Efficiently Sparse Listing of Classes of Optimal Cophylogeny Reconciliations

Yishu Wang
Universit'e de Lyon
Arnaud Mary
Universit'e de Lyon
Marie-France Sagot
Inria Grenoble Rhône-Alpes
Blerina Sinaimeri (\sim bsinaimeri@luiss.it)
Luiss University

Research Article

Keywords: Cophylogeny, Enumeration, Equivalence relation, Dynamic programming

Posted Date: November 17th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-1082141/v1
License: (c) (i) This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

RESEARCH

Efficiently sparse listing of classes of optimal cophylogeny ${ }_{6}{ }^{5}$ reconciliations

Yishu Wang ${ }^{1,2}$, Arnaud Mary ${ }^{1,2}$, Marie-France Sagot ${ }^{2,1}$ and Blerina Sinaimeri ${ }^{3,2,1^{*}}$

* Correspondence:
bsinaimeri@luiss.it
${ }^{3}$ Luiss University, Rome, Italy Full list of author information is available at the end of the article

${ }^{1}$ models which derive evolutionary scenarios for both hosts and parasites (usually ${ }^{1}$
${ }^{2}$ evolutionary trees are computed from DNA sequence data). Co-evolution is usually ${ }^{2}$
${ }^{3}$ modeled as a problem of mapping the phylogenetic tree of the parasites to the one ${ }^{3}$
${ }^{4}$ of the hosts (see e.g. $[4,5,6,7]$). Such mapping, called a reconciliation, allows the ${ }^{4}$
${ }^{5}$ identification of some biologically motivated events: (a) cospeciation, when the par- ${ }^{5}$
${ }^{6}$ asite diverges in correspondence to the divergence of a host species; (b) duplication, ${ }^{6}$
${ }^{7}$ when the parasite diverges but not the host; (c) host-switching, when a parasite ${ }^{7}$
${ }^{8}$ Switches from one host species to another independent of any host divergence; and ${ }^{8}$
${ }^{9}(d)$ loss, which can describe for instance speciation of the host species independently ${ }^{9}$ ${ }^{10}$ of the parasite, which then follows just one of the new host species. Finding the ${ }^{10}$
${ }^{11}$ "best" reconciliation is modeled as an optimization problem by assigning a cost ${ }^{11}$ ${ }^{12}$ to each of the different types of events and then seeking the reconciliations that ${ }^{12}$ ${ }^{13}$ minimize the total cost (computed in an additive way). In practice, there may of ${ }^{13}$
${ }^{14}$ ten be many optimal solutions which, although having the same total cost, can be ${ }^{14}$ ${ }^{15}$ quite different among them and correspond to different biological scenarios. Most ${ }^{15}$ ${ }^{16}$ of the software proposed in the literature therefore do not rely only on one optimal ${ }^{16}$
${ }^{17}$ solution but enumerate all of them (e.g. [8, 7, 6, 9, 10]). A crucial issue is that often ${ }^{17}$
${ }^{18}$ the number of optimal solutions is unrealistically large (exponential in the size of ${ }^{18}$
${ }^{19}$ the trees) $[6,11,12,13,14]$, making it practically impossible to analyze each one ${ }^{19}$
${ }^{20}$ of them separately. 20
${ }^{21}$ To tackle this problem, we observe that although many of the solutions can be ${ }^{21}$ ${ }^{22}$ indeed very different, a large number of them are quite similar and can be consid- ${ }^{22}$ ${ }^{23}$ ered biologically equivalent. We thus first propose various equivalence relations for ${ }^{23}$ ${ }^{24}$ grouping the reconciliations that may be considered biologically equivalent, then ${ }^{24}$ ${ }^{25}$ we provide algorithms which efficiently enumerate only the equivalence classes or ${ }^{25}$ ${ }^{26}$ one representative reconciliation per class.
27
${ }^{28}$ State of the art 28
${ }^{29}$ Many methods have been proposed in the literature to deal with the large number ${ }^{29}$
${ }^{30}$ of optimal reconciliations. Some early approaches propose sampling the space of ${ }^{30}$ ${ }^{31}$ optimal reconciliations uniformly at random [15, 16]. However, as the optimal rec- ${ }^{31}$ ${ }^{32}$ onciliation space can be both large and heterogeneous [17], this does not guarantee ${ }^{32}$
${ }^{33}$ that important information is not lost.

1 Other methods try to understand the structure of the space of solutions by com- ${ }^{1}$ ${ }^{2}$ puting some global properties such as the frequency of the events across the space ${ }^{2}$ ${ }^{3}$ [16] , the diameter of the space [17], the pairwise distance among the optimal rec- ${ }^{3}$ ${ }^{4}$ onciliations [18]. In a similar direction, other methods propose a single reconcilia- ${ }^{4}$ ${ }^{5}$ tion (e.g. a "median" reconciliation) to represent the whole space of optimal ones ${ }^{5}$ ${ }^{6}[19,11,14]$. However, the results presented in $[12,14,17,18]$ show that the space ${ }^{6}$ ${ }^{7}$ can be very diverse and making inferences from a single reconciliation might lead to ${ }^{7}$ ${ }^{8}$ conclusions that can be contradicted by other optimal reconciliations. The method ${ }^{8}$ ${ }^{9}$ in [19] has been generalized in [20] in order to find a set of k medoids, or k cen- ${ }^{9}$ ${ }^{10}$ ters that represent the space. However, these algorithms have a running time of ${ }^{10}$ ${ }^{11} O\left(n^{k+3} \log k\right)$ (where k is the number of clusters and n is the size of the trees) and ${ }^{11}$ ${ }^{12}$ are thus not applicable in practice. Finally, in $[13,10]$ the solutions are clustered ${ }^{12}$ ${ }^{13}$ using a similarity distance among the reconciliations. However, in some cases the ${ }^{13}$ ${ }^{14}$ results of the clustering can be hard to interpret (see Section Experimental results). ${ }^{14}$ 15 15

16
${ }_{17}$ Our contribution
${ }^{18}$ In this paper, we propose an approach that is entirely different from the ones dis- ${ }^{18}$ ${ }^{19}$ cussed in the state of the art section. We first formally define under what condi- ${ }^{19}$
${ }^{20}$ tions two solutions can be considered biologically equivalent. Some first steps in ${ }^{20}$
${ }^{21}$ this direction were done in [21] where two notions of equivalence were first con- ${ }^{21}$
${ }^{22}$ sidered. However, the method presented in [21] requires first the listing (i.e. the ${ }^{22}$
${ }^{23}$ enumeration) of all the optimal solutions and then clustering them according to the ${ }^{23}$
${ }^{24}$ equivalence notion. 24
${ }^{25}$ Here we introduce three different relations of equivalence. We then propose an ${ }^{25}$ ${ }^{26}$ algorithm that efficiently enumerates the set of "equivalence classes" or that enu- ${ }^{26}$ ${ }^{27}$ merates one representative per class without having to first generate all of them. The ${ }^{27}$ ${ }^{28}$ algorithms that we present are polynomial-delay, meaning that the time between ${ }^{28}$ ${ }^{29}$ the output of any solution and the next one is bounded by a polynomial function of ${ }^{29}$ ${ }^{30}$ the input size. Our results are of both practical and theoretical importance. Indeed, ${ }^{30}$ ${ }^{31}$ the problem of enumerating equivalence classes, and particularly the generation of ${ }^{31}$ ${ }^{32}$ representative solutions is a challenge in the context of enumeration algorithm. It^{32} ${ }^{33}$ has been identified as a need in different areas, such as genome rearrangements [22], ${ }^{33}$
${ }^{1}$ artificial intelligence [23], pattern matching [24, 25], or the study of RNA shapes ${ }^{1}$ ${ }^{2}[26]$. 2
${ }^{3}$ It is worth mentioning that the theoretical results in this paper have inspired the ${ }^{3}$
${ }^{4}$ introduction of a general framework to enumerate equivalence classes for a whole ${ }^{4}$
${ }^{5}$ class of problems which can be addressed by dynamic programming algorithms [27]. ${ }^{5}$
${ }^{7}$ Model description 7
${ }^{8}$ Definitions 8
${ }^{9}$ In this section, we formally present the phylogenetic tree reconciliation problem that ${ }^{9}$ ${ }^{10}$ was originally introduced by Goodman et al. in 1979 [28]. We start by providing ${ }^{10}$
${ }^{11}$ some definitions that will be used in the paper.
12 For a directed graph G, we denote by $V(G)$ and $A(G)$ respectively the set of nodes ${ }^{12}$
${ }^{13}$ and the set of arcs of G. The out-neighbors of a node v are called its children. We ${ }^{13}$ ${ }^{14}$ consider ordered rooted trees in which arcs are directed away from the root. For a ${ }^{14}$ ${ }^{15}$ tree T, we denote by $L(T)$ the set of leaf nodes, i.e. those nodes without children, ${ }^{15}$ ${ }^{16}$ and denote by $r(T)$ the root of T; the non-leaf nodes are called the internal nodes ${ }^{16}$ ${ }^{17}$ of T. A full rooted binary tree is a rooted tree in which every internal node has two ${ }^{17}$ ${ }^{18}$ children. 18
${ }^{19}$ We denote by $p(w)$ the parent of a node w. The children of a node w are denoted ${ }^{19}$ ${ }^{20}$ by a couple (i.e. an ordered pair) $\operatorname{ch}(w)$. If there exists a directed path from a node ${ }^{20}$ ${ }^{21} v$ to a node w, the node w is called a descendant of v, and v is called an ancestor ${ }^{21}$ ${ }^{22}$ of w; if moreover $v \neq w$, we say that w is a proper descendant of v, and that v is ${ }^{22}$ ${ }^{23}$ a proper ancestor of w. If neither w is an ancestor of v nor w is ancestor of $v,{ }^{23}$ ${ }^{24}$ we say that the two nodes are incomparable, and denote this as $v \nsim w$. We denote ${ }^{24}$ ${ }^{25}$ by LCA (v, w) the lowest common ancestor of two nodes v and w. The subtree of $T{ }^{25}$ ${ }^{26}$ rooted at a node v containing all descendants of v is denoted by $\left.T\right|_{v}$. Finally, we ${ }^{26}$ ${ }^{27}$ denote by $d_{T}(v, w)$ the distance, i.e. the number of arcs on a directed path, between ${ }^{27}$
${ }^{28}$ two comparable nodes v and w in T.
29 We define next the Phylogenetic tree reconciliation problem (shortly, the ${ }^{29}$ ${ }^{30}$ Reconciliation problem). Let H and P be respectively the rooted phylogenetic ${ }^{30}$ ${ }^{31}$ trees of the host and parasite species, both binary and full. Let σ be a function from ${ }^{31}$ ${ }^{32} L(P)$ to $L(H)$, representing the parasite/host associations between extant species. ${ }^{32}$
${ }^{33}$ A reconciliation is a function ϕ that assigns, for each parasite node $p \in V(P),{ }^{33}$
${ }^{1}$ a host node $\phi(p) \in V(H)$, and satisfies the conditions stated in Definition 1. A ${ }^{1}$ ${ }^{2}$ reconciliation must induce an event function E_{ϕ} on $V(P)$ which associates each ${ }^{2}$ ${ }^{3}$ parasite node p to an event $E_{\phi}(p)$. The set of events is denoted by $\mathcal{E}:=\{\mathbb{C}, \mathbb{D}, \mathbb{S}, \mathbb{T}\} ;{ }^{3}$ ${ }^{4}$ the leaf parasite node has a special event \mathbb{T}; for internal parasite nodes, the event ${ }^{4}$ ${ }^{5} E_{\phi}(p)$ is one among three options: cospeciation \mathbb{C}, duplication \mathbb{D}, and host-switch ${ }^{5}$ ${ }^{6}$ S. The event for an internal node p will depend on the hosts that are assigned by ${ }^{6}$ ${ }^{7} \phi$ to p and to the two children p_{1} and p_{2} of p. In Definition 1 , this dependency is ${ }^{7}$
${ }^{8}$ expressed by $E_{\phi}(p):=E\left(\phi(p), \phi\left(p_{1}\right), \phi\left(p_{2}\right)\right)$.
9
${ }^{10}$ Definition 1 (Reconciliation, Event of a node) Given two phylogenetic trees H^{10} ${ }^{11}$ and P, and a function $\sigma: L(P) \rightarrow L(H)$, a reconciliation of (H, P, σ) is a function ${ }^{11}$ ${ }^{12} \phi: V(P) \rightarrow V(H)$ satisfying the following:
${ }^{13} 1$ For every leaf node $p \in L(P), \phi(p)$ is equal to $\sigma(p)$, and $E_{\phi}(p)=\mathbb{T}$. ${ }^{13}$
2 For every internal node $p \in V(P) \backslash L(P)$ with children $\left(p_{1}, p_{2}\right)$, exactly one ${ }^{14}$ 15 of the following applies:
16 (a) $E\left(\phi(p), \phi\left(p_{1}\right), \phi\left(p_{2}\right)\right)=\mathbb{S}$, that is, either $\phi\left(p_{1}\right) \nsim \phi(p)$ and $\phi\left(p_{2}\right)$ is a^{16} 17 descendant of $\phi(p)$, or $\phi\left(p_{2}\right) \nsim \phi(p)$ and $\phi\left(p_{1}\right)$ is a descendant of $\phi(p),{ }^{17}$

18 (b) $E\left(\phi(p), \phi\left(p_{1}\right), \phi\left(p_{2}\right)\right)=\mathbb{C}$, that is, $\operatorname{LCA}\left(\phi\left(p_{1}\right), \phi\left(p_{2}\right)\right)=\phi(p)$, and ${ }^{18}$ $19 \quad 19$

20 (c) $E\left(\phi(p), \phi\left(p_{1}\right), \phi\left(p_{2}\right)\right)=\mathbb{D}$, that is, $\phi\left(p_{1}\right)$ and $\phi\left(p_{2}\right)$ are descendants of f^{20} $\phi(p)$, and the previous two cases do not apply.

22
${ }^{23}$ In a reconciliation, an internal parasite node can be additionally associated to ${ }^{23}$ ${ }^{24}$ a number of loss events. The loss event is denoted by \mathbb{L}. A loss can only occur ${ }^{24}$ ${ }^{25}$ in conjunction with another event $(\mathbb{S}, \mathbb{C}$, or $\mathbb{D})$, and the definition of the number ${ }^{25}$ ${ }^{26}$ of losses splits into several cases according to the accompanying event. We give ${ }^{26}$ ${ }^{27}$ in Definition 2 the number of loss events associated to an internal node p, called ${ }^{27}$ ${ }^{28}$ the loss contribution $\xi_{\phi}(p)$. Since the loss contribution is also determined by the ${ }^{28}$ ${ }^{29}$ hosts that are assigned to p and to the children of p, we will also write $\xi_{\phi}(p):={ }^{29}$ ${ }^{30} \xi\left(\phi(p), \phi\left(p_{1}\right), \phi\left(p_{2}\right)\right)$. 30 31
${ }^{32}$ Definition 2 (Loss contribution) Let $\phi: V(P) \rightarrow V(H)$ be a reconciliation. Let ${ }^{32}$ ${ }^{33} p$ be an internal node of the parasite tree with children p_{1}, p_{2}. Its loss contribution ${ }^{33}$

The function E_{ϕ} partitions the set of internal parasite nodes into three disjoint ${ }_{9}$ ${ }_{10}$ subsets according to their event; these subsets are denoted by $V^{\mathbb{C}}(P), V^{\mathbb{D}}(P), V^{\mathbb{S}}(P)_{\text {io }}$ ${ }_{11}$ The number of occurrences of each of the three events together with the number of ${ }_{11}$ ${ }_{12}$ losses make up the event vector of the reconciliation ϕ :
${ }_{14}$ Definition 3 (Event vector) The event vector of a reconciliation ϕ is a vector of ${ }_{14}$ ${ }_{15}$ four integers consisting of the total number of each type of events $\mathbb{C}, \mathbb{D}, \mathbb{S}$, and $\mathbb{L}, 15$ 16i.e.
$18 \quad \vec{e}(\phi):=\left(\left|V^{\mathbb{C}}(P)\right|,\left|V^{\mathbb{D}}(P)\right|,\left|V^{\mathbb{S}}(P)\right|, \sum_{p \in V(P) \backslash L(P)} \xi_{\phi}(p)\right)$.
19
${ }^{20}$ Given a cost vector $\vec{c}:=(c(\mathbb{C}), c(\mathbb{D}), c(\mathbb{S}), c(\mathbb{L}))$ assigning a real number to each ${ }^{20}$ ${ }^{21}$ type of event, the cost of a reconciliation ϕ is equal to the dot product between ${ }^{21}$ ${ }^{22}$ the cost vector and the event vector $\operatorname{cost}(\phi):=\vec{c} \cdot \vec{e}(\phi)$. We are now ready to ${ }^{22}$ ${ }^{23}$ formulate the optimization version of the RECONCILIATION PROBLEM: Given two ${ }^{23}$
${ }^{24}$ phylogenetic trees H and P, a function $\sigma: L(P) \rightarrow L(H)$, and a cost vector \vec{c}, find ${ }^{24}$
${ }^{25}$ a reconciliation ϕ of (H, P, σ) of minimum cost.
${ }^{26}$ In Figure 1, we show two different reconciliations on the same input $(H, P, \sigma) .^{26}$ ${ }^{27}$ Depending on the cost vector, these reconciliations may or may not be optimal. ${ }^{27}$
${ }^{28}$ Notice that if the cost vector is $(0,0,0,0)$, any valid reconciliation will be optimal. ${ }^{28}$ 29

${ }^{1}$ Dynamic programming algorithm
${ }^{2}$ The Reconciliation problem can be solved by dynamic programming. One of ${ }^{2}$
${ }^{3}$ the first methods which took into account all the events described in the previous ${ }^{3}$ ${ }^{4}$ section was introduced by Michael Charleston in 1998 [29] and has been improved ${ }^{4}$
${ }^{5}$ since by different authors. These methods have different ways of dealing with time ${ }^{5}$
${ }^{6}$ feasibility which makes the problem hard on undated trees. We will not discuss this ${ }^{6}$
${ }^{7}$ further in the present paper, except for mentioning that in the dynamic program- ${ }^{7}$
${ }^{8}$ ming approach presented in this section, the trees are considered undated, and the ${ }^{8}$
${ }^{9}$ time feasibility issue can be dealt with in a subsequent step as described in [6]. On ${ }^{9}$ ${ }^{10}$ the other hand, we show in this section a formulation of the dynamic programming ${ }^{10}$ ${ }^{11}$ algorithm in terms of a certain directed graph which we will define. The graph ${ }^{11}$ ${ }^{12}$ structure can be seen as a means for efficiently enumerating all optimal solutions ${ }^{12}$ ${ }^{13}$ of the optimization problem, and more importantly, we will use it later in Section ${ }^{13}$
${ }^{14}$ Algorithmic results for enumerating equivalence classes of optimal reconciliations. ${ }^{14}$ 15
${ }^{16}$ Recurrence relations
${ }^{17}$ Given an instance (H, P, σ, \vec{c}), the minimum cost of a reconciliation can be found by ${ }^{17}$ ${ }^{18}$ dynamic programming. Recall that $\mathcal{E}:=\{\mathbb{C}, \mathbb{D}, \mathbb{S}, \mathbb{T}\}$ is the set of possible events ${ }^{18}$ 19for a node. Let $U:=V(P) \times V(H) \times \mathcal{E}$. We call a triple $(p, h, e) \in U$ a cell of 19 ${ }^{20}$ the dynamic programming table. Consider a function $f: U \rightarrow \mathbb{R} \cup\{\infty\}$, where ${ }^{20}$ ${ }^{21}$ the value of a cell $f(p, h, e)$ is defined to be the minimum cost of a reconciliation ${ }^{21}$ 22between the subtree $\left.P\right|_{p}$ (i.e., the subtree of P rooted at the node p) and the host22 ${ }^{23}$ tree H mapping p to h, such that the event of p is e. Then f can be computed as ${ }^{23}$ 24follows: 24 251 If p is a leaf, 25

29
2 Otherwise, p is an internal node with children $\left(p_{1}, p_{2}\right)$. In this case, 30
$f(p, h, e)=\min _{\substack{E\left(h, h_{1}, h_{2}\right)=e \\ h_{1}, h_{2} \in V(H) \\ e_{1}, e_{2} \in \mathcal{E}}} f\left(p_{1}, h_{1}, e_{1}\right)+f\left(p_{2}, h_{2}, e_{2}\right)+c(e)+c(\mathbb{L}) \xi\left(h, h_{1}, h_{2}\right) ._{32}^{31}$
${ }^{1}$ The minimum cost of a reconciliation is then given by $\min _{h \in V(H), e \in \mathcal{E}} f(r(P), h, e) .{ }^{1}$ 2
sad-AND/OR graphs and solution subtrees
4In order to find one optimal reconciliation or to efficiently enumerate all optimal4 5reconciliations, a directed graph can be constructed from the recurrence relations5 6Equations (2) and (3): it is a compact representation of all series of computations6 7performed by dynamic programming which result in the optimal cost value. To do7 8this, we rely on a well-known structure in Computer Science, that is the $A N D / O R 8$ 9 graph [30]. More specifically, we consider a particular flavor of AND/OR graphs that9 10we call acyclic decomposable $A N D-O R$ graphs. This structure is known for having10 11an intimate relationship with dynamic programming on a tree. 11
${ }_{13}$ Definition 4 (ad-AND/OR graph) $\quad A$ directed graph G is an acyclic decomposable ${ }_{13}$ ${ }_{14} \mathrm{AND} / \mathrm{OR}$ graph (an ad-AND/OR graph) if it satisfies the following: 14

- G is a $D A G$.
- G is bipartite: its node set $V(G)$ can be partitioned into $(\mathcal{A}, \mathcal{O})$ so that all arcs $_{16}$ of G are between these two sets. Nodes in \mathcal{A} are called AND nodes; nodes in_{17} \mathcal{O} are called OR^{+}nodes.

18

- Every AND node has in-degree at least one and out-degree at least one. The ${ }_{19}$ set of nodes with out-degree zero is then a subset of \mathcal{O} and is called the set of f_{20} goal nodes; the remaining $O R^{+}$nodes are simply the OR nodes. The subset ${ }_{21}$ of $O R$ nodes of in-degree zero is the set of start nodes. ${ }_{22}$
- G is decomposable: for any $A N D$ node, the sets of nodes that are reachable ${ }_{23}$ 24 from each one of its child nodes are pairwise disjoint. 24

25 25
Definition 5 (Solution subtree) A solution subtree T of an ad- $A N D / O R$ graph
${ }_{26} 5$ G is a subgraph of G which: (1) contains exactly one start node; (2) for any $O R$
${ }^{30}$ The set of solution subtrees of G is denoted by $\mathcal{T}(G)$. It is immediate to see that ${ }^{30}$ ${ }^{31}$ a solution subtree is indeed a subtree of G : it is a rooted tree, the root of which is a ${ }^{31}$ ${ }^{32}$ start node. If we would drop the requirement of G being decomposable, the object ${ }^{32}$ ${ }^{33}$ defined in Definition 5 would not be guaranteed to be a tree.
${ }^{1}$ Definition 6 (Subgraph starting from a set of nodes) Let G be an ad-AND/OR ${ }^{1}$ ${ }^{2}$ graph. Let \mathcal{O} be a set of $O R^{+}$nodes of G. The subgraph of G starting from $\mathcal{O},{ }^{2}$ ${ }^{3}$ denoted by G / \mathcal{O}, is the subgraph obtained from G by setting \mathcal{O} as the new set of ${ }^{3}$ ${ }^{4}$ start nodes (i.e. by removing all nodes that are not reachable from \mathcal{O} through directed ${ }^{4}$ ${ }^{5}$ paths). 5 6 6
${ }^{7}$ The reconciliation graph 7
${ }^{8}$ The reconciliation graph is a concept already present in the literature $[16,6,31] .{ }^{8}$ ${ }^{9}$ Since, depending on the application, slightly different definitions of this structure ${ }^{9}$ ${ }^{10}$ exist, to avoid ambiguity, we describe how to construct the reconciliation graph ${ }^{10}$ ${ }^{11}$ of a given instance of the RECONCILIATION PROBLEM from the recurrence Equa- ${ }^{11}$ ${ }^{12}$ tions (2)-(3).

13 The construction is done in two steps. In the first step, we build a graph in ${ }^{13}$ ${ }^{14}$ which every node retains an additional attribute, its value, and every OR^{+}node is ${ }^{14}$ ${ }^{15}$ uniquely labeled by a dynamic programming cell $(p, h, e) \in U$. In the second step, ${ }^{15}$ ${ }^{16}$ we prune the graph by removing nodes that do not yield optimal values.
${ }^{17} 1$ For each $(p, h, e) \in U$ such that p is a leaf, create a goal node labeled by ${ }^{17}$ $18(p, h, e)$; its value is equal to 0 if $h=\sigma(p)$ and ∞ otherwise. Then, for each ${ }^{18}$ $19 \quad(p, h, e) \in U$ in the post-order of $V(P)$, let p_{1}, p_{2} be the two children of $p, \quad 19$
i. For each $\left(p_{1}, h_{1}, e_{1}\right)$ and each $\left(p_{2}, h_{2}, e_{2}\right)$ such that $E\left(h, h_{1}, h_{2}\right)=e$, create ${ }^{20}$ an AND node, connect it to the two OR^{+}nodes respectively labeled by ${ }^{21}$ $\left(p_{1}, h_{1}, e_{1}\right)$ and (p_{2}, h_{2}, e_{2}). Its value is equal to the sum of the values of ${ }^{22}$ its two children, plus $c(e)+c(\mathbb{L}) \xi\left(h, h_{1}, h_{2}\right)$.
ii. Create a single OR node, connect it to every AND node created in the ${ }^{24}$ previous step. Its label is (p, h, e), and its value is the minimum of the ${ }^{25}$ values of its children.
2 For each $(r(P), h, e) \in U$, remove the OR node labeled by that cell unless its ${ }^{27}$ value is equal to the optimal cost. For each OR node s, remove the arc to its ${ }^{28}$ child AND node s_{i} if the value of s_{i} is not equal to the value of s. Finally, ${ }^{29}$ remove recursively all AND nodes without incoming arcs.

It can be checked that the reconciliation graph is indeed an ad-AND/OR graph ${ }^{31}$ ${ }^{32}$ as defined in Definition 4. An OR^{+}node labeled by (p, h, e) is a start node if and ${ }^{32}$ ${ }^{33}$ only if $p=r(P)$, and is a goal node if and only if $p \in L(P)$. It is also immediate ${ }^{33}$
${ }^{1}$ to see that each AND node in the reconciliation graph has exactly one in-neighbor ${ }^{1}$
${ }^{2}$ and exactly two children. We will consider the two children as a couple: for an AND^{2}
${ }^{3}$ node s, if its in-neighbor is labeled by (p, h, e) and its two children s_{1} and s_{2} are ${ }^{3}$
${ }^{4}$ respectively labeled by $\left(p_{1}, h_{1}, e_{1}\right)$ and $\left(p_{2}, h_{2}, e_{2}\right)$, we will say that s_{1} is the first ${ }^{4}$
${ }^{5}$ child and s_{2} is the second child of s if p_{1} and p_{2} are respectively the first and second ${ }^{5}$
${ }^{6}$ child of p; otherwise, we say that s_{1} is the second child and s_{2} is the first child. ${ }^{6}$
${ }^{7}$ Keeping the correct order of the children, we can extend the notation "ch" to the ${ }^{7}$
${ }^{8}$ set of nodes of the reconciliation graph: if s is an AND node, $\operatorname{ch}(s)$ is the couple ${ }^{8}$
${ }^{9}$ (ordered pair) of the two child OR^{+}nodes of s; if s is an OR node, $\mathrm{ch}(s)$ is simply ${ }^{9}$
${ }^{10}$ the set of its AND child nodes. For an OR node, we will typically be interested ${ }^{10}$
${ }^{11}$ not in its children but in its set of "grandchildren", hence we introduce here a new ${ }^{11}$
${ }^{12}$ notation. If s is an OR node, we call the grandchild couples, denoted by $\operatorname{gch}(s)$, the ${ }^{12}$
${ }^{13}$ union of the children of its child AND nodes (it is a set of couples of OR^{+}nodes) ${ }^{13}$ ${ }^{14} \operatorname{gch}(s):=\bigcup_{s_{i} \in \operatorname{ch}(s)} \operatorname{ch}\left(s_{i}\right)$. Notice that an OR^{+}node can appear as grandchild of ${ }^{14}$ ${ }^{15}$ two different nodes, and can also appear in two different grandchild couples of a ${ }^{15}$ ${ }^{16}$ same node (see Figure 2).

17 The dynamic programming algorithms for the RECONCILIATION PROBLEM which ${ }^{17}$ ${ }^{18}$ enable the efficient enumeration of all optimal reconciliations are based on the ${ }^{18}$ 19 following observation: 19 2020
${ }^{21}$ Proposition 7 Let (H, P, σ, \vec{c}) be a given instance of the RECONCILIATION PROB- ${ }^{21}$ ${ }^{22}$ LEM. The reconciliation graph G, constructed as described in the previous paragraph ${ }^{22}$ ${ }^{23}$ is an ad-AND/OR graph, and the set $\mathcal{T}(G)$ of solution subtrees of G correspond bi- ${ }^{23}$ ${ }^{24}$ jectively to the set of optimal reconciliations. 24 25 25
${ }^{26}$ To see this, consider an OR^{+}node s labeled by a cell $(p, h, e) \in U$ of the dynamic ${ }^{26}$ ${ }^{27}$ programming table. For the subgraph $G /\{s\}$ (see Definition 6), the following can be ${ }^{27}$ ${ }^{28}$ proven by induction: the set of solution subtrees $\mathcal{T}(G /\{s\})$ corresponds bijectively ${ }^{28}$ ${ }^{29}$ to the set of optimal reconciliations of the dynamic programming subproblem at ${ }^{29}$ ${ }^{30}(p, h, e)$, i.e. the optimal reconciliations between the subtree $P \mid p$ and H such that p^{30} ${ }^{31}$ is mapped to h and the event of p is e. In practice, to convert a solution subtree $T_{1} \in{ }^{31}$ ${ }^{32} \mathcal{T}(G)$ into a reconciliation ϕ, we only need to look at the labels (p, h, e) of the $\mathrm{OR}^{+{ }^{32}}$ ${ }^{33}$ nodes in T_{1} (a reconciliation can simply be viewed as a collection of triples of the ${ }^{33}$
${ }^{1}$ form $\left.(p, h, e)\right)$. We will henceforth use interchangeably the terms solution subtrees ${ }^{1}$
${ }^{2}$ of the reconciliation graph and optimal reconciliations of the problem instance.
3 The reconciliation graph can be constructed using $O\left(|V(P)||V(H)|^{3}\right)$ time and 3 ${ }^{4}$ space complexity [6]. After the construction, the total number of optimal recon- ${ }^{4}$ ${ }^{5}$ ciliations can also be computed. It is a well-known folklore result that the set of ${ }^{5}$
${ }^{6}$ solution subtrees of an ad-AND/OR graph can be enumerated efficiently: the delay ${ }^{6}$
${ }^{7}$ between outputting two consecutive solutions is linear in the size of the solution. ${ }^{7}$
${ }^{8}$ Therefore, there is an algorithm with a $O\left(|V(P)||V(H)|^{3}\right)$ time pre-processing step ${ }^{8}$
${ }^{9}$ and $O(|V(P)|)$ time delay for enumerating the optimal reconciliations.
10 Figure 2 shows a reconciliation graph based on the same input (H, P, σ) as in ${ }^{10}$
${ }^{11}$ Figure 1 with nine solution subtrees. Among these nine reconciliations, four have ${ }^{11}$
${ }^{12}$ event vector $(0,0,2,0)$, two have $(1,0,1,0)$, two have $(1,0,1,1)\left(\phi_{1}\right.$ and ϕ_{2} of Fig- ${ }^{12}$
${ }^{13}$ ure 1$)$, and one has $(2,0,0,0)$. The event vector of the reconciliation shown in bold ${ }^{13}$
is $(1,0,1,1)$. 14

${ }_{20}$ Definitions of the equivalence relations

In this section, we first introduce four definitions of equivalence between reconcil- ${ }_{21}$ ${ }_{22}$ iations and study the relationship between them, then we explain the motivation ${ }_{22}$ ${ }_{23}$ for defining such equivalence relations and state the problems of enumerating the ${ }_{23}$ ${ }_{24}$ equivalence classes and counting the size of each class. The algorithmic contribu- ${ }_{24}$ ${ }_{25}$ tion solving these problems and the experimental results will be presented in the ${ }_{25}$ ${ }_{26}$ subsequent sections. 26 27 27 Definitions
28
In Definitions 8-10, we give three equivalence relations on the set of optimal rec29
onciliations. One is based on a global property, the event vector, which is already
3030
defined in Definition 3. The other two equivalence relations are based on "local
3131 properties", i.e. on the event $E_{\phi}(p)$ and the host $\phi(p)$ that are assigned by ϕ for 32 each parasite node p.

```
\({ }^{1}\) Definition 8 (V-equivalence) Two reconciliations \(\phi_{1}\) and \(\phi_{2}\) are Vector-equivalent, \({ }^{1}\),
\({ }^{2}\) or shortly V-equivalent, if their event vectors are equal: \(\vec{e}\left(\phi_{1}\right)=\vec{e}\left(\phi_{2}\right) . \quad 2\) 3
\({ }_{4}\) Definition 9 (E-equivalence) Two reconciliations \(\phi_{1}\) and \(\phi_{2}\) are Event-equivalent, \({ }_{4}\) \({ }_{5}\) or shortly E-equivalent, if \(E_{\phi_{1}}(p)=E_{\phi_{2}}(p)\) for all \(p \in V(P)\).
Definition 10 (CD-equivalence) Two reconciliations \(\phi_{1}\) and \(\phi_{2}\) are Cospeciation-Duplication-equivalent, or shortly CD-equivalent, if \(E_{\phi_{1}}(p)=E_{\phi_{2}}(p)\) for all \(p \in\) \({ }^{8} V(P)\) (i.e. they are E-equivalent), and the hosts of non-host-switch parasite nodes \({ }^{8}\) 9 9 are the same: \(E_{\phi_{1}}(p) \neq \mathbb{S} \Longrightarrow \phi_{1}(p)=\phi_{2}(p)\).

11 Each one of these equivalence relation splits the set of optimal reconciliations of a \({ }^{11}\) \({ }^{12}\) given instance into equivalence classes, i.e. subsets of pairwise equivalent reconcili- \({ }^{12}\) \({ }^{13}\) ations. One representative of an equivalence class is simply a reconciliation in the \({ }^{13}\) \({ }^{14}\) corresponding subset. We will abuse the terminology and call equivalence classes \({ }^{14}\) \({ }^{15}\) the objects that best represent the common property of the reconciliations in that \({ }^{15}\) \({ }^{16}\) subset. A reconciliation in a particular equivalence class will then be a reconciliation \({ }^{16}\) \({ }^{17}\) satisfying that property. 17 18
\({ }_{19}\) Definition 11 (Equivalence classes) In this paper, the term equivalence class has \({ }_{19}\) \({ }_{20}\) the following meanings, depending on the equivalence relation:
- For the \(V\)-equivalence relation, a V -equivalence class is an event vector \(\vec{e}\), i.e. \({ }_{21}\) a vector of four integers. \(V(P) \rightarrow \mathcal{E}\) that associates each node of the parasite tree with an event. \(V(P) \rightarrow \mathcal{E} \times(V(H) \cup\{?\})\) that associates each node of the parasite tree with \({ }_{26}\) an ordered pair \((e, h)\), where either

We can make the following remarks about the relationships between these equiv- \({ }^{30}\) 1 alence relations. CD-equivalent reconciliations are also E-equivalent. Being E- \({ }^{31}\) \({ }^{32}\) equivalent implies that the first three elements of their event vectors are equal. \({ }^{32}\)
\({ }^{33}\) As we only consider reconciliations having the same minimum cost, if the cost of \({ }^{33}\)
\({ }^{1}\) a loss event \(c(\mathbb{L})\) is nonzero, E-equivalent reconciliations necessarily have the same \({ }^{1}\)
\({ }^{2}\) number of losses, hence are also V-equivalent. On the other hand, if \(c(\mathbb{L})=0{ }^{2}\)
\({ }^{3}\) E-equivalent reconciliations are not necessarily V-equivalent. 3
\({ }^{4}\) In Figure 1, the pair \(\phi_{1}\) and \(\phi_{2}\) are equivalent under all three equivalence relations. \({ }^{4}\)
\({ }^{5}\) In Figure 2, the nine reconciliations split into four V-equivalence classes (the four \({ }^{5}\)
\({ }^{6}\) event vectors).
7 7 7
\({ }^{8}\) Motivation and challenges 8
\({ }^{9}\) The first and foremost motivation of defining equivalence relations is the need of \({ }^{9}\) \({ }^{10}\) capturing useful biological information from the set of optimal reconciliations, when \({ }^{10}\)
\({ }^{11}\) this set is too large for manual analyses or for exhaustive enumeration. The \(\mathrm{V}-{ }^{11}\) \({ }^{12}\) equivalence classes already conveys some information about the co-evolutionary \({ }^{12}\) \({ }^{13}\) history of the hosts and their parasites. Indeed, a high number of cospeciations \({ }^{13}\) \({ }^{14}\) may indicate that hosts and parasites evolved together, while a high number of \({ }^{14}\) \({ }^{15}\) host-switches may indicate that the parasites are able to infect different host species. \({ }^{15}\)
\({ }^{16}\) Under the scope of the E-equivalence relation, we are also interested in which par- \({ }^{16}\) \({ }^{17}\) asites are associated to each type of event (disregarding losses). 17

18 The CD-equivalence relation is motivated by the idea that when a host-switch \({ }^{18}\) \({ }^{19}\) happens, there may be various hosts that can be selected as the parasite's "landing \({ }^{19}\) \({ }^{20}\) site". In this case, we choose to consider as equivalent those reconciliations for \({ }^{20}\) \({ }^{21}\) which, while the hosts that receive the switching parasites may differ, all the other \({ }^{21}\) \({ }^{22}\) parasite-host associations (not corresponding to a host-switch) are the same. These \({ }^{22}\) \({ }^{23}\) reconciliations are similar and often indistinguishable without additional biological \({ }^{23}\)
\({ }^{24}\) information. Indeed, take the two reconciliations \(\phi_{1}\) and \(\phi_{2}\) in Figure 1: they are \({ }^{24}\) \({ }^{25}\) identical except for one switching parasite \(p_{1}\), which is mapped to \(h_{b}\) by \(\phi_{1}\) and \({ }^{25}\) \({ }^{26}\) to \(h_{c}\) by \(\phi_{2}\). Since \(h_{b}\) and \(h_{c}\) are two sibling nodes sharing the same parent in the \({ }^{26}\) \({ }^{27}\) host tree, without further information, there is no good way to tell apart the two \({ }^{27}\)
\({ }^{28}\) reconciliations \(\phi_{1}\) and \(\phi_{2}\), hence we consider them as equivalent. 28
\({ }^{29}\) Equipped with our definitions of equivalence classes, we aim at studying the fea- \({ }^{29}\)
\({ }^{30}\) tures of the set of optimal reconciliations by enumerating the equivalence classes. \({ }^{30}\)
\({ }^{31}\) Naively, one would iterate through every reconciliation and record their properties, \({ }^{31}\) \({ }^{32}\) then report the equivalence classes, and, only at the end, report the statistics of the \({ }^{32}\) \({ }^{33}\) reconciliations in each equivalence class. However, when the number of reconcilia- \({ }^{33}\)
```

${ }^{1}$ tions is too large, for example, $>10^{42}$ (see Section Experimental results and [32]), ${ }^{1}$
${ }^{2}$ the naive method is not feasible. 2
${ }^{3}$ The challenge is then to enumerate directly the equivalence classes of optimal rec- ${ }^{3}$
${ }^{4}$ onciliations without enumerating the latter explicitly. Concretely, the set of optimal ${ }^{4}$
${ }^{5}$ reconciliations will be represented implicitly as $\mathcal{T}(G)$, the set of solution subtrees ${ }^{5}$
${ }^{6}$ of a reconciliation graph G. Given a reconciliation graph as input, we will tackle ${ }^{6}$
${ }^{7}$ the following problems:
- Count the number of equivalence classes.
- Enumerate the equivalence classes.
- Study a particular equivalence class. That is, given an equivalence class,
- Count the number of reconciliations in that class,
- Find one representative (i.e. one optimal reconciliation) of that class,
- Enumerate all reconciliations of that class.
${ }_{17} \mathrm{~V}$-equivalence class enumeration
${ }^{18}$ The enumeration of V-equivalence classes (i.e. all event vectors among the optimal ${ }^{18}$ ${ }^{19}$ reconciliations) can be achieved by a simple modification of the dynamic program-19
${ }^{20} \mathrm{ming}$ algorithm.20
21 First, we can notice that the number of different event vectors is bounded by a ${ }^{21}$ ${ }^{22}$ polynomial. Let $n=|V(H)|$ and $m=|V(P)|$. The first three elements of any event ${ }^{22}$ ${ }^{23}$ vector necessarily sum up to $\frac{m-1}{2}$, the number of internal parasite nodes, hence ${ }^{23}$ ${ }^{24}$ there are only $O\left(m^{2}\right)$ possible combinations. The loss contribution $\xi_{\phi}(p)$ for each ${ }^{24}$ ${ }^{25}$ parasite node p for any ϕ is at most twice the diameter of the host tree (i.e. twice the ${ }^{25}$ ${ }^{26}$ maximum distance between two nodes), so the fourth element of any event vector is ${ }^{26}$ ${ }^{27}$ bounded by $O(n m)$. Therefore, the number of event vectors is bounded by $O\left(\mathrm{~nm}^{3}\right) \cdot{ }^{27}$ ${ }^{28}$ We are interested in the following two problems: listing all event vectors, and, ${ }^{28}$ ${ }^{29}$ given a particular event vector, listing one (or all) optimal reconciliations of that ${ }^{29}$ ${ }^{30}$ event vector. Both can be done without much difficulty by doing some additional ${ }^{30}$ ${ }^{31}$ book-keeping in the dynamic programming algorithm, i.e. during the construction of ${ }^{31}$ ${ }^{32}$ the reconciliation graph. The idea is to remember the set of event vectors in every ${ }^{32}$ ${ }^{33}$ step, corresponding to the event vectors of the optimal solutions of the current ${ }^{33}$

```
\({ }^{1}\) dynamic programming subproblem. Then, for each event vector, one reconciliation \({ }^{1}\) \({ }^{2}\) (or all reconciliations) of the V-equivalence class can be found by backtracking. \({ }^{2}\) \({ }^{3}\) Recall that if \(s\) is an \(\mathrm{OR}^{+}\)node of the reconciliation graph, the solution subtrees \({ }^{3}\) \({ }^{4}\) of the subgraph \(G /\{s\}\) correspond to the optimal reconciliations of the dynamic \({ }^{4}\) \({ }^{5}\) programming subproblem identified by the cell \((p, h, e)\) with which \(s\) is labeled. We \({ }^{5}\) \({ }^{6}\) now define the set EV of an \(\mathrm{OR}^{+}\)node \(s\) to be the set of event vectors of \(\mathcal{T}(G /\{s\}),{ }^{6}\) \({ }^{7}\) that is the event vectors of the set of optimal reconciliations of the corresponding \({ }^{7}\) \({ }^{8}\) dynamic programming subproblem. Then, the sets EV can be computed as follows \({ }^{8}\) \({ }^{9}\) (for simplicity, we will identify an \(\mathrm{OR}^{+}\)node with the cell \((p, h, e)\) with which it is \({ }^{9}\) \({ }^{10}\) labeled):
11 - For each goal node \((p, h, \mathbb{T}), \mathrm{EV}(p, h, \mathbb{T}):=\{(0,0,0,0\}\). 11
12 - For each OR node \((p, h, e)\), let \(\left\{\left(\left(p_{1}^{i}, h_{1}^{i}, e_{1}^{i}\right),\left(p_{2}^{i}, h_{2}^{i}, e_{2}^{i}\right)\right)\right\}_{1 \leq i \leq k}\) be its set of \({ }^{12}\)


19
\({ }^{20}\) The set of event vectors of \(\mathcal{T}(G)\) that we seek is the union \(\bigcup_{s} \mathrm{EV}(s)\) taken over \({ }^{20}\) \({ }^{21}\) the set of start nodes of \(G\), i.e. the \(\mathrm{OR}^{+}\)nodes labeled with a cell of the form \({ }^{21}\) \({ }^{22}(r(P), h, e)\).
\({ }^{23}\) Overall, for each of the \(O\left(n^{3} m\right)\) nodes of the reconciliation graph, we need to \({ }^{23}\) \({ }^{24}\) keep an extra set of size \(O\left(n m^{3}\right)\). The space complexity is therefore \(O\left(n^{4} m^{4}\right)\). For \({ }^{24}\) \({ }^{25}\) each OR node and for each of its \(O\left(n^{2}\right)\) grandchild couples, we need to compute \({ }^{25}\) \({ }^{26}\) the Cartesian sum of two sets of EVs of size \(O\left(n m^{3}\right)\) each; this can be done naively \({ }^{26}\) \({ }^{27}\) in time \(O\left(n^{2} m^{6}\right)\) (to improve this, see, e.g. [33]). The overall time complexity is \({ }^{27}\) \({ }^{28} O\left(n^{5} m^{7}\right)\).

29 The backtracking technique for finding one optimal reconciliation given its event \({ }^{29}\) \({ }^{30}\) vector is quite standard. Here we present it concisely without proof. We define a \({ }^{30}\) \({ }^{31}\) function BACKTRACK that takes two parameters: an \(\mathrm{OR}^{+}\)node \(s\) in the reconcilia- \({ }^{31}\) \({ }^{32}\) tion graph \(G\) and a vector \(\vec{v}\) satisfying \(\vec{v} \in \mathrm{EV}(s)\). The function returns an optimal \({ }^{32}\) \({ }^{33}\) subproblem reconciliation \(\phi_{s} \in \mathcal{T}(C /\{s\})\) such that \(\vec{e}\left(\phi_{s}\right)=\vec{v}\). We choose to rep- \({ }^{33}\)
\({ }^{1}\) resent a reconciliation as a sequence of triples of the form \((p, h, e)\). The function \({ }^{1}\)
\({ }^{2} \operatorname{BACKTRACK}(s, \vec{v})\) can be implemented as follows: \({ }^{2}\)
\({ }^{3} 1\) Let \((p, h, e)\) be the cell with which \(s\) is labeled. Output the triple \((p, h, e)\). \(\mathrm{If}^{3}\)
\(4 \quad s\) is a goal node, stop. Otherwise, go to Step 2. 4
52 Let \(\left\{\left(\left(p_{1}^{i}, h_{1}^{i}, e_{1}^{i}\right),\left(p_{2}^{i}, h_{2}^{i}, e_{2}^{i}\right)\right)\right\}_{1 \leq i \leq k}\) be the grandchild couples of \(s\). Find any \({ }^{5}\) \(6 \quad\) index \(i\) such that there exists \(\vec{u} \in \operatorname{EV}\left(p_{1}^{i}, h_{1}^{i}, e_{1}^{i}\right)\) and \(\vec{w} \in \operatorname{EV}\left(p_{2}^{i}, h_{2}^{i}, e_{2}^{i}\right)\) such \(^{6}\)
7 that the sum inside the big braces of Equation (4) is equal to \(\vec{v}\) (such \(i\) neces- \({ }^{7}\)
\(8 \quad\) sarily exists). Choose any such \(\vec{u}\) and \(\vec{w}\). Then do Backtrack \(\left(\left(p_{1}^{i}, h_{1}^{i}, e_{1}^{i}\right), \vec{u}\right)^{8}\)
9 and BaCkTRACK \(\left(\left(p_{2}^{i} h_{i}^{i}, e_{2}^{i}\right), \vec{w}\right)\) 9
\({ }^{10}\) Given a start node \(s\) and an event vector \(\vec{v} \in \mathrm{EV}(s)\), it suffices to call BACK- \({ }^{10}\)
\({ }^{11} \operatorname{TRACK}(s, \vec{v})\) to get one representative of the V-equivalence class \(\vec{v}\). Finally, if we \({ }^{11}\)
\({ }^{12}\) replace "any" by "all" in Step 2 of BACKTRACK, we can easily adapt the algo- \({ }^{12}\)
\({ }^{13}\) rithm in such a way that it enumerates all reconciliations, or counts the number of \({ }^{13}\)
14 reconciliations of a V-equivalence class. 14
15 15
\({ }^{16}\) E-equivalence class enumeration \(\quad 16\)
\({ }^{17}\) By Definition 11, an E-equivalence class is a function from the set of nodes \(V(P)^{17}\) \({ }^{18}\) of the parasite tree to the set \(\mathcal{E}:=\{\mathbb{C}, \mathbb{D}, \mathbb{S}, \mathbb{T}\}\) of events. In this section, we will \({ }^{18}\) \({ }^{19}\) represent an E-equivalence class as a set \(T\) of ordered pairs of the form \((p, e)\) where \({ }^{19}\) \({ }^{20} p \in V(P)\) and \(e \in \mathcal{E}\). In the same manner, a reconciliation \(\phi\), i.e. a solution subtree \({ }^{20}\) \({ }^{21}\) in \(\mathcal{T}(G)\), can be written as a set of ordered triples of the form \((p, h, e)\). We say that \({ }^{21}\) \({ }^{22}\) a reconciliation \(\phi\) belongs to the E-equivalence class \(T\), and denote it as \(\pi(\phi)=T,{ }^{22}\)
\({ }^{23}\) if for each \((p, h, e) \in \phi\), there exists a unique couple \((p, e) \in T\). Using this notation, \({ }^{23}\) \({ }^{24}\) a set of couples of the form \((p, e)\) is an E-equivalence class if and only if there exists \({ }^{24}\) \({ }^{25} \phi \in \mathcal{T}(G)\) such that \(\pi(\phi)=T\); the set of all E-equivalence classes is denoted by \({ }^{25}\) \({ }^{26} \pi(\mathcal{T}(G))\).
\({ }^{27}\) The problem of studying a particular E-equivalence class is easy: given an \(\mathrm{E}^{27}\) \({ }^{28}\) equivalence class \(T\), the reconciliation graph \(G\) can be pruned in such a way that its \({ }^{28}\) \({ }^{29}\) set of solution subtrees corresponds to the reconciliations that belong to the class \({ }^{29}\) \({ }^{30} T\) (we simply need to remove all OR nodes unless its label \((p, h, e)\) corroborates the \({ }^{30}\) \({ }^{31}\) given class: \(\left.(p, e) \in T\right)\). Counting and enumerating the E-equivalence classes are, \({ }^{31}\) \({ }^{32}\) however, more challenging problems. We will at present concentrate on the problem \({ }^{32}\) \({ }^{33}\) of enumerating all E-equivalence classes.

1 The algorithm is based on the simple idea of traversing the reconciliation graph in \({ }^{1}\) \({ }^{2}\) a top-down fashion (a similar approach can be used in the algorithm that finds all \({ }^{2}\)
\({ }^{3}\) the solution subtrees). In order to obtain a polynomial time delay algorithm, during \({ }^{3}\)
\({ }^{4}\) the traversal, we can no longer consider the nodes one by one; the sets of nodes \({ }^{4}\)
\({ }^{5}\) that are in the solution subtrees of the same E-equivalence class must be traversed \({ }^{5}\)
\({ }^{6}\) together. To make this clear, it is convenient to define the color of the \(\mathrm{OR}^{+}\)nodes; \({ }^{6}\)
\({ }^{7}\) an E-equivalence class will then simply be a set of colors. \({ }^{7}\)
8
8
\({ }_{9}\) Definition 12 (Color of a node, Color couple)
9
- If an \(O R^{+}\)node \(s\) in the reconciliation graph is labeled by \((p, h, e) \in U\), we \(e_{10}\) say that \(s\) is colored by the ordered pair \((p, e) \in V(P) \times \mathcal{E}\).
- Let \(s_{1}\) and \(s_{2}\) be two \(O R^{+}\)nodes colored respectively by \(\left(p_{1}, e_{1}\right)\) and by 12 \(\left(p_{2}, e_{2}\right)\). The color couple of the couple of nodes \(\left(s_{1}, s_{2}\right)\) is the couple of colors \({ }_{13}\) \(\left(\left(p_{1}, e_{1}\right),\left(p_{2}, e_{2}\right)\right)\).

To enumerate the E-equivalence classes by a top-down recursive traversal of the \({ }^{15}\) \({ }^{16}\) reconciliation graph, our algorithm should achieve the following goal: given a set \(\mathcal{O}^{16}\) \({ }^{17}\) of \(\mathrm{OR}^{+}\)nodes of the same color \((p, e)\), enumerate \(\pi\left(\mathcal{T}(G / \mathcal{O})\right.\) ), i.e. all E-equivalence \({ }^{17}\) \({ }^{18}\) classes of the subgraph \(G / \mathcal{O}\). Any such a class will include the color \((p, e)\). If \(p\) is \({ }^{18}\) \({ }^{19}\) not a leaf, the events of the two children of the node \(p\) are given by the color couples \({ }^{19}\) \({ }^{20}\) of the grandchild couples \(\operatorname{gch}(\mathcal{O})\) (by extension, gch of a set of nodes is the union \({ }^{20}\)
\({ }^{21}\) of gch of every node in the set). A naive algorithm can be described as follows: for \({ }^{21}\)
\({ }^{22}\) each color couple \(\left(\left(p_{1}, e_{1}\right),\left(p_{2}, e_{2}\right)\right)\) of \(\operatorname{gch}(\mathcal{O})\), first take the union \(\mathcal{O}_{1}\) of the first \({ }^{22}\)
\({ }^{23}\) grandchildren of color \(\left(p_{1}, e_{1}\right)\) and the union \(\mathcal{O}_{2}\) of the second grandchildren of color \({ }^{23}\) \({ }^{24}\left(p_{2}, e_{2}\right)\), then call the algorithm on \(\mathcal{O}_{1}\) and independently on \(\mathcal{O}_{2}\), and finally combine \({ }^{24}\) \({ }^{25}\) the results together, that is, perform a Cartesian product between \(\pi\left(\mathcal{T}\left(G / \mathcal{O}_{1}\right)\right)\) and \({ }^{25}\)
\({ }^{26} \pi\left(\mathcal{T}\left(G / \mathcal{O}_{2}\right)\right) \quad{ }_{26}\)
\({ }^{27}\) The pitfall of the naive approach is that not every combination between the \(\mathrm{E}^{27}\)
\({ }^{28}\) equivalence classes of the reconciliations of the two child subtrees is valid. Our \({ }^{28}\) \({ }^{29}\) algorithm, shown in Algorithm 1, can be viewed as an improved version of the \({ }^{29}\) \({ }^{30}\) naive algorithm in which particular care has been taken to ensure that only valid \({ }^{30}\) \({ }^{31}\) combinations are outputted. Along with each E-equivalence class \(T\), it also outputs \({ }^{31}\) \({ }^{32}\) a set \(\widetilde{\mathcal{O}}\) which is a subset of the input set \(\mathcal{O}\) : it is equal the union of the root \(\mathrm{OR}^{+}{ }^{32}\) \({ }^{33}\) nodes of all solution subtrees \(\phi \in \mathcal{T}(G / \mathcal{O})\) such that \(\pi(\phi)=T\). Notice that in \({ }^{33}\)


Before the proof of correctness, let us recall some important notations. For \(\mathrm{a}_{20}\) \({ }_{21}\) subgraph \(G / \mathcal{O}\) of the reconciliation graph \(G\), a solution subtree is denoted by \(\phi \in_{21}\) \({ }_{22} \mathcal{T}(G / \mathcal{O})\). The root \(\mathrm{OR}^{+}\)node of a solution subtree \(\phi\) is denoted by \(r(\phi)\). If the \(\operatorname{root}_{22}\) \({ }_{23}\) node \(r(\phi)\) is labeled by \((p, h, e)\), the solution subtree \(\phi\) is interpreted as an optimal \({ }_{23}\) \({ }_{24}\) reconciliation between the parasite subtree \(\left.P\right|_{p}\) and the host tree \(H\) such that \(p\) is \(_{24}\) \({ }_{25}\) mapped to \(h\) and the event of \(p\) is \(e\) (shortly, we say that \(\phi\) is a reconciliation of \({ }_{25}\) \(\left.{ }_{26} P \mid p\right)\). We will use interchangeably the terms solution subtree and reconciliation, \(\operatorname{and}_{26}\) \({ }_{27} \mathrm{we}\) will represent a reconciliation \(\phi\) as a set of triples.

28 28
Lemma 13 In Algorithm 1, Enumerate ( \(p, e, \mathcal{O}\) ) outputs all E-equivalence classes \({ }_{29}\) \({ }_{30}\) in \(\pi(\mathcal{T}(G / \mathcal{O}))\) exactly once, and for each outputted pair of \(T\) and \(\widetilde{\mathcal{O}}\), we have \(\widetilde{\mathcal{O}}=_{30}^{29}\) \({ }_{31} \bigcup_{\phi}\{r(\phi) \mid \pi(\phi)=T, \phi \in \mathcal{T}(G / \mathcal{O})\}\).
\({ }^{32}\) Proof The proof is by induction on the height \(h_{p}\) of the \(\left.P\right|_{p}\). We use the fact that \({ }^{32}\) \({ }^{33}\) the pre-condition in the Require statement in Algorithm 1 is true for all recursive \({ }^{33}\)
\({ }^{1}\) calls of Enumerate (easy induction). When \(h_{p}=0, p\) is a leaf and \(\{(p, \sigma(p), \mathbb{T})\}^{1}\) \({ }^{2}\) is the only reconciliation in \(\mathcal{T}(G / \mathcal{O})\), therefore, \(\{(p, e)\}\) is the only E-equivalence \({ }^{2}\) \({ }^{3}\) class. The outputted set \(\mathcal{O}\) contains in this case the unique goal node of \(G\) labeled \({ }^{3}\) \({ }^{4}\) by \((p, \sigma(p), \mathbb{T})\). Now we assume \(h_{p}>0\).
\({ }^{5}\) (First direction) Consider a fixed pair of \(T:=T_{1} \cup T_{2} \cup\{(p, e)\}\) and \(\widetilde{\mathcal{O}}\) outputted \(^{5}\) \({ }^{6}\) at Line 16 , and take a node \(s\) in \(\widetilde{\mathcal{O}}\). We show that there exists a reconciliation \({ }^{6}\) \({ }^{7} \phi \in \mathcal{T}(G / \mathcal{O})\) such that \(s=r(\phi)\) and \(\pi(\phi)=T\) (i.e. \(T\) is a valid E-equivalence \({ }^{7}\) \({ }^{8}\) class). By the induction hypotheses, \(T_{1}\) is an E-equivalence class so there exists a \({ }^{8}\) \({ }^{9}\) reconciliation \(\phi_{1}\) of \(\left.P\right|_{p_{1}}\) such that \(\pi\left(\phi_{1}\right)=T_{1}\). Let \(s_{1}:=r\left(\phi_{1}\right)\). Take a node \(s_{2} \in \mathcal{O}_{2}{ }^{9}\) \({ }^{10}\) such that \(\left(s_{1}, s_{2}\right) \in \operatorname{gch}(s)\). By the induction hypotheses, there exists a reconciliation \({ }^{10}\) \({ }^{11} \phi_{2}\) of \(\left.P\right|_{p_{2}}\) such that \(r\left(\phi_{2}\right)=s_{2}\) and \(\pi\left(\phi_{2}\right)=T_{2}\). Define \(\phi:=\phi_{1} \cup \phi_{2} \cup\{(p, h, e)\},{ }^{11}\) \({ }^{12}\) where \((p, h, e)\) is the label of \(s\). Then \(\phi\) is a valid reconciliation in \(\mathcal{T}(G / \mathcal{O})\) (notice \({ }^{12}\) \({ }^{13}\) that \(\phi\) is a solution subtree of \(G / \mathcal{O}\) if and only if \(\left.\left(s_{1}, s_{2}\right) \in \operatorname{gch}(s)\right)\), and satisfies \({ }^{13}\) \({ }^{14} \pi(\phi)=T\).
\({ }^{15}\) (Second direction) Consider an E-equivalence class \(T \in \pi(\mathcal{T}(G / \mathcal{O}))\), and take a \({ }^{15}\)
\({ }^{16}\) reconciliation \(\phi \in \mathcal{T}(G / \mathcal{O})\) such that \(\pi(\phi)=T\). We show that \(T\) is outputted exactly \({ }^{16}\)
\({ }^{17}\) once at Line 16 together with a set \(\widetilde{\mathcal{O}}\) containing the root node of \(\phi\). Assume that the \({ }^{17}\) \({ }^{18}\) root node \(s:=r(\phi)\) is labeled with the triple \((p, h, e)\), then \(\phi\) can be uniquely written \({ }^{18}\) \({ }^{19}\) as the union \(\phi_{1} \cup \phi_{2} \cup\{(p, h, e)\}\) where \(\phi_{1}\) and \(\phi_{2}\) are respectively reconciliations of \({ }^{19}\) \(\left.{ }^{20} P\right|_{p_{1}}\) and \(\left.P\right|_{p_{2}}\). Furthermore, \(T\) can be uniquely written as the union \(T_{1} \cup T_{2} \cup\{(p, e)\}^{20}\)
\({ }^{21}\) where \(T_{1}=\pi\left(\phi_{1}\right)\) and \(T_{2}=\pi\left(\phi_{2}\right)\). Notice that \(T_{1}\) and \(T_{2}\) do not depend on the \({ }^{21}\)
\({ }^{22}\) choice of \(\phi\); for \(T\) to be outputted exactly once, it suffices to show that each of \(T_{1}{ }^{22}\)
\({ }^{23}\) and \(T_{2}\) is outputted exactly once. For \(i=1,2\), let \(s_{i}:=r\left(\phi_{i}\right)\) and let \(\left(p_{i}, e_{i}\right)\) be \({ }^{23}\)
\({ }^{24}\) the color of \(s_{i}\). At Line 10, we only need to consider the iteration corresponding to \({ }^{24}\) \({ }^{25}\) the color couple \(\left(\left(p_{1}, e_{1}\right),\left(p_{2}, e_{2}\right)\right)\), as no other iteration can output \(T_{1}\) or \(T_{2}\) from \({ }^{25}\) \({ }^{26}\) a recursive call. Since \(s_{1} \in \mathcal{O}_{1}\) and \(\phi_{1} \in \mathcal{T}\left(G / \mathcal{O}_{1}\right)\), by the induction hypotheses, \(T_{1}{ }^{26}\) \({ }^{27}\) is outputted exactly once in Line 12 together with a set \(\widetilde{\mathcal{O}_{1}}\) containing \(s_{1}\). For this \({ }^{27}\) \({ }^{28}\) pair of \(T_{1}\) and \(\widetilde{\mathcal{O}_{1}}\), the set \(\mathcal{O}_{2}\) computed at Line 13 contains the node \(s_{2}\). Hence, by \({ }^{28}\) \({ }^{29}\) applying again the induction hypotheses to \(\phi_{2} \in \mathcal{T}\left(G / \mathcal{O}_{2}\right), T_{2}\) is outputted exactly \({ }^{29}\) \({ }^{30}\) once in Line 14 together with \(\widetilde{\mathcal{O}_{2}}\) containing \(s_{2}\). It remains to check that the set \(\mathcal{O}^{30}\) \({ }^{31}\) outputted together with \(T\) does contain the node \(s\). As \(s_{i} \in \widetilde{\mathcal{O}_{i}}\) for \(i=1,2\), this is \({ }^{31}\) \({ }^{32}\) straightforward from the computation of \(\mathcal{O}\).
\({ }^{1}\) Theorem 14 Using Algorithm 1, the E-equivalence classes of a reconciliation \({ }^{1}\)
\({ }^{2}\) graph can be enumerated in \(O\left(m n^{2}\right)\) time delay, where \(m=|V(P)|\) and \(n=|V(H)| .{ }^{2}\) 3

3
\({ }^{4}\) Proof To obtain all E-equivalence classes \(\pi(\mathcal{T}(G))\), it suffices to first partition the \({ }^{4}\)
\({ }^{5}\) set of start nodes of the reconciliation graph according to their colors, then, for \({ }^{5}\)
\({ }^{6}\) each subset \(\mathcal{O}_{i}\) of start nodes of color \((p, e)\), make one call of Enumerate \((p, e, \mathcal{O}) .{ }^{6}\)
\({ }^{7}\) By Lemma 13, we output every E-equivalence class of \(\mathcal{T}(G / \mathcal{O})\) exactly once. Since \({ }^{7}\)
\({ }^{8}\) any E-equivalence class of \(\mathcal{T}(G)\) is an E-equivalence class of \(\mathcal{T}\left(G / \mathcal{O}_{k}\right)\) for a unique \({ }^{8}\)
\({ }^{9} k\), we output every E-equivalence class of \(\mathcal{T}(G)\) exactly once.
10 For the complexity, consider the recursion tree formed by the recursive calls of \({ }^{10}\)
\({ }^{11}\) Enumerate. Notice that each node \(p\) of the parasite tree corresponds to exactly one \({ }^{11}\) \({ }^{12}\) recursive call, the size of the recursion tree is thus \(O(m)\). In each recursive call, the \({ }^{12}\) \({ }^{13}\) partitioning of \(\operatorname{gch}(\mathcal{O})\) and the computation of the sets \(\mathcal{O}_{1}, \mathcal{O}_{2}\), and \(\widetilde{\mathcal{O}}\) can all be \({ }^{13}\) \({ }^{14}\) done in time linear in the size of \(\operatorname{gch}(\mathcal{O})\), which is \(O\left(n^{2}\right)\). Therefore, \(O\left(m n^{2}\right)\) time \({ }^{14}\) \({ }^{15}\) is needed in the worst case between outputting two E-equivalence classes.
\({ }^{17}\) CD-equivalence class enumeration 17
\({ }^{18}\) For the CD-equivalence relation, the problems of enumerating the equivalence \({ }^{18}\) \({ }^{19}\) classes and studying one particular equivalence class can be solved using the exact \({ }^{19}\) \({ }^{20}\) same method as for the E-equivalence relation. One only needs to adapt the Defi- \({ }^{20}\) \({ }^{21}\) nition 12 of the color of an \(\mathrm{OR}^{+}\)node. Instead of the couple \((p, e)\), the color of an \({ }^{21}\) \({ }^{22} \mathrm{OR}^{+}\)node labeled by \((p, h, e) \in U\) is now a triple: the triple \((p, h, e)\) for \(e \neq \mathbb{S}\), or, \({ }^{22}\) \({ }^{23}\) when \(e=\mathbb{S}\), the triple \((p, ?, \mathbb{S})\) (see Definition 11 ).
\({ }^{26}\) To evaluate the usefulness of the equivalence classes in practice, we obtained 20 real \({ }^{26}\) \({ }^{27}\) datasets from the literature. The choice of the datasets was motivated by the goal \({ }^{27}\) \({ }^{28}\) of covering many different situations (such as different sizes of the trees), different \({ }^{28}\) \({ }^{29}\) contexts (such as the genes/species one that has been shown to be very closely re- \({ }^{29}\) \({ }^{30}\) lated to the hosts/parasites context, see for instance [34, 35]), different topologies, \({ }^{30}\) \({ }^{31}\) etc. We also chose five cost vectors \(\vec{c}:=(c(\mathbb{C}), c(\mathbb{D}), c(\mathbb{S}), c(\mathbb{L}))\) from the litera- \({ }^{31}\) \({ }^{32}\) ture, namely \((-1,1,1,1)\) (maximizing the cospeciation), \((0,1,1,1)\) (minimizing the \({ }^{32}\) \({ }^{33}\) events that lead to incongruencies between the tree topologies), \((0,1,2,1),(0,2,3,1)^{33}\)
\({ }^{1}\) (host-switches are more penalized), and ( \(0,1,1,0\) ) which is a vector chosen only for \({ }^{1}\)
\({ }^{2}\) theoretical purposes and does not penalize cospeciations and losses. \({ }^{2}\)

3
\({ }^{4}\) Reducing the space of the optimal solutions
\({ }^{5}\) The goal of the first set of experiments is to check that when the number of all \({ }^{5}\)
\({ }^{6}\) optimal reconciliations is large, the number of equivalence classes is significantly \({ }^{6}\)
\({ }^{7}\) smaller. To this end, we ran the algorithm on all the datasets with all the five \({ }^{7}\)
\({ }^{8}\) cost vectors, and computed the number of optimal solutions and the number of \({ }^{8}\)
\({ }^{9}\) equivalence classes. For each instance (i.e. dataset and cost vector) having at least \({ }^{9}\)
\({ }^{10} 50\) optimal reconciliations, we computed for each equivalence relation a value that \({ }^{10}\)
\({ }^{11}\) we called Reduction and which is equal to the number of equivalence classes over the \({ }^{11}\)
\({ }^{12}\) number of optimal reconciliations. In Figure 3, each \(x\) coordinate corresponds to an \({ }^{12}\)
\({ }^{13}\) instance; for each instance we plotted three points that correspond to the Reduction \({ }^{13}\)
\({ }^{14}\) values for the three equivalence relations. One can observe that the Reduction values \({ }^{14}\)
\({ }^{15}\) of the V- and the E-equivalence relations (blue circles and red triangles) are almost \({ }^{15}\)
\({ }^{16}\) all below the value of 0.1 . In other words, for these two definitions of equivalence, \({ }^{16}\)
\({ }^{17}\) one can strongly hope for at least a ten-fold decrease, and in some cases for a \({ }^{17}\)
\({ }^{18}\) thousand-fold decrease in the number of reconciliations that need to be analyzed. \({ }^{18}\)
\({ }^{19}\) As expected, the V- and the E-equivalence relations are the ones that usually lead \({ }^{19}\)
\({ }^{20}\) to a small number of equivalence classes, while the CD-equivalence relation may \({ }^{20}\)
\({ }^{21}\) lead to a larger number of classes, sometimes close to the optimal reconciliations \({ }^{21}\)
\({ }^{22}(\) Reduction close to 1\()\). 22
\begin{tabular}{|c|c|c|}
\hline 23 & & \\
\hline 24 & \multirow[t]{3}{*}{Figure 3 X-axis: All 46 instances (i.e. the pairs of datasets and cost vectors). Y-axis: In logarithmic scale, the Reduction value that is equal to the number of equivalence classes over the total number of reconciliations. For each instance, three points are plotted: the blue circle, the red triangle, and the black X , corresponding respectively to the V -, E -, and CD -equivalence relations. Four points of Reduction values less than \(10^{-6}\) are omitted.} & 24 \\
\hline 25
26 & & 25 \\
\hline & & \\
\hline \multicolumn{2}{|l|}{27} & 27 \\
\hline
\end{tabular}

28
\({ }^{29}\) The utility of equivalence classes enumeration in the analysis of real datasets 29
\({ }^{30}\) We show now that the equivalence classes not only allow us to reduce the number \({ }^{30}\) \({ }^{31}\) of reconciliations to consider, but also provide useful information about the set \({ }^{31}\) \({ }^{32}\) of optimal reconciliations. In particular, we will see that even when the number \({ }^{32}\) \({ }^{33}\) of optimal reconciliations are too large for exhaustive enumeration, the number \({ }^{33}\)
\({ }^{1}\) of event vectors (V-equivalence classes) can still remain small, and there can be \({ }^{1}\)
\({ }^{2}\) already much biological insight to be gained from the event vectors alone. \({ }^{2}\)
\({ }^{3}\) To illustrate the utility of our algorithms, we focus on two real datasets among \({ }^{3}\) \({ }^{4}\) the ones used in the previous experiment. The first is the FD dataset which consists \({ }^{4}\) \({ }^{5}\) in a host tree of 20 taxa corresponding to species of fish and a tree of their parasites \({ }^{5}\)
\({ }^{6}\) Dactylogyrus of 51 taxa \([36,37]\). The second is the WOLB dataset representing the \({ }^{6}\)
\({ }^{7}\) Wolbachia genus and the various arthropods that host them [38, 39]. This dataset \({ }^{7}\)
\({ }^{8}\) was selected because of its size: the trees have each 387 leaves. In Table 1, we present \({ }^{8}\)
\({ }^{9}\) the detailed results obtained for these datasets and the five cost vectors.
\({ }^{10}\) First notice that even for trees of medium size like in the FD dataset, for the cost \({ }^{10}\)
\({ }^{11}\) vector \((0,1,1,1)\) that is commonly used in the literature, we have 25184 optimal rec- \({ }^{11}\)
\({ }^{12}\) onciliations which are impossible to be analyzed manually. However, the number of \({ }^{12}\)
\({ }^{13}\) event vectors is only 11 ; the vectors are: \((9,17,24,2),(9,16,25,2),(7,16,27,0){ }^{13}\) \({ }^{14}(7,17,26,0),(7,18,25,0),(8,16,26,1),(8,18,24,1),(10,16,24,3),(10,17,23,3),{ }^{14}\) \({ }^{15}(8,17,25,1),(9,18,23,2)\). These vectors are all very similar, and can indicate that \({ }^{15}\) \({ }^{16}\) the parasites have a strong capacity to change hosts (high number of host-switches), \({ }^{16}\) \({ }^{17}\) while the hosts have a strong capacity to retain their parasites (low number of \({ }^{17}\) \({ }^{18}\) losses). This is in agreement with what is suggested in the literature that host- \({ }^{18}\) \({ }^{19}\) switching plays an important role in the evolutionary history of the Dactylogyrus \({ }^{19}\) \({ }^{20}\) species [40]. Moreover, as the number of cospeciations is always lower than the num- \({ }^{20}\) \({ }^{21}\) ber of duplications, there is evidence that, for this cost vector, the parasites evolve \({ }^{21}\)
\({ }^{22}\) faster than their hosts. 22 \({ }^{23}\) For what concerns the WOLB dataset all the cost vectors lead to a number of \({ }^{23}\) \({ }^{24}\) optimal reconciliations that is at least \(10^{42}\), a number too large for any exhaustive \({ }^{24}\) \({ }^{25}\) enumeration method. However, in all cases there are only a small number of optimal \({ }^{25}\) \({ }^{26}\) event vectors (except for the least biologically meaningful cost vector \(\left.(0,1,1,0)\right) .{ }^{26}\) \({ }^{27}\) For the cost vector \((0,2,3,1)\), the seven optimal event vectors are: \((102,0,284,36),{ }^{27}\) \({ }^{28}(103,0,283,39),(104,0,282,42),(105,0,281,45),(106,0,280,48),(107,0,279,51){ }^{28}\) \({ }^{29}\) and \((108,0,278,54)\). From the list of event vectors, one can see that the dataset \({ }^{29}\) \({ }^{30}\) can be explained by a large number of host-switches and cospeciations, and that \({ }^{30}\) \({ }^{31}\) there have probably been no duplication.Again this seems in agreement with what \({ }^{31}\) \({ }^{32}\) is known in the literature as duplications are believed to be a rare event in the \({ }^{32}\) \({ }^{33}\) evolutionary history of Wolbachia whereas host-switches are common [38, 39].

1 Therefore, by simply considering the equivalence classes one already has an idea \({ }^{1}\)
\({ }^{2}\) of the diversity of the optimal reconciliations. Our approach is thus helpful for \({ }^{2}\)
\({ }^{3}\) drawing conclusions about the co-evolutionary history of this pair of host/parasite \({ }^{3}\)
\({ }^{4}\) association for which few prior analysis methods apply. 4
\({ }^{5}\) Table 1 Experimental results for the FD and Wolbachia dataset and for each cost vector. \(|L(H)|\) and \({ }^{5}\) \({ }_{6}|L(S)|\) are the number of leaves of the host tree and the parasite tree; \(|\mathcal{R}|\) is the number of optimal 6 reconciliations; \(\left|\mathrm{V}_{\text {eq }}\right|,\left|\mathrm{P}_{\text {eq }}\right|\), and \(\left|\mathrm{CD}_{\text {eq }}\right|\) are respectively the number of V -, E -, and CD -equivalent
\({ }^{7}\) classes. The dash indicates that the counting of the equivalence classes did not finish.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 8 & Dataset & \(|L(H)|\) & \(|L(S)|\) & Cost vector & \(|\mathcal{R}|\) & \(\left|\mathrm{V}_{\text {eq }}\right|\) & \(\left|E_{\text {eq }}\right|\) & \(\left|C D_{\text {eq }}\right|\) \\
\hline 9 & \multirow{5}{*}{FD [36, 37]} & \multirow{5}{*}{20} & \multirow{5}{*}{51} & \((-1,1,1,1)\) & 944 & 8 & 14 & 18 \\
\hline & & & & \((0,1,1,1)\) & 25184 & 11 & 52 & 72 \\
\hline 10 & & & & (0, 1, 2, 1) & 408 & 10 & 20 & 20 \\
\hline \multirow[b]{2}{*}{11} & & & & \((0,2,3,1)\) & 80 & 2 & 2 & 2 \\
\hline & & & & (0, 1, 1, 0) & \(\approx 10^{15}\) & 2146 & 54336 & \(\approx 10^{13}\) \\
\hline \multirow[t]{2}{*}{12} & \multirow{5}{*}{WOLB [38, 39]} & \multirow{5}{*}{387} & \multirow{5}{*}{387} & (-1, 1, 1, 1) & \(\approx 10^{47}\) & 10 & 4080 & 24192 \\
\hline & & & & \((0,1,1,1)\) & \(\approx 10^{48}\) & 11 & 40960 & 76800 \\
\hline 13 & & & & \((0,1,2,1)\) & \(\approx 10^{47}\) & 10 & 4080 & 24192 \\
\hline 14 & & & & \((0,2,3,1)\) & \(\approx 10^{42}\) & 7 & 96 & 1152 \\
\hline & & & & \((0,1,1,0)\) & \(\approx 10^{136}\) & - & \(\approx 10^{27}\) & - \\
\hline
\end{tabular}

16
\({ }^{17}\) Estimation of event reliability
\({ }^{18}\) As there can be a large number of equally optimal reconciliations, the reliability of \({ }^{18}\)
\({ }^{19}\) the predicted evolutionary events may be questioned. It is thus interesting to define \({ }^{19}\) \({ }^{20}\) support measures that estimate the event reliability (see for example [19]). These \({ }^{20}\)
\({ }^{21}\) measures are mostly based on the idea that in the space of optimal reconciliations, \({ }^{21}\)
\({ }^{22}\) each reconciliation is equally likely and then the support of an event is proportional \({ }^{22}\)
\({ }^{23}\) to the number of optimal reconciliations that confirm it. In this direction, the sup- \({ }^{23}\)
\({ }^{24}\) port of an event can be thought as a rough estimation of the probability of that \({ }^{24}\)
\({ }^{25}\) event in the space of optimal solutions. 25
\({ }^{26}\) The algorithms proposed in this paper allow us to compute these measures ef- \({ }^{26}\)
\({ }^{27}\) ficiently and accurately. Indeed, we can compute not only the equivalence classes \({ }^{27}\)
\({ }^{28}\) but also their size. Once we have the list of event-vectors and the size of each \(V-{ }^{28}\) \({ }^{29}\) equivalence class, we have an accurate estimate of the probabilities of the four types \({ }^{29}\)
\({ }^{30}\) of events, assuming that each optimal reconciliation is equally probable. In Table \(2^{30}\)
\({ }^{31}\) for the WOLB dataset and cost vector \((0,2,3,1)\) we list the \(V\)-equivalence classes \({ }^{31}\)
\({ }^{32}\) (i.e., the event vectors) together with their size as proportions of the solution space \({ }^{32}\)
\({ }^{33}\) (i.e., the proportion of optimal reconciliations in each \(V\)-equivalence class among \({ }^{33}\)
\({ }^{1}\) all optimal reconciliations). We can immediately see that \(\approx 85 \%\) of the optimal rec- \({ }^{1}\) \({ }^{2}\) onciliations have \(105 \pm 1\) cospeciations and it is less probable to find reconciliations \({ }^{2}\) \({ }^{3}\) with a number of cospeciations far from 105.

4
5 We could also extend this argument to the \(E\)-equivalence classes. Recall that an \({ }_{5}\) \({ }_{6} E\)-equivalence class can be viewed as a labeling of the nodes of the parasite tree \({ }_{6}\) \({ }_{7}\) with an event type. In this case, the support of the pair (node of the parasite \({ }_{7}\) \({ }_{8}\) tree, event) is proportional to the number of optimal reconciliations that confirm \({ }_{8}\) \({ }_{9}\) it. In particular, it is interesting to identify the nodes of the parasite tree that are \({ }_{9}\) \({ }_{10}\) labeled by the same event in all the \(E\)-equivalence classes. This may seem a strong \({ }_{10}\) \({ }_{11}\) requirement but in practice, for the datasets we analyzed, this number is significant \({ }_{11}\) \({ }_{12}\) For the WOLB dataset, only 15 nodes are assigned to different event types, in other \({ }_{12}\) \({ }_{13}\) words, all the other 371 internal nodes receive a consistent event type across the \({ }_{13}\) \({ }_{14}\) entire solution space. This means that we have further confirmed that the diversity \({ }_{14}\) \({ }_{15}\) of the solution space is low: not only the event vectors are similar, the distributions \({ }_{15}\) \({ }_{16}\) of the events on the nodes of the parasite tree are also similar.

17 17
\({ }^{18}\) Table 2 The \(V\)-equivalence classes for the WOLB dataset, cost vector \((0,2,3,1)\) and their size, as 18 \({ }_{19}\) proportions of the solution space, sorted in the decreasing order of the size. 19

20

21

22
\begin{tabular}{|c|c|}
\hline Event vector & Proportion of the solution space \\
\hline \hline\((105,0,281,45)\) & \(36.5425 \%\) \\
\hline\((106,0,280,48)\) & \(29.5704 \%\) \\
\hline\((104,0,282,42)\) & \(18.7570 \%\) \\
\hline\((107,0,279,51)\) & \(10.5588 \%\) \\
\hline\((103,0,283,39)\) & \(3.1628 \%\) \\
\hline\((108,0,278,54)\) & \(1.3807 \%\) \\
\hline\((102,0,284,36)\) & \(0.0277 \%\) \\
\hline
\end{tabular}
\({ }^{27}\) Finally, the algorithm is quite efficient in practice, as for example for the cost \({ }^{27}\)
\({ }^{28}\) vector \((-1,1,1,1)\), to enumerate all the optimal event vectors, it took around \(8^{28}\) \({ }^{29}\) minutes for the dataset of Wolbachia and their arthropod hosts on a single thread \({ }^{29}\) \({ }^{30}\) of the Intel Core \(\mathrm{i} 5-3380 \mathrm{M}\) CPU. The enumeration of equivalence classes, together \({ }^{30}\) \({ }^{31}\) with other features such as the visualization of the E - and the CD-equivalence \({ }^{31}\) \({ }^{32}\) classes, is freely available in the software Capybara; more information can be found \({ }^{32}\) \({ }^{33}\) in [32].

\section*{\({ }^{1}\) Discussion}
\({ }^{2}\) Comparison with eMPRess
\({ }^{3}\) empress \([13,10]\) is a tool that includes the possibility for the user to cluster the \({ }^{3}\) \({ }^{4}\) space of optimal solutions using agglomerative hierarchical clustering. The user can \({ }^{4}\)
\({ }^{5}\) define the desired final number of clusters and a lower bound for the initial number \({ }^{5}\) \({ }^{6}\) of clusters (the actual initial number depends on the structure of the reconcilia- \({ }^{6}\) \({ }^{7}\) tion graph, and can be much larger than the chosen lower bound). Then, pairs of \({ }^{7}\) \({ }^{8}\) clusters are merged using a linkage criterion until the desired number of clusters \({ }^{8}\) \({ }^{9}\) is obtained. The authors consider two different linkage criteria: (i) minimizing the \({ }^{9}\) \({ }^{10}\) average distance between the solutions within each cluster with respect to a given \({ }^{10}\)
\({ }^{11}\) distance metric (the symmetric distance or the path distance), (ii) maximizing the \({ }^{11}\) \({ }^{12}\) average event support in each cluster. \({ }^{12}\)
\({ }^{13}\) As already mentioned in the introduction, the approach of eMPRess is fundamen- \({ }^{13}\) \({ }^{14}\) tally different from the one we propose. We believe that it is interesting to remark \({ }^{14}\) \({ }^{15}\) some of the differences between the two methods that the user should keep in mind \({ }^{15}\) \({ }^{16}\) when applying one method or the other.
\({ }^{17}\) It is important to notice that the results obtained with our algorithm and with \({ }^{17}\)
\({ }^{18}\) eMPRess can be very different. Two solutions that may be considered equivalent \({ }^{18}\) \({ }^{19}\) may have a large symmetric or path distance. Indeed, the symmetric distance be- \({ }^{19}\) \({ }^{20}\) tween two reconciliations is defined as the number of associations that are found in \({ }^{20}\) \({ }^{21}\) one reconciliation or the other but not in both. Inside an E-equivalence class, even \({ }^{21}\) \({ }^{22}\) though the type of the events is consistent among the reconciliations, all the asso- \({ }^{22}\) \({ }^{23}\) ciations can potentially be different, so the symmetric distance can take the largest \({ }^{23}\) \({ }^{24}\) possible value. Moreover, when using the event support criterion, it is important \({ }^{24}\) \({ }^{25}\) to keep in mind that within a cluster, by construction, the more ancestral events \({ }^{25}\) \({ }^{26}\) are more supported than the more recent events. While this may be biologically \({ }^{26}\) \({ }^{27}\) motivated, it is a bias that we may not want in some datasets.
\({ }^{28}\) These differences are also seen in practice as we applied eMPRess to some of the \({ }^{28}\) \({ }^{29}\) datasets used in the previous section, requiring that the number of final clusters \({ }^{29}\) \({ }^{30}\) is the same (or slightly larger) than the number of equivalence classes that we \({ }^{30}\) \({ }^{31}\) have found for that dataset. By analyzing the median reconciliations of the final \({ }^{31}\) \({ }^{32}\) clusters, we saw that, even for the V-equivalence relation (which is among those \({ }^{32}\) \({ }^{33}\) most analyzed in practical studies), some classes are not represented.

1 Finally, the worst case running time of the clustering method of eMPRess depends \({ }^{1}\) \({ }^{2}\) quadratically on the initial number of clusters and the time can be a limitation in \({ }^{2}\) \({ }^{3}\) practice. When we applied it to the Wolbachia dataset with the default cost vector \({ }^{3}\) \({ }^{4}(0,2,3,1)\) and the symmetric distance criterion, by starting with 336 initial clusters \({ }^{4}\) \({ }^{5}\) (level \(L=6\) in [13]) and choosing 10 as the final number of clusters, the software \({ }^{5}\) \({ }^{6}\) did not finish within 24 hours. 6 7

9In this paper, we proposed a method that lists representative reconciliations from 9 10the (often huge) space of optimal solutions. To this purpose, we first defined when 10 \({ }^{11}\) two reconciliations can be considered equivalent and then we provided efficient algo-11 \({ }^{12}\) rithms that output in polynomial delay only one reconciliation from each equivalence \({ }^{12}\) \({ }^{13}\) class. We proposed three different biologically motivated equivalence relations. We \({ }^{13}\) \({ }^{14}\) applied our algorithms to real datasets and showed that we were able to analyze the \({ }^{14}\) \({ }^{15}\) space of optimal reconciliations even in cases when the latter has a huge size (e.g. \({ }^{15}\) \(1610^{42}\) ). As a future direction, we plan to extend our algorithms to other definitions \({ }^{16}\)
\({ }^{17}\) of equivalence for reconciliations. ..... 17
18 18
19Availability of data and materials 19
    Text for this section. . .
2020
    Competing interests
\({ }^{21}\) The authors declare that they have no competing interests.
22 Authors' contributions 22
    Authors' contributions
23 Text for this section ... 23
24 Author details 24
    \({ }^{1}\) Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 25
    Villeurbanne, France. \({ }^{2}\) ERABLE team, Inria Grenoble Rhône-Alpes, Villeurbanne, France. \({ }^{3}\) Luiss University,
26Rome, Italy.26
27References ..... 271. Etherington, G.J., Ring, S.M., Charleston, M.A., Dicks, J., Rayward-Smith, V.J., Roberts, I.N.: Tracing the 28origin and co-phylogeny of the caliciviruses. Journal of General Virology 87(5), 1229-1235 (2006).doi:10.1099/vir.0.81635-0 292. Lei, B.R., Olival, K.J.: Contrasting patterns in mammal-bacteria coevolution: Bartonella and leptospira in bats30 and rodents. PLOS Neglected Tropical Diseases 8(3), 1-11 (2014). doi:10.1371/journal.pntd. 000273831 3. Pennington, P.M., Messenger, L.A., Reina, J., Juárez, J.G., Lawrence, G.G., Dotson, E.M., Llewellyn, M.S., 31Cordón-Rosales, C.: The chagas disease domestic transmission cycle in guatemala: Parasite-vector switches and
\({ }^{1}\) 4. Charleston, M.A.: Recent results in cophylogeny mapping. Advances in Parasitology 54, 303-330 (2003).
2 doi:10.1016/s0065-308×(03)54007-62
5. Merkle, D., Middendorf, M.: Reconstruction of the cophylogenetic history of related phylogenetic trees with 3 divergence timing information. Theory in Biosciences 123, 277-299 (2005). doi:10.1016/j.thbio.2005.01.003 3
4 6. Donati, B., Baudet, C., Sinaimeri, B., Crescenzi, P., Sagot, M.: Eucalypt: efficient tree reconciliation 4 enumerator. Algorithms for Molecular Biology 10(1), 3 (2015). doi:10.1186/s13015-014-0031-3
5 7. Stolzer, M., Lai, H., Xu, M., Sathaye, D., Vernot, B., Durand, D.: Inferring duplications, losses, transfers and 5 incomplete lineage sorting with nonbinary species trees. Bioinformatics 28(18), 409-415 (2012).
6 doi:10.1093/bioinformatics/bts386
7 8. Merkle, D., Middendorf, M., Wieseke, N.: A parameter-adaptive dynamic programming approach for inferring 7 cophylogenies. BMC Bioinformatics 11(Supplementary 1), 10 (2010). doi:10.1186/1471-2105-11-S1-S60
8 9. Jacox, E., Chauve, C., Szöllősi, G.J., Ponty, Y., Scornavacca, C.: ecceTERA: Comprehensive gene tree-species \({ }^{8}\)
9 tree reconciliation using parsimony. Bioinformatics (2016). doi:10.1093/bioinformatics/btw105 9
10. Santichaivekin, S., Yang, Q., Liu, J., Mawhorter, R., Jiang, J., Wesley, T., Wu, Y.-C., Libeskind-Hadas, R.:

10 empress: a systematic cophylogeny reconciliation tool. Bioinformatics (2020). 10 doi:10.1093/bioinformatics/btaa978
11. Huber, K.T., Moulton, V., Sagot, M., Sinaimeri, B.: Geometric medians in reconciliation spaces of phylogenetic

12 trees. Information Processing Letters 136, 96-101 (2018). doi:10.1016/j.ipl.2018.04.001
12. Huber, K.T., Moulton, V., Sagot, M.-F., Sinaimeri, B.: Exploring and Visualizing Spaces of Tree

13 Reconciliations. Systematic Biology 68(4), 607-618 (2018). doi:10.1093/sysbio/syy075
1413. Mawhorter, R., Libeskind-Hadas, R.: Hierarchical clustering of maximum parsimony reconciliations. BMC 14 Bioinformatics 20, 612 (2019). doi:10.1186/s12859-019-3223-5
\({ }^{15}\) 14. Grueter, M., Duran, K., Ramalingam, R., Libeskind-Hadas, R.: Reconciliation reconsidered: In search of a most \({ }^{15}\)
16 representative reconciliation in the duplication-transfer-loss model. IEEE/ACM Transactions on Computational 16 Biology and Bioinformatics, 1-1 (2019). doi:10.1109/TCBB.2019.2942015
1715. Bansal, M.S., Alm, E.J., Kellis, M.: Reconciliation revisited: handling multiple optima when reconciling with 17 duplication, transfer, and loss. Journal of computational biology : a journal of computational molecular cell 18 biology 20(10), 738-754 (2013). doi:10.1089/cmb.2013.0073
1916. Scornavacca, C., Paprotny, W., Berry, V., Ranwez, V.: Representing a set of reconciliations in a compact way. 19 Journal of Bioinformatics and Computational Biology 11(02), 1250025 (2013). doi:10.1142/S021972001250025420

21 17. Haack, J., Zupke, E., Ramirez, A., Wu, Y.-C., Libeskind-Hadas, R.: Computing the diameter of the space of 21 maximum parsimony reconciliations in the duplication-transfer-loss model. IEEE/ACM Transactions on
22 Computational Biology and Bioinformatics 16(1), 14-22 (2019). doi:10.1109/TCBB.2018.2849732
\({ }_{23}{ }^{18}\). Santichaivekin, S., Mawhorter, R., Libeskind-Hadas, R.: An efficient exact algorithm for computing all pairwise 23 distances between reconciliations in the duplication-transfer-loss model. BMC Bioinformatics 20(20), 636
24 (2019). doi:10.1186/s12859-019-3203-9
19. Nguyen, T.-H., Ranwez, V., Berry, V., Scornavacca, C.: Support measures to estimate the reliability of evolutionary events predicted by reconciliation methods. PLOS ONE 8(10), 1-14 (2013).
26 doi:10.1371/journal.pone. 0073667
doi:10.1371/journal.pone.0073667 26
20. Ozdemir, A., Sheely, M., Bork, D., Cheng, R., Hulett, R., Sung, J., Wang, J., Libeskind-Hadas, R.: Clustering

27 the space of maximum parsimony reconciliations in the duplication-transfer-loss model. In: Algorithms for 27

28 Computational Biology - 4th International Conference, AICoB 2017, Aveiro, Portugal, June 5-6, 2017, 28 Proceedings, pp. 127-139 (2017). doi:10.1007/978-3-319-58163-7_9
\({ }^{29}\) 21. Gastaldello, M., Calamoneri, T., Sagot, M.: Extracting few representative reconciliations with host switches. In: \({ }^{29}\) Computational Intelligence Methods for Bioinformatics and Biostatistics - 14th International Meeting, CIBB 30 2017, Cagliari, Italy, September 7-9, 2017, Revised Selected Papers, pp. 9-18 (2017).
31 doi:10.1007/978-3-030-14160-8_2. https://doi.org/10.1007/978-3-030-14160-8_2
22. Braga, M.D.V., Sagot, M.-F., Scornavacca, C., Tannier, E.: Exploring the solution space of sorting by reversals, with experiments and an application to evolution. IEEE/ACM transactions on computational biology and
33 bioinformatics 5(3), 348-356 (2008). doi:10.1109/TCBB. 2008.16\({ }^{1}\) 23. Andersson, S.A., Madigan, D., Perlman, M.D.: A characterization of markov equivalence classes for acyclicdigraphs. Annals of Statistics 25(2), 505-541 (1997). doi:10.7916/D8280JSB2
24.
    Narisawa, K., Inenaga, S., Bannai, H., Takeda, M.: Efficient computation of substring equivalence classes with 4
    suffix arrays. In: Ma, B., Zhang, K. (eds.) Combinatorial Pattern Matching, pp. 340-351. Springer, Berlin,
5 Heidelberg (2007). doi:10.1007/s00453-016-0178-z
6. Giegerich, R., Voß, B., Rehmsmeier, M.: Abstract shapes of RNA. Nucleic Acids Research 32(16), 4843-4851
(2004). doi:10.1093/nar/gkh779
727. Wang, Y., Mary, A., Sagot, M., Sinaimeri, B.: A general framework for enumerating equivalence classes of
solutions. In: 29th Annual European Symposium on Algorithms, ESA 2021, September 6-8, 2021, Lisbon,
8 Portugal (Virtual Conference), pp. 80-18014 (2021). doi:10.4230/LIPIcs.ESA.2021.80.https://doi.org/10.4230/LIPIcs.ESA. 2021.80
28. Goodman, M., Czelusniak, J., Moore, G.W., Romero-Herrera, A.E., Matsuda, G.: Fitting the gene lineage into
10 its species lineage, a parsimony strategy illustrated by cladograms constructed from globin sequences. ..... 10
Systematic Zoology 28(2), 132-163 (1979). doi:10.2307/2412519
11biosciences 149, 191-223 (1998). doi:10.1016/s0025-5564(97)10012-830. Nilsson, N.J.: Principles of Artificial Intelligence. Springer, Tioga, Palo Alto, CA (1982)
\({ }^{13}\) 31. Ma, W., Smirnov, D., Forman, J., Schweickart, A., Slocum, C., Srinivasan, S., Libeskind-Hadas, R.: Dtl-rnb13
Algorithms and tools for summarizing the space of dtl reconciliations. IEEE/ACM Transactions onComputational Biology and Bioinformatics 15(2), 411-421 (2018). doi:10.1109/TCBB.2016.2537319\(15_{32}\). Wang, Y., Mary, A., Sagot, M., Sinaimeri, B.: Capybara: equivalence class enumeration of cophylogenyevent-based reconciliations. Bioinformatics 36(14), 4197-4199 (2020). doi:10.1093/bioinformatics/btaa49833. Frederickson, G.N., Johnson, D.B.: Generalized selection and ranking: Sorted matrices. SIAM Journal on
17 Computing 13(1), 14-30 (1984). doi:10.1137/021300217
\(18{ }^{34}\)
areas. Systematic Biology 43(1), 58-77 (1994). doi:10.1093/sysbio/43.1.581935. Wieseke, N., Bernt, M., Middendorf, M.: Unifying parsimonious tree reconciliation. In: Algorithms in19Bioinformatics - 13th International Workshop, WABI 2013, Proceedings. Lecture Notes in Computer Science,vol. 8126, pp. 200-214. Springer, Berlin, Heidelberg (2013). doi:10.1007/978-3-642-40453-5_16\(21^{36 .}\) Balbuena, J.A., Mãguez-Lozano, R., Blasco-Costa, I.: Paco: A novel procrustes application to cophylogenetic 21analysis. PLoS ONE 8(4), 61048 (2013). doi:10.1371\%2Fjournal.pone. 0061048
2237 . ŠImková, A., Morand, S., Jobet, E., Gelnar, M., Verneau, O.: Molecular phylogeny of congeneric monogenean ..... 22
parasites (dactylogyrus): A case of intrahost speciation. Evolution 58(5), 1001-1018 (2004). ..... 23doi:10.1111/j.0014-3820.2004.tb00434.x2438. Simões, P.M., Mialdea, G., Reiss, D., Sagot, M.-F., Charlat, S.: Wolbachia detection: an assessment of 24standard PCR protocols. Molecular Ecology Resources 11(3), 567-572 (2011).doi:10.1111/j.1755-0998.2010.02955.x
2639. Simões, P.M.: Diversity and dynamics of Wolbachia-host associations in arthropods from the society ..... 26
archipelago, french polynesia. PhD thesis, University of Lyon 1, France (2012). https://tel.archives-ouvertes.fr/tel-00850707/file/SimoesP2012.pdf ..... 27
2840. Benovics, M., Desdevises, Y., Šanda, R., Vukić, J., Šimková, A.: Cophylogenetic relationships ..... 28
betweenDactylogyrus(monogenea) ectoparasites and endemic cyprinoids of the north-eastern european peri-mediterranean region 58(1), 1-21 (2019). doi:10.1111/jzs. 12341 ..... 29
30 ..... 30
31 ..... 31
```

