste; Polymer contents; Strength; Statistical analysis; Modelling. 50 

1. Introduction 51 

Cement plays an adhesive role in binding materials used in Construction Engineering. Cement is 52 

widely used in construction and well-cemented oil fields. Cement alone (neat) can be used as 53 

grouting, mortar and concrete processing, pipe joints, and foundation preparation [1]. Calcium 54 

(sand or clay), aluminum, and iron are the main raw materials for cement production. The 55 

chemical properties of the cement and its time change provide insight into the strength of the 56 
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cement system and the chemical properties of cement  [2, 3, 4]. A variety of byproduct products 57 

used in many comprehensive research trials to alter the properties of cement-based concrete such 58 

as slag, calcinated clay, calcined clay, fuel ash, husk ash, soil granulated furnace slag, and 59 

metakaolin [8, 11-15]. Polycarboxylates were utilized to modify concrete by accelerator or to 60 

delay the setting time following the desired project to increase the viscosity and mechanical 61 

behavior in liquid and solid phases by reducing water mixing [16-18]. The addition of polymeric 62 

additives to the cement grid optimizes the viscosity, fluidity, and strength properties through the 63 

development of an electrostatic distaste and stress-causing deflocculating [18-20]. The 64 

application of small amounts of polymer admixture in cement increases the water content needed 65 

to achieve the desired flowability [21, 22]. When the cement layer has been in contact with water 66 

molecules, polycarboxylate, and other ions are found in the saturation zone [18]. The mixing 67 

water and cement particles adsorption on the interface has been fixed by polycarboxylate ether 68 

molecules that cause a negative charge around each cement particle [19-24]. 69 

There are several methods for modeling the properties of materials, including computational 70 

modeling, statistical techniques, and recently developed tools such as regression analyses and 71 

Artificial Neural Networks (ANN) [25, 26]. Multilinear regression analysis, M5P-tree, and ANN 72 

are techniques widely used to solve problems in construction project applications [27-38]. The 73 

most important characteristics of ANN is the ability to learn directly from examples and the great 74 

response to imperfect tasks. An ANN, as opposed to traditional programming-based computing, 75 

is a mathematical model or a computational model based on brain-like learning. The model 76 

consists of interconnected artificial neuron groups that stimulate the brain structure to store and 77 

use knowledge and process information using a connectionist approach [39-41]. Feedforward 78 

networks, also known as multilayer perceptron, are the most common ANN models for many 79 
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applications. Most of the attempts have been related to a single scale model without covering a 80 

wide experimental data or multiple parameters [42, 43, 44]. Thus, the effect of several 81 

parameters such as the polymer content, w/c and curing time of 1 day up to 28 days was 82 

quantified using different model techniques, namely linear and non-linear regressions, M5P-tree 83 

and ANN-based approaches for predicting the compression strength of cement paste using 280 84 

tested samples. 85 

1.1.  Research significant 86 

The main objective of this study is to propose systematic multiscale models to predict the 87 

compression strength of cement paste containing polymers. Thus, a wide experimental data (280 88 

tested samples with different polymer contents, curing period and ratio between water to cement) 89 

was considered with different analysis approaches (i) to guarantee the construction industry to 90 

use the proposed models without any theoretical; (ii) to perform a statistical analysis and 91 

understand the effect of the composition of the cement paste such as polymer content, and the 92 

ratio between water to cement on the compression strength of the cement paste; (iii) to quantify 93 

and propose a systematic multiscale model to predict the compression strength of cement paste 94 

containing small amounts of polymers (up to 0.16%) with various water-to-cement ratio and 95 

curing time up to 28 days; (iv) to find the most reliable model to predict the compression 96 

strength of cement paste from four different model techniques (linear, nonlinear relations, M5P-97 

tree, and ANN models.) using statistical evaluation parameters. 98 

2. Methodology 99 

The tests were conducted following ASTM and British standards. For each case, an average of 100 

three samples is considered. 101 

2.1 Ordinary Portland Cement 102 
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In this research, the Ordinary Portland Cement (OPC) from the Gasin Cement Company was 103 

used. The chemical and mineralogical components of the cement used are shown in Fig. 1.  104 

Based on the SEM test the cement particle size was varied between 14.4 m to 42 m as shown 105 

in Fig. 2(a).  106 

2.2 Polymers 107 

Two types of water-reducing polymer (Synthetic powder) were used. The commercial label of 108 

the used polymers is DBC-21(Polymer 1) and VK-98 (Polymer 2). The properties of the two 109 

types of polymer are listed in Table 1. From the SEM test, the polymer 1 had a rough or fibers 110 

surface (Fig. 2(b)) while the polymer 2 had a smooth surface (Fig. 2(c)). The polymer particles 111 

have an attractive property to each other and the particles of different materials. 112 

2.3. X-ray   113 

 Analysis of the composition of chemical substances of cement at 25°C was conducted for X-ray 114 

diffraction (XRD). The XRD pattern of particles was obtained by a Siemens D5000 X-ray 115 

diffraction system. The samples were analyzed by using parallel beam optics with CuKα 116 

radiation at 40 kV and 30 mA. The samples were scanned for reflections (2) from 0o to 90o in 117 

steps of 0.02° and 2 sec count time per step. XRD was undertaken to detect the major chemical 118 

and mineralogical component of cement. The main chemical and mineralogical formulation in 119 

the cement included C3S, C2S, C3A, C4AF, and Quartz, (SiO2) (see Fig. 1).  120 

2.4. Scanning Electron Microscope (SEM) 121 

An SEM quantum 400 from FEI Company was used in this paper. It is a high-resolution field 122 

emission gun scanning electron microscope appropriate for imaging and analysis of nano-scale 123 

size. The samples were prepared and put the specimen on the surface of the stamp. The 124 

conductive tape was used on the surface of the stamp. The sample holder was seated into the 125 
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appropriate hole on the sample holder mount. The polymers and cement are tested in powder 126 

condition and the cement modified with polymers was tested after 7 days of curing.  127 

2.5. Fluidity  128 

The fluidity of cement slurry was measured using the ASTMC-230 mini-slump cone testing 129 

method. The top, bottom, and height of the cone respectively are 70 mm, 100 mm, and 60 mm. 130 

The cement slurry distribution was 191 mm for a water-cement ratio of 0.5. The addition of 131 

polymers decreased the water content of cement slurries but increased their fluidity by 7-26% 132 

depending on the polymer type, the polymer percentage, and the amount of water-cement. 133 

2.6. Standard consistency test   134 

The purpose of this study is to determine the minimum water mix to measure the initial chemical 135 

reaction between water and cement. Cement is one of the products that require the right amount 136 

of water to reach the requisite strength of cement. The norm accuracy was obtained based on the 137 

standard EN 196-3. Polymers to reduce the amount of water required to achieve the same quality 138 

(Fig. 3). 139 

2.7.Compression strength (ASTM C349) 140 

The cement paste after mixing is lined with cubic molds with a height of (4x 4x 16) cm3
. The 141 

cement paste put into the mold in one layer. After that, the mold is leveled and covered with a 142 

plastic bag and stored at room temperature. After 24 hours the specimens were removed and 143 

placed in the water at room temperature and 95 percent humidity, until the testing time. Samples 144 

of compression strength were tested for 1, 3, 7, and 28 days. A 0.05 MPa.sec-1 flexural test 145 

machine was used to separate the specimen into two parts and compressed each element at the 146 

speed of 0.2 MPa.sec-1 using a compression machine (Fig.4) [45-52].  147 
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2.8. Modeling 148 

The total tested of data (280 observations) was analyzed and divided into two groups. The larger 149 

group included 187 data used to create models, while the other group included 93 data used to 150 

validate models [53, 54]. The input data set consists of the water to cement ratio (w/c) the curing 151 

age (t, days), and the polymer content (P, %), while the tested compression strength (MPa) for 152 

the cement paste was used as a target. The following models (sections 2.8.1 -2.8.4) were used to 153 

assess the impact of the mentioned parameters on the compression strength of the cement paste. 154 

2.8.1. Linear Approach  (LR) Model 155 

LR model can be considered one of the most common regression equations (Eq.1) for the 156 

prediction of cement [55]. 157 𝜎𝑐 =  𝑎 +  𝑏 ∗ (𝑤/𝑐)                                                                                       (1) 158 

where, σc, wc , a, & b denote compression strength of cement paste (MPa), water to cement ratio, 159 

and equation parameters, respectively. However, other cement paste components factors 160 

affecting the compression strength, the type of cementitious materials, and curing time are not 161 

included in the equation. To have more reliable results, Eq. 2 is proposed to include other factors. 162 𝜎𝑐 =  𝑎 + 𝑏 ∗ (𝑤/𝑐) + 𝑐 ∗ (𝑡) + 𝑑 ∗ (𝑃)                                        (2) 163 

Where: w/c is a water-to-cement ratio, t is curing age (days), and the Polymer content (P, %), 164 

respectively, and the parameters of the model are a, b, c, and d. In compliance with Eq. 2, all the 165 

variables seem to be adapted with linear (Eq. 1) extent. Nevertheless, this may not necessarily be 166 

occurred for all cases because the variables involved in a cement paste mix may affect its 167 

compression strength and interrelate with each other. Thus, it always needs to modify the model 168 

to reliably predict the compression strength of cement paste with acceptable high accuracy [56-169 

58]. Accordingly, Eq. 2 was converted to a multivariable power equation.  170 
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2.8.2. Nonlinear Regression Model (NLR) 171 

 172 

To develop a nonlinear regression model, the following formula (Eq. 3) can be considered as a 173 

general form [41-49]. Eq. 3 is representing the interrelation between the variables given in Eq. 2 174 

and Eq. 3 to estimate the compression strength of the conventional and cement paste component. 175 

σc = 𝑎 ∗ (𝑤𝑐 )𝑏 ∗ (𝑡)𝑐 + 𝑑 ∗ (𝑤𝑐 )𝑒 ∗ (𝑡)𝑓 ∗ (𝑃)𝑔                                            (3)                                                                                           176 

2.8.3 M5P-tree Model (M5P) 177 

M5P-tree is a genetic algorithm learner for regression problems, first introduced by a study [59]. 178 

This tree algorithm sets linear regression features on the terminal node and fits into a 179 

multivariate linear regression model on each sublocation by classifying or dividing different 180 

areas of data into multiple different-spaces. The M5P-tree approach is not discrete segments but 181 

rather constant class problems and can handle rather high dimensional functions. Reveals the 182 

data of every linear model component developed so that the nonlinear relationship of the data 183 

sets is approximated. Error estimation is presented with information on the M5P-tree model tree 184 

division criteria on each node. Errors measured by the default value variance of the class entering 185 

the node. The attribute that maximizes the expected error reduction is used to evaluate any 186 

function of that node. Information on the M5P-tree model tree dividing criteria is obtained based 187 

on error calculations per node. The M5P error is determined by the standard deviation of the 188 

class values at the node. The feature that maximizes the expected error reduction resulting from 189 

evaluating each attribute at that node is chosen for node division. Due to the branching method, 190 

child node data (subtree or smaller nodes) have less StDev. value. Parent nodes (greater nodes). 191 

After reviewing all possible structures, select a system with the highest potential error reduction. 192 

This division also creates a large tree-like structure that leads to overfitting. In the second step, 193 
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the enormous tree is pruned, and the trimmed subtrees are replaced by linear regression 194 

functions. 195 

2.8.4. Artificial intelligence (ANN) 196 

ANN is a computing system that simulates the processes and analyses of the human brain. Also, 197 

this model is a machine learning system used for various numerical predictions/problems in 198 

Construction Engineering [60, 61]. ANN includes the input layer, the hidden layer (one or more 199 

layers), and the output layer. The hidden layer is related by weight, transfer function, and bias to 200 

the other layers. A multi-layer feed-forward network was programmed with a mixture of 201 

proportions, w/c, curing time, and polymer content like inputs, and compression strength as 202 

output. There is no standard method for designing or selecting a network architecture. Therefore, 203 

the maximum number of hidden layers and neurons was calculated by the trial and error test 204 

based on the lowest average square error criterion. The second step of the optimal network 205 

design process was to choose the optimum number of epochs during the training that gave the 206 

minimum MAE and RMSE and high R-value. The same preliminarily designed networks with 207 

hyperbolic tangent transfer functions were used to see the effect of several epochs on reducing 208 

the MAE and RMSE. The MAE variations with the number of epochs are presented for the 209 

preliminarily designed networks. After designing the optimum architecture, the available data set 210 

(total of 280 data) was divided into two parts; the first part was 2/3 of the overall data set (187) 211 

for training the network, the second part was 1/3 of the total data set (93) for testing the network 212 

[62]. Several transfer functions and ANN structures with a varied number of hidden layers and 213 

neurons were tested to design the optimal network structure to predict the cement paste 214 

compression strength. Among the networks, two hidden layers with eleven neurons with two 215 

different neurons distributions and a hyperbolic tangent transfer function were chosen for the 216 

https://en.wikipedia.org/wiki/Outline_of_artificial_intelligence
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cement paste modified with polymer 1 and polymer 2 due to having the minimum mean absolute 217 

error (MAE) as can be seen in Fig.5. In this part of the research, the ANN model was used to 218 

estimate the compression strength of polymer-containing cement paste as a cement replacement, 219 

w/c, curing time, and polymer contents. 220 

2.9. Model performance assessment criteria 221 

Correlation coefficients (R), mean absolute error (MAE), and root means square error (RMSE) 222 

values were used to estimate the ability of the above-mentioned modeling methods. Three 223 

common statistical measures: R, MAE, and RMSE were used as performance evaluation metrics 224 

to determine the efficacy of machine learning techniques. Numerous experiments were 225 

performed to determine the optimal value of key parameters. High R values (Eq. 4) and lower 226 

MAE values (Eq. 5), RMSE (Eq. 6) show better model precision. 227 𝑅 =  𝑁 ∑ 𝑦𝑖 𝑥𝑖−(∑ 𝑦𝑖) (∑ 𝑥𝑖)√𝑁(∑(𝑦𝑖2)−(∑(𝑦𝑖2) √𝑁(∑(𝑥𝑖2)−(∑(𝑥𝑖2)                                                                     (4) 228 

𝑀𝐴𝐸 = ∑ |(𝑦𝑖−𝑥𝑖)|𝑛𝑖=1 𝑁                                                                                                    (5) 229 

𝑅𝑀𝑆𝐸 = √∑ (𝑦𝑖−𝑥𝑖)2𝑛𝑖=1 𝑁                                                                                                (6) 230 

yi = tested data; xi = predicted data; 𝑦̅ =mean value of yi; and N is the data set.  231 

3. Analysis and outputs 232 

3.1. Scanning electron microscope   233 

The results for the OPC, polymers, and cement paste, modified with 0,06 percent polymers, were 234 

tested using a Scanning Electron Microscope  (SEM) at seven days of curing (Fig. 5). Based on 235 

the SEM test analysis, the polymers samples were amorphous [63]. Fig. 2(a) showed that the 236 

cement particle size has varied particle sizes ranging between 14.4 m to 42 m. Fig. 237 

2(b) showed that most of the polymer 1 particles reposed of near-spherical with rough or fibers 238 
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surfaces. Most of polymer 2 particles also consisted of near-spherical but were very smooth as 239 

compared to polymer 1 (Fig. 2(c)).  240 

3.2.Consistency  241 

Consistency is called the required amount of water combined to cause the chemical initial 242 

reaction between water and cement. The use of polycarboxylate polymer on cement paste limited 243 

the water that was needed to reach the required fluidity using mini-slump cone test outcomes. 244 

The application of polymers (1&2) and cement decreased the needed water by 3 to 14 percent, 245 

respectively, to the normal consistency. Polymers reduced water content by 24% to 66.3% 246 

depending on the polymer type, polymer density (contains), fluidity, and w/c. The addition of 247 

0.12% of polymer lowered w/c by 38% to 56% depending on the types of polymer, w/c, and 248 

fluidity forms. The flow of cement paste was 290 mm and 430 mm w / c 0.6 and 1 respectively 249 

while adding polymer simultaneously reducing the water content of cement paste and increasing 250 

the fluidity by 1 to 8% depending on polymer type, polymer content and w/c. 251 

3.3.Water reducing, (WR)  252 

From the mini-slump, cone test results adding polycarboxylate polymer to the cement slurry 253 

reduced the water required to reach the desired flowability. The addition of polymers reduced the 254 

water content by 12.5% to 46.3% depending on the type of polymer, polymer percent, and 255 

fluidity. The water to cement ratio of control sample 0.5. An additional of 0.04% of polymer 256 

reduced the water-cement ratio by 25% to 32.5% depending on the types of polymer, water-257 

cement-ratio, and fluidity (Fig. 3 a). Based on the results of mini-slump cone tests, the addition 258 

of polycarboxylate polymer to cement decreased the water needed for the fluidity necessary. The 259 

addition of 0.12% polymer decreased the w/c by 38% to 56% based on the types of polymers, 260 

w/c, and fluidity shown in Fig. 3(b). 261 
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3.4. Compression  strength 262 

The additional polymers were highly affected by increasing the compression strength (c) of 263 

cement paste up to 28 days of curing. With the increase in the percentage of polymer (P %) the 264 

compression strength of cement paste is nonlinearly increased. At 1 day of curing an additional 265 

of 0.06 % of polymer 1 and 2 improved the compression strength of cement paste by 224% and 266 

140% respectively. The addition of 0.06 % of polymer improved the c of cement paste by 84 % 267 

and 224% based on the types of polymer, water-cement ratio, and curing period. The 268 

improvement is due to the presence of amorphous gel that filling spaces between cement 269 

particles with fiber nets (netting) around the cement particles which lead to decrease voids and 270 

binding the cement particle together leading to an increase in the compression strength of cement 271 

paste (Fig. 7).  For the initial w/c of 0.6 and 1 respectively, the compression strength of the 272 

cement paste on 1 day of cure was 5.92 MPa to 3.98 MPa. With 0.08% addition of P1 and P2, 273 

the compression strength of cement pastes improved by 90% to 544%, based on the polymer 274 

content, type of polymer, and w/c (Fig. 7 and Fig. 8). By adding 0.16% P1 and P2 the 275 

compression strength of the cement paste was raised by 229% to 361% at 28 days of treatment 276 

based on polymer content and w/c (Fig. 7, Fig. 8, and Fig. 9). The experimental results show that 277 

the presence of polymers in cement paste increases the compression strength of the cement paste 278 

with confidence. The strength increases were due to the dispersal of cement particles and the 279 

tensile bonding of particles, resulting in a reduction in the porosity and void ratio of cement paste 280 

[52, 63].  281 

 282 
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3.5.The relation between calculated and actual cement paste compression  strength 283 

(a) The linear model (LR) 284 

The model parameter observed that the w/c significantly decrease cement paste's compression 285 

strength. Table 2 summarizes model parameters, R, MAE and RMSE, and data number. The 286 

relationships between actual and calculated compression strength of the cement paste are shown 287 

in Fig. 10. The research dataset contains a ± 35% and ± 30% error lines for the cement paste 288 

treated with polymers (1&2) respectively, indicating that most checked results are in ± 35% and 289 

30% error lines, respectively  (Fig. 10). Nevertheless, the model slightly underestimated the 290 

strength cement paste ranged between 20 MPa to 40 MPa mixes.  291 𝜎𝑐 = −50.25 − 63.85 ∗ 𝑤𝑐 + 1.06 ∗ 𝑡 + 100.86 ∗ 𝑃1                           (7) 292 

No. of data = 187, R = 0.794, RMSE = 14.159 MPa                                293 

σc = 50.47 − 57.63 ∗ wc + 0.86 ∗ t + 95 ∗ P2                                       (8)      294 

No. of data = 187, R = 0.802, RMSE=12.839 MPa                                 295 

And from model parameters in the Eq. 7 and Eq.8, It can be inferred that the polymer content has 296 

the highest impact on the compression strength of other w/c and curing time. According to 297 

equation variables in the Eq.7 and Eq. 8 (d=100.86 and d= 95), Polymer 1 was much more 298 

successful than polymer 2 for increasing the strength of the cement paste compression and the 299 

simulation results with the same experimental results.Eq.7 and Eq.8 were also checked with the 300 

research dataset as seen in Fig. 11.  301 

(b) Nonlinear Regression (NLR) Model 302 

The model parameter shows that cement content significantly influences cement paste's 303 

compression strength. Clear relationships between calculated and actual compression strength 304 
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can be seen in Fig. 12. The study training dataset contains an error line of ± 25% for the 305 

compression strength of the cement paste modified with P1 and P2, indicating that almost all 306 

checked results are in ± 25% error lines. This model seems to be more reliable than LR to predict 307 

the compression strength of cement paste. 308 

σc = 10.55 ∗ 𝑤𝑐 −0.56 ∗ 𝑡0.26 +  3.37 (𝑡0.18 ∗ 𝑃10.21𝑤𝑐 1.96 )                           (9) 309 

No. of data = 187, R = 0.961, RMSE= 6.396 MPa                                                    310 

𝜎𝑐 = 12 ∗ (𝑡0.21𝑤𝑐 0.52) + 3.21 ∗ (𝑡0.18𝑃20.31𝑤/𝑐2.14 )                                              (10) 311 

No. of data = 187, R = 0.924, RMSE= 8.235 MPa                                                                                          312 

Focusing on model parameters Eq.9 and Eq. 10, the maximum influence of polymer contents on 313 

increasing compression strength relative to other cement paste compositions can be obtained. 314 

Also based on the model parameters in the Eq.9 and Eq. 10 (d=3.37 and d= 3.21), the polymer 1 315 

was also more productive than the polymer 2 for enhance compression strength of the cement 316 

paste the similar observation was made in the experimental work. Eq. 9 and Eq.10 have also 317 

been validated using the testing dataset (Fig. 13).    318 

(c) M5P-tree model 319 

Fig. 14 shows the division of input space x1, x2 (independent variables) by the M5P-tree model 320 

algorithm into nine linear tree regression functions (marked LM1 through LM5). The model's 321 

general shape is 𝑦 =  𝑎𝑜 + 𝑎1𝑥1 + 𝑎2𝑥2, where ao, a1, and a2 are linear regression constants. 322 

Fig.14 indicates the tree-shaped branch relationship and the model (Eq. 11) parameters are 323 

summarized in Table 3. The research dataset contains an error line of ± 30% for the compression 324 

strength of the cement paste modified with P1 and P2, indicating that almost all measured results 325 

are in ± 30% error lines (Fig. 15). Furthermore, the output of this model is more reliable than 326 
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those of the previous models. In other words, the calculated and actual compression strength of 327 

the cement paste is adapted with the line of equality. 328 𝜎𝑐 =  𝑎 ∗ (𝑤𝑏 ) + 𝑏 ∗ (𝑡) + 𝑐 ∗ (𝑃1) + 𝑑                                                         (11) 329 

No. of Data=187, R=0.950, RMSE= 7.354 MPa           330 𝜎𝑐 =  𝑎 ∗ (𝑤𝑏 ) + 𝑏 ∗ (𝑡) + 𝑐 ∗ (𝑃2) + 𝑑                                                        (12) 331 

No. of Data=187, R=0.923, RMSE= 8.274 MPa           332 

The model parameters (a, b, c and d), are listed in Table 3 and based on the linear tree 333 

registration function (LM num:) the model variables will be selected. The models (Eq. 11 and 334 

Eq. 12) have also been evaluated using the testing dataset as can be seen in Fig. 16.  335 

(d) ANN Model 336 

The network was equipped with the training data set, accompanied by the test data to predict the 337 

compression strength values for the correct input parameters (Fig. 4). A sensitivity test for the 338 

model predictions was also carried out for the cement paste modified with P1 and P2 (Fig. 17). 339 

The ANN model based on the predictions over-predicted 93 of the data analyzed. A trial and 340 

error cycle is the development of the ANN model (such as the number of hidden layer neurons, 341 

number of hidden layers, momentum, learning rate, and iteration). The ANN model contains two 342 

hidden layers for both polymers modified cement paste. Hidden layers contain 11 neurons and 343 

three inputs with momentum = 0.2, learning rate = 0.1 and Iteration = 2000. The main concept to 344 

generate data based on the ANN model is shown in Fig. 17. As summarized in Table 2, the ANN 345 

model was obtained R = 0.986, MAE = 3.909 MPa, and RMSE = 4.743 MPa for the cement 346 

paste modified with polymer 1 and R = 0.961, MAE = 4.309 MPa, and RMSE = 5.996 MPa for 347 

the cement paste modified with polymer 2. The research dataset contains an error line of ± 20% 348 

for both cement paste modifications, indicating that all measured results are in ±20% error lines.  349 
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The compression strength values calculated and the ANN expected are compared and validated 350 

with the testing dataset in Fig. 17 and Fig.18. Overall, based on the results shown in Table 2 and 351 

Fig. 17 and Fig.18, the accuracy of the ANN model is suitable for the prediction of compression 352 

strength. Inter-comparison regression and soft computing-based models: Overall comparison 353 

among Regression and soft computing-based models (Table 2) suggests that the ANN-based 354 

model performs better than other applied models. NLR model is working better than the LR  355 

model for this data set. Fig. 19 indicate the agreement plot and performance diagram both figures 356 

suggest that the NLR and ANN-based model is outperforming than other applied models with 357 

minimum deviation from agreement line or actual values. Three statistic parameters including 358 

standard deviation, correlation, and root mean square error, evaluated the degree of compliance 359 

of cement paste's compression strength among actual and predicted values.  360 

4. Sensitivity investigation 361 

A comparison between the sensitivity of the models was performed to evaluate the most 362 

important input variable when calculating the cement paste's compression strength. Several 363 

training data sets were created by extracting the single input variable at a time, and the test data 364 

set reported the effects of R, MAE, and RMSE. Data set to split into two sections for training and 365 

testing. The best performing model is selected for the sensitivity analysis. In this study, the 366 

ANN-based model is used for sensitivity analysis. Results obtained from Table 4 indicate that 367 

the polymer content is the most influencing parameter for the prediction of compression strength 368 

using the M5Ptree-based model. 369 

5. Conclusions 370 
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Based on the tested data and the simulation of the compression strength of cement paste at 280 371 

different ratios between the water and the cement, polymer content, and curing ages, the 372 

following conclusions are drawn. 373 

1. The compression strength of cement increased by 84% to 360 % depending on the curing 374 

time, water-cement ratio, curing time, and polymer contents. Based on NLR parameters, 375 

polymer 1 (rough surfaces) had the highest impact on increasing the compression strength of 376 

cement paste as compared to polymer 2 (smooth surfaces). This improvement of compression 377 

strength was due to the dispersion of cement particles and increasing the friction between the 378 

particles that lead to reduce the void ratio and increasing the density of cement paste.  379 

2. From the SEM test analysis, the addition of the polymer produced a fiber net (netting) around 380 

cement particle which leads to decrease void, binds the cement particles together, and 381 

increased the compression strength of cement paste. 382 

3. The designed ANN was used to predict the cement paste strength after it was trained by 2/3 383 

of the 280 tested data. The ANN model predicted the compression strength of the testing data 384 

with a reliable coefficient of correlation (R 0.968, 0.961). By using the same variables, a non-385 

linear relation (NLR) was derived and the parameters were found via multiple regression. 386 

Similarly, the ANN model, NLR, and M5P-tree models have predicted the compression 387 

strength of the testing data with a reliable coefficient of correlation.  388 

4. Apart from the standard curing age, the results of this study have shown that the ANN model 389 

is capable of predicting the 28th-days compression strength of cement paste. Based on the 390 

training and testing data sets, the ANN and NLR models predicted the compression strength 391 

very close to experimental data and the predictions were better than other models. 392 
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5. Sensitivity analysis showed that polymer content is the most important parameter for 393 

predicting the compression strength of cement paste using the M5P-based model. 394 
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Figures

Figure 1

Percentages of (a) Mineralogical composition and (b) Chemical composition of the Ordinary Portland
Cement (OPC)



Figure 2

SEM test for (a) Ordinary Portland Cement (OPC) (b) Polymer 1 and (c) Polymer 2



Figure 3

The variation between polymer content and water to cement ratio (w/c) of cement (a) initial w/c=0.5 and
(b) initial w/c =0.6 and 1



Figure 4

The layout of the cement specimen for a compression test



Figure 5

Optimal Network Structures of Neural Network Model (a) cement paste modi�ed with Polymer 1 and (b)
cement paste modi�ed with Polymer 2



Figure 6

SEM test for (a) OPC (cement only) (b) Cement modi�ed with 0.06% of polymer 1, and (c) Cement
modi�ed with 0.06% of polymer 2 after 7 days of curing



Figure 7

Variation of the compressive strength of cement paste and polymer contents at initial w/c of 0.5 (a)
Polymer 1 and (b) Polymer 2 at different curing times



Figure 8

Variation of the compressive strength of cement paste and polymer contents at initial w/c of 0.6 (a)
Polymer 1 and (b) Polymer 2 at different curing times



Figure 9

Variation of the compressive strength of cement paste and polymer contents at initial w/c of 1 (a)
Polymer 1 and (b) Polymer 2 at different curing times



Figure 10

Comparison between measured and predicted the compressive strength of cement paste modi�ed with
polymers using Linear Regression Model (LR) for the training data (a) polymer 1, and (b) polymer 2



Figure 11

Comparison between measured and predicted the compressive strength of cement paste modi�ed with
polymers using Linear Regression Model (LR) for the testing data (a) polymer 1, and (b) polymer 2



Figure 12

Comparison between measured and predicted the compressive strength of cement paste modi�ed with
polymers using Non-Linear Regression Model (NLR) for the training data (a) polymer 1, and (b) polymer 2



Figure 13

Comparison between measured and predicted the compressive strength of cement paste modi�ed with
polymers using Non-Linear Regression Model (NLR) for the resting data (a) polymer 1, and (b) polymer 2



Figure 14

M5P Pruned model tree (a) cement paste modi�ed with (a) Polymer 1 and (b) cement paste modi�ed with



Figure 15

Comparison between measured and predicted the compressive strength of cement paste modi�ed with
polymers using M5P-tree Model (M5P) for the training data (a) polymer 1, and (b) polymer 2



Figure 16

Comparison between measured and predicted the compressive strength of cement paste modi�ed with
polymers using M5P-tree Model (M5P) for the testing data (a) polymer 1, and (b) polymer 2



Figure 17

Comparison between measured and predicted the compressive strength of cement paste modi�ed with
polymers using ANN Model for the training data (a) polymer 1, and (b) polymer 2



Figure 18

Comparison between measured and predicted the compressive strength of cement paste modi�ed with
polymers using ANN Model for the testing data (a) polymer 1, and (b) polymer 2



Figure 19

Variation in predictedvalues of compressive strength for cement paste modi�ed with polymers based four
different approaches in comparison to observed values
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