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Abstract

Background: Cophylogeny reconciliation is a powerful method for analyzing

host-parasite (or host-symbiont) co-evolution. It models co-evolution as an

optimization problem where the set of all optimal solutions may represent

different biological scenarios which thus need to be analyzed separately. Despite

the significant research done in the area, few approaches have addressed the

problem of helping the biologist deal with the often huge space of optimal

solutions.

Results: In this paper, we propose a new approach to tackle this problem. We

introduce three different criteria under which two solutions may be considered

biologically equivalent, and then we propose polynomial-delay algorithms that

enumerate only one representative per equivalence class (without listing all the

solutions).

Conclusions: Our results are of both theoretical and practical importance.

Indeed, as shown by the experiments, we are able to significantly reduce the

space of optimal solutions while still maintaining important biological information

about the whole space.

Keywords: Cophylogeny; Enumeration; Equivalence relation; Dynamic

programming

Background

Reconstructing the evolutionary history of parasites (or symbionts) and their hosts

has many applications such as for example identifying and tracing the origins of

emerging infectious diseases [1, 2, 3]. These studies have become increasingly more

important with the large amount of publicly available sequence data. A power-

ful framework for modeling host-parasite co-evolution is provided by cophylogeny
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models which derive evolutionary scenarios for both hosts and parasites (usually

evolutionary trees are computed from DNA sequence data). Co-evolution is usually

modeled as a problem of mapping the phylogenetic tree of the parasites to the one

of the hosts (see e.g. [4, 5, 6, 7]). Such mapping, called a reconciliation, allows the

identification of some biologically motivated events: (a) cospeciation, when the par-

asite diverges in correspondence to the divergence of a host species; (b) duplication,

when the parasite diverges but not the host; (c) host-switching, when a parasite

switches from one host species to another independent of any host divergence; and

(d) loss, which can describe for instance speciation of the host species independently

of the parasite, which then follows just one of the new host species. Finding the

“best” reconciliation is modeled as an optimization problem by assigning a cost

to each of the different types of events and then seeking the reconciliations that

minimize the total cost (computed in an additive way). In practice, there may of-

ten be many optimal solutions which, although having the same total cost, can be

quite different among them and correspond to different biological scenarios. Most

of the software proposed in the literature therefore do not rely only on one optimal

solution but enumerate all of them (e.g. [8, 7, 6, 9, 10]). A crucial issue is that often

the number of optimal solutions is unrealistically large (exponential in the size of

the trees) [6, 11, 12, 13, 14], making it practically impossible to analyze each one

of them separately.

To tackle this problem, we observe that although many of the solutions can be

indeed very different, a large number of them are quite similar and can be consid-

ered biologically equivalent. We thus first propose various equivalence relations for

grouping the reconciliations that may be considered biologically equivalent, then

we provide algorithms which efficiently enumerate only the equivalence classes or

one representative reconciliation per class.

State of the art

Many methods have been proposed in the literature to deal with the large number

of optimal reconciliations. Some early approaches propose sampling the space of

optimal reconciliations uniformly at random [15, 16]. However, as the optimal rec-

onciliation space can be both large and heterogeneous [17], this does not guarantee

that important information is not lost.
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Other methods try to understand the structure of the space of solutions by com-

puting some global properties such as the frequency of the events across the space

[16], the diameter of the space [17], the pairwise distance among the optimal rec-

onciliations [18]. In a similar direction, other methods propose a single reconcilia-

tion (e.g. a “median” reconciliation) to represent the whole space of optimal ones

[19, 11, 14]. However, the results presented in [12, 14, 17, 18] show that the space

can be very diverse and making inferences from a single reconciliation might lead to

conclusions that can be contradicted by other optimal reconciliations. The method

in [19] has been generalized in [20] in order to find a set of k medoids, or k cen-

ters that represent the space. However, these algorithms have a running time of

O(nk+3 log k) (where k is the number of clusters and n is the size of the trees) and

are thus not applicable in practice. Finally, in [13, 10] the solutions are clustered

using a similarity distance among the reconciliations. However, in some cases the

results of the clustering can be hard to interpret (see Section Experimental results).

Our contribution

In this paper, we propose an approach that is entirely different from the ones dis-

cussed in the state of the art section. We first formally define under what condi-

tions two solutions can be considered biologically equivalent. Some first steps in

this direction were done in [21] where two notions of equivalence were first con-

sidered. However, the method presented in [21] requires first the listing (i.e. the

enumeration) of all the optimal solutions and then clustering them according to the

equivalence notion.

Here we introduce three different relations of equivalence. We then propose an

algorithm that efficiently enumerates the set of “equivalence classes” or that enu-

merates one representative per class without having to first generate all of them. The

algorithms that we present are polynomial-delay, meaning that the time between

the output of any solution and the next one is bounded by a polynomial function of

the input size. Our results are of both practical and theoretical importance. Indeed,

the problem of enumerating equivalence classes, and particularly the generation of

representative solutions is a challenge in the context of enumeration algorithm. It

has been identified as a need in different areas, such as genome rearrangements [22],
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artificial intelligence [23], pattern matching [24, 25], or the study of RNA shapes

[26].

It is worth mentioning that the theoretical results in this paper have inspired the

introduction of a general framework to enumerate equivalence classes for a whole

class of problems which can be addressed by dynamic programming algorithms [27].

Model description

Definitions

In this section, we formally present the phylogenetic tree reconciliation problem that

was originally introduced by Goodman et al. in 1979 [28]. We start by providing

some definitions that will be used in the paper.

For a directed graph G, we denote by V (G) and A(G) respectively the set of nodes

and the set of arcs of G. The out-neighbors of a node v are called its children. We

consider ordered rooted trees in which arcs are directed away from the root. For a

tree T , we denote by L(T ) the set of leaf nodes, i.e. those nodes without children,

and denote by r(T ) the root of T ; the non-leaf nodes are called the internal nodes

of T . A full rooted binary tree is a rooted tree in which every internal node has two

children.

We denote by p(w) the parent of a node w. The children of a node w are denoted

by a couple (i.e. an ordered pair) ch(w). If there exists a directed path from a node

v to a node w, the node w is called a descendant of v, and v is called an ancestor

of w; if moreover v 6= w, we say that w is a proper descendant of v, and that v is

a proper ancestor of w. If neither w is an ancestor of v nor w is an ancestor of v,

we say that the two nodes are incomparable, and denote this as v 6⇠ w. We denote

by LCA(v, w) the lowest common ancestor of two nodes v and w. The subtree of T

rooted at a node v containing all descendants of v is denoted by T |v. Finally, we

denote by dT (v, w) the distance, i.e. the number of arcs on a directed path, between

two comparable nodes v and w in T .

We define next the Phylogenetic tree reconciliation problem (shortly, the

Reconciliation problem). Let H and P be respectively the rooted phylogenetic

trees of the host and parasite species, both binary and full. Let � be a function from

L(P ) to L(H), representing the parasite/host associations between extant species.

A reconciliation is a function � that assigns, for each parasite node p 2 V (P ),
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a host node �(p) 2 V (H), and satisfies the conditions stated in Definition 1. A

reconciliation must induce an event function E� on V (P ) which associates each

parasite node p to an event E�(p). The set of events is denoted by E := {C, D, S, T};

the leaf parasite node has a special event T; for internal parasite nodes, the event

E�(p) is one among three options: cospeciation C, duplication D, and host-switch

S. The event for an internal node p will depend on the hosts that are assigned by

� to p and to the two children p1 and p2 of p. In Definition 1, this dependency is

expressed by E�(p) := E(�(p),�(p1),�(p2)).

Definition 1 (Reconciliation, Event of a node) Given two phylogenetic trees H

and P , and a function � : L(P ) ! L(H), a reconciliation of (H,P,�) is a function

� : V (P ) ! V (H) satisfying the following:

1 For every leaf node p 2 L(P ), �(p) is equal to �(p), and E�(p) = T.

2 For every internal node p 2 V (P ) \ L(P ) with children (p1, p2), exactly one

of the following applies:

(a) E (�(p),�(p1),�(p2)) = S, that is, either �(p1) 6⇠ �(p) and �(p2) is a

descendant of �(p), or �(p2) 6⇠ �(p) and �(p1) is a descendant of �(p),

(b) E (�(p),�(p1),�(p2)) = C, that is, LCA(�(p1),�(p2)) = �(p), and

�(p1) 6⇠ �(p2),

(c) E (�(p),�(p1),�(p2)) = D, that is, �(p1) and �(p2) are descendants of

�(p), and the previous two cases do not apply.

In a reconciliation, an internal parasite node can be additionally associated to

a number of loss events. The loss event is denoted by L. A loss can only occur

in conjunction with another event (S, C, or D), and the definition of the number

of losses splits into several cases according to the accompanying event. We give

in Definition 2 the number of loss events associated to an internal node p, called

the loss contribution ⇠�(p). Since the loss contribution is also determined by the

hosts that are assigned to p and to the children of p, we will also write ⇠�(p) :=

⇠(�(p),�(p1),�(p2)).

Definition 2 (Loss contribution) Let � : V (P ) ! V (H) be a reconciliation. Let

p be an internal node of the parasite tree with children p1, p2. Its loss contribution
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⇠�(p) is defined by:

⇠�(p) :=

8
>>>>>>>>>><
>>>>>>>>>>:

dH(�(p),�(p1)) if E�(p) = S and �(p) 6⇠ �(p2),

dH(�(p),�(p2)) if E�(p) = S and �(p) 6⇠ �(p1),

dH(�(p),�(p1)) + dH(�(p),�(p2))� 2 if E�(p) = C,

dH(�(p),�(p1)) + dH(�(p),�(p2)) otherwise, E�(p) = D.

The function E� partitions the set of internal parasite nodes into three disjoint

subsets according to their event; these subsets are denoted by V C(P ), V D(P ), V S(P ).

The number of occurrences of each of the three events together with the number of

losses make up the event vector of the reconciliation �:

Definition 3 (Event vector) The event vector of a reconciliation � is a vector of

four integers consisting of the total number of each type of events C, D, S, and L,

i.e.

~e (�) :=

0
@��V C(P )

�� ,
��V D(P )

�� ,
��V S(P )

�� ,
X

p∈V (P )\L(P )

⇠�(p)

1
A . (1)

Given a cost vector ~c := (c(C), c(D), c(S), c(L)) assigning a real number to each

type of event, the cost of a reconciliation � is equal to the dot product between

the cost vector and the event vector cost(�) := ~c · ~e (�). We are now ready to

formulate the optimization version of the Reconciliation problem: Given two

phylogenetic trees H and P , a function � : L(P ) ! L(H), and a cost vector ~c, find

a reconciliation � of (H,P,�) of minimum cost.

In Figure 1, we show two different reconciliations on the same input (H,P,�).

Depending on the cost vector, these reconciliations may or may not be optimal.

Notice that if the cost vector is (0, 0, 0, 0), any valid reconciliation will be optimal.

Figure 1 Example of two reconciliations φ1 and φ2 on the same input. For each reconciliation, we

draw the parasite tree on the left, the host tree on the right; the solid edges represent the

associations for the leaf parasite nodes; the dashed edges represent the associations for the

internal parasite nodes.
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Dynamic programming algorithm

The Reconciliation problem can be solved by dynamic programming. One of

the first methods which took into account all the events described in the previous

section was introduced by Michael Charleston in 1998 [29] and has been improved

since by different authors. These methods have different ways of dealing with time

feasibility which makes the problem hard on undated trees. We will not discuss this

further in the present paper, except for mentioning that in the dynamic program-

ming approach presented in this section, the trees are considered undated, and the

time feasibility issue can be dealt with in a subsequent step as described in [6]. On

the other hand, we show in this section a formulation of the dynamic programming

algorithm in terms of a certain directed graph which we will define. The graph

structure can be seen as a means for efficiently enumerating all optimal solutions

of the optimization problem, and more importantly, we will use it later in Section

Algorithmic results for enumerating equivalence classes of optimal reconciliations.

Recurrence relations

Given an instance (H,P,�,~c), the minimum cost of a reconciliation can be found by

dynamic programming. Recall that E := {C, D, S, T} is the set of possible events

for a node. Let U := V (P ) ⇥ V (H) ⇥ E . We call a triple (p, h, e) 2 U a cell of

the dynamic programming table. Consider a function f : U ! R [ {1}, where

the value of a cell f(p, h, e) is defined to be the minimum cost of a reconciliation

between the subtree P |p (i.e., the subtree of P rooted at the node p) and the host

tree H mapping p to h, such that the event of p is e. Then f can be computed as

follows:

1 If p is a leaf,

f(p, h, e) =

8
>><
>>:

0 if h = �(p) and e = T,

1 otherwise.

(2)

2 Otherwise, p is an internal node with children (p1, p2). In this case,

f(p, h, e) = min
E(h,h1,h2)=e

h1,h2∈V (H)
e1,e2∈E

f(p1, h1, e1)+ f(p2, h2, e2)+ c(e)+ c(L) ⇠(h, h1, h2) .

(3)
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The minimum cost of a reconciliation is then given by minh∈V (H),e∈E f(r(P ), h, e).

ad-AND/OR graphs and solution subtrees

In order to find one optimal reconciliation or to efficiently enumerate all optimal

reconciliations, a directed graph can be constructed from the recurrence relations

Equations (2) and (3): it is a compact representation of all series of computations

performed by dynamic programming which result in the optimal cost value. To do

this, we rely on a well-known structure in Computer Science, that is the AND/OR

graph [30]. More specifically, we consider a particular flavor of AND/OR graphs that

we call acyclic decomposable AND-OR graphs. This structure is known for having

an intimate relationship with dynamic programming on a tree.

Definition 4 (ad-AND/OR graph) A directed graph G is an acyclic decomposable

AND/OR graph (an ad-AND/OR graph) if it satisfies the following:

• G is a DAG.

• G is bipartite: its node set V (G) can be partitioned into (A,O) so that all arcs

of G are between these two sets. Nodes in A are called AND nodes; nodes in

O are called OR+ nodes.

• Every AND node has in-degree at least one and out-degree at least one. The

set of nodes with out-degree zero is then a subset of O and is called the set of

goal nodes; the remaining OR+ nodes are simply the OR nodes. The subset

of OR nodes of in-degree zero is the set of start nodes.

• G is decomposable: for any AND node, the sets of nodes that are reachable

from each one of its child nodes are pairwise disjoint.

Definition 5 (Solution subtree) A solution subtree T of an ad-AND/OR graph

G is a subgraph of G which: (1) contains exactly one start node; (2) for any OR

node in T it contains exactly one of its child nodes in G, and for any AND node in

T it contains all its children in G.

The set of solution subtrees of G is denoted by T (G). It is immediate to see that

a solution subtree is indeed a subtree of G: it is a rooted tree, the root of which is a

start node. If we would drop the requirement of G being decomposable, the object

defined in Definition 5 would not be guaranteed to be a tree.
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Definition 6 (Subgraph starting from a set of nodes) Let G be an ad-AND/OR

graph. Let O be a set of OR+ nodes of G. The subgraph of G starting from O,

denoted by G/O, is the subgraph obtained from G by setting O as the new set of

start nodes (i.e. by removing all nodes that are not reachable from O through directed

paths).

The reconciliation graph

The reconciliation graph is a concept already present in the literature [16, 6, 31].

Since, depending on the application, slightly different definitions of this structure

exist, to avoid ambiguity, we describe how to construct the reconciliation graph

of a given instance of the Reconciliation problem from the recurrence Equa-

tions (2)–(3).

The construction is done in two steps. In the first step, we build a graph in

which every node retains an additional attribute, its value, and every OR+ node is

uniquely labeled by a dynamic programming cell (p, h, e) 2 U . In the second step,

we prune the graph by removing nodes that do not yield optimal values.

1 For each (p, h, e) 2 U such that p is a leaf, create a goal node labeled by

(p, h, e); its value is equal to 0 if h = �(p) and 1 otherwise. Then, for each

(p, h, e) 2 U in the post-order of V (P ), let p1, p2 be the two children of p,

i. For each (p1, h1, e1) and each (p2, h2, e2) such that E(h, h1, h2) = e, create

an AND node, connect it to the two OR+ nodes respectively labeled by

(p1, h1, e1) and (p2, h2, e2). Its value is equal to the sum of the values of

its two children, plus c(e) + c(L) ⇠(h, h1, h2).

ii. Create a single OR node, connect it to every AND node created in the

previous step. Its label is (p, h, e), and its value is the minimum of the

values of its children.

2 For each (r(P ), h, e) 2 U , remove the OR node labeled by that cell unless its

value is equal to the optimal cost. For each OR node s, remove the arc to its

child AND node si if the value of si is not equal to the value of s. Finally,

remove recursively all AND nodes without incoming arcs.

It can be checked that the reconciliation graph is indeed an ad-AND/OR graph

as defined in Definition 4. An OR+ node labeled by (p, h, e) is a start node if and

only if p = r(P ), and is a goal node if and only if p 2 L(P ). It is also immediate
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to see that each AND node in the reconciliation graph has exactly one in-neighbor

and exactly two children. We will consider the two children as a couple: for an AND

node s, if its in-neighbor is labeled by (p, h, e) and its two children s1 and s2 are

respectively labeled by (p1, h1, e1) and (p2, h2, e2), we will say that s1 is the first

child and s2 is the second child of s if p1 and p2 are respectively the first and second

child of p; otherwise, we say that s1 is the second child and s2 is the first child.

Keeping the correct order of the children, we can extend the notation “ch” to the

set of nodes of the reconciliation graph: if s is an AND node, ch(s) is the couple

(ordered pair) of the two child OR+ nodes of s; if s is an OR node, ch(s) is simply

the set of its AND child nodes. For an OR node, we will typically be interested

not in its children but in its set of “grandchildren”, hence we introduce here a new

notation. If s is an OR node, we call the grandchild couples, denoted by gch(s), the

union of the children of its child AND nodes (it is a set of couples of OR+ nodes):

gch(s) :=
S

si∈ch(s) ch(si). Notice that an OR+ node can appear as grandchild of

two different nodes, and can also appear in two different grandchild couples of a

same node (see Figure 2).

The dynamic programming algorithms for the Reconciliation problem which

enable the efficient enumeration of all optimal reconciliations are based on the

following observation:

Proposition 7 Let (H,P,�,~c) be a given instance of the Reconciliation prob-

lem. The reconciliation graph G, constructed as described in the previous paragraph

is an ad-AND/OR graph, and the set T (G) of solution subtrees of G correspond bi-

jectively to the set of optimal reconciliations.

To see this, consider an OR+ node s labeled by a cell (p, h, e) 2 U of the dynamic

programming table. For the subgraph G/{s} (see Definition 6), the following can be

proven by induction: the set of solution subtrees T (G/{s}) corresponds bijectively

to the set of optimal reconciliations of the dynamic programming subproblem at

(p, h, e), i.e. the optimal reconciliations between the subtree P |p and H such that p

is mapped to h and the event of p is e. In practice, to convert a solution subtree T1 2

T (G) into a reconciliation �, we only need to look at the labels (p, h, e) of the OR+

nodes in T1 (a reconciliation can simply be viewed as a collection of triples of the
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form (p, h, e)). We will henceforth use interchangeably the terms solution subtrees

of the reconciliation graph and optimal reconciliations of the problem instance.

The reconciliation graph can be constructed using O(|V (P )||V (H)|3) time and

space complexity [6]. After the construction, the total number of optimal recon-

ciliations can also be computed. It is a well-known folklore result that the set of

solution subtrees of an ad-AND/OR graph can be enumerated efficiently: the delay

between outputting two consecutive solutions is linear in the size of the solution.

Therefore, there is an algorithm with a O(|V (P )||V (H)|3) time pre-processing step

and O(|V (P )|) time delay for enumerating the optimal reconciliations.

Figure 2 shows a reconciliation graph based on the same input (H,P,�) as in

Figure 1 with nine solution subtrees. Among these nine reconciliations, four have

event vector (0, 0, 2, 0), two have (1, 0, 1, 0), two have (1, 0, 1, 1) (�1 and �2 of Fig-

ure 1), and one has (2, 0, 0, 0). The event vector of the reconciliation shown in bold

is (1, 0, 1, 1).

Figure 2 Example of a reconciliation graph for the input (H,P,σ) in Figure 1. Crossed circles are

AND nodes. Rectangles are OR+ nodes. The cells with which the OR+ nodes are labeled are

written inside. One solution subtree is shown in bold.

Definitions of the equivalence relations

In this section, we first introduce four definitions of equivalence between reconcil-

iations and study the relationship between them, then we explain the motivation

for defining such equivalence relations and state the problems of enumerating the

equivalence classes and counting the size of each class. The algorithmic contribu-

tion solving these problems and the experimental results will be presented in the

subsequent sections.

Definitions

In Definitions 8–10, we give three equivalence relations on the set of optimal rec-

onciliations. One is based on a global property, the event vector, which is already

defined in Definition 3. The other two equivalence relations are based on “local

properties”, i.e. on the event E�(p) and the host �(p) that are assigned by � for

each parasite node p.
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Definition 8 (V-equivalence) Two reconciliations �1 and �2 are Vector-equivalent,

or shortly V-equivalent, if their event vectors are equal: ~e (�1) = ~e (�2).

Definition 9 (E-equivalence) Two reconciliations �1 and �2 are Event-equivalent,

or shortly E-equivalent, if E�1
(p) = E�2

(p) for all p 2 V (P ).

Definition 10 (CD-equivalence) Two reconciliations �1 and �2 are Cospeciation-

Duplication-equivalent, or shortly CD-equivalent, if E�1
(p) = E�2

(p) for all p 2

V (P ) (i.e. they are E-equivalent), and the hosts of non-host-switch parasite nodes

are the same: E�1
(p) 6= S =) �1(p) = �2(p).

Each one of these equivalence relation splits the set of optimal reconciliations of a

given instance into equivalence classes, i.e. subsets of pairwise equivalent reconcili-

ations. One representative of an equivalence class is simply a reconciliation in the

corresponding subset. We will abuse the terminology and call equivalence classes

the objects that best represent the common property of the reconciliations in that

subset. A reconciliation in a particular equivalence class will then be a reconciliation

satisfying that property.

Definition 11 (Equivalence classes) In this paper, the term equivalence class has

the following meanings, depending on the equivalence relation:

• For the V-equivalence relation, a V-equivalence class is an event vector ~e , i.e.

a vector of four integers.

• For the E-equivalence relation, an E-equivalence class is a function E :

V (P ) ! E that associates each node of the parasite tree with an event.

• For the CD-equivalence relation, a CD-equivalence class is a function ECD :

V (P ) ! E ⇥ (V (H) [ {?}) that associates each node of the parasite tree with

an ordered pair (e, h), where either

– e is an event between T, C and D and h is a node of the host tree, or

– e is the host-switch event S and h is a special symbol ?.

We can make the following remarks about the relationships between these equiv-

alence relations. CD-equivalent reconciliations are also E-equivalent. Being E-

equivalent implies that the first three elements of their event vectors are equal.

As we only consider reconciliations having the same minimum cost, if the cost of
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a loss event c(L) is nonzero, E-equivalent reconciliations necessarily have the same

number of losses, hence are also V-equivalent. On the other hand, if c(L) = 0,

E-equivalent reconciliations are not necessarily V-equivalent.

In Figure 1, the pair �1 and �2 are equivalent under all three equivalence relations.

In Figure 2, the nine reconciliations split into four V-equivalence classes (the four

event vectors).

Motivation and challenges

The first and foremost motivation of defining equivalence relations is the need of

capturing useful biological information from the set of optimal reconciliations, when

this set is too large for manual analyses or for exhaustive enumeration. The V-

equivalence classes already conveys some information about the co-evolutionary

history of the hosts and their parasites. Indeed, a high number of cospeciations

may indicate that hosts and parasites evolved together, while a high number of

host-switches may indicate that the parasites are able to infect different host species.

Under the scope of the E-equivalence relation, we are also interested in which par-

asites are associated to each type of event (disregarding losses).

The CD-equivalence relation is motivated by the idea that when a host-switch

happens, there may be various hosts that can be selected as the parasite’s “landing

site”. In this case, we choose to consider as equivalent those reconciliations for

which, while the hosts that receive the switching parasites may differ, all the other

parasite-host associations (not corresponding to a host-switch) are the same. These

reconciliations are similar and often indistinguishable without additional biological

information. Indeed, take the two reconciliations �1 and �2 in Figure 1: they are

identical except for one switching parasite p1, which is mapped to hb by �1 and

to hc by �2. Since hb and hc are two sibling nodes sharing the same parent in the

host tree, without further information, there is no good way to tell apart the two

reconciliations �1 and �2, hence we consider them as equivalent.

Equipped with our definitions of equivalence classes, we aim at studying the fea-

tures of the set of optimal reconciliations by enumerating the equivalence classes.

Naively, one would iterate through every reconciliation and record their properties,

then report the equivalence classes, and, only at the end, report the statistics of the

reconciliations in each equivalence class. However, when the number of reconcilia-
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tions is too large, for example, > 1042 (see Section Experimental results and [32]),

the naive method is not feasible.

The challenge is then to enumerate directly the equivalence classes of optimal rec-

onciliations without enumerating the latter explicitly. Concretely, the set of optimal

reconciliations will be represented implicitly as T (G), the set of solution subtrees

of a reconciliation graph G. Given a reconciliation graph as input, we will tackle

the following problems:

• Count the number of equivalence classes.

• Enumerate the equivalence classes.

• Study a particular equivalence class. That is, given an equivalence class,

– Count the number of reconciliations in that class,

– Find one representative (i.e. one optimal reconciliation) of that class,

– Enumerate all reconciliations of that class.

Algorithmic results

V-equivalence class enumeration

The enumeration of V-equivalence classes (i.e. all event vectors among the optimal

reconciliations) can be achieved by a simple modification of the dynamic program-

ming algorithm.

First, we can notice that the number of different event vectors is bounded by a

polynomial. Let n = |V (H)| and m = |V (P )|. The first three elements of any event

vector necessarily sum up to m−1
2 , the number of internal parasite nodes, hence

there are only O(m2) possible combinations. The loss contribution ⇠�(p) for each

parasite node p for any � is at most twice the diameter of the host tree (i.e. twice the

maximum distance between two nodes), so the fourth element of any event vector is

bounded by O(nm). Therefore, the number of event vectors is bounded by O(nm3).

We are interested in the following two problems: listing all event vectors, and,

given a particular event vector, listing one (or all) optimal reconciliations of that

event vector. Both can be done without much difficulty by doing some additional

book-keeping in the dynamic programming algorithm, i.e. during the construction of

the reconciliation graph. The idea is to remember the set of event vectors in every

step, corresponding to the event vectors of the optimal solutions of the current
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dynamic programming subproblem. Then, for each event vector, one reconciliation

(or all reconciliations) of the V-equivalence class can be found by backtracking.

Recall that if s is an OR+ node of the reconciliation graph, the solution subtrees

of the subgraph G/{s} correspond to the optimal reconciliations of the dynamic

programming subproblem identified by the cell (p, h, e) with which s is labeled. We

now define the set EV of an OR+ node s to be the set of event vectors of T (G/{s}),

that is the event vectors of the set of optimal reconciliations of the corresponding

dynamic programming subproblem. Then, the sets EV can be computed as follows

(for simplicity, we will identify an OR+ node with the cell (p, h, e) with which it is

labeled):

• For each goal node (p, h,T), EV(p, h,T) := {(0, 0, 0, 0}.

• For each OR node (p, h, e), let {
�
(pi1, h

i
1, e

i
1), (p

i
2, h

i
2, e

i
2)
�
}1≤i≤k be its set of

grandchild couples, then EV(p, h, e) can be computed as

[

1≤i≤k

[

~u∈EV(pi

1
,hi

1
,ei

1
)

~w∈EV(pi

2
,hi

2
,ei

2
)

8
>>>>>><
>>>>>>:

~u+ ~w + (0, 0, 0, ⇠(h, h1, h2)) +

8
>>>>>><
>>>>>>:

(1, 0, 0, 0) if e = C

(0, 1, 0, 0) if e = D

(0, 0, 1, 0) otherwise, e = S

9
>>>>>>=
>>>>>>;

.

(4)

The set of event vectors of T (G) that we seek is the union
S

s EV(s) taken over

the set of start nodes of G, i.e. the OR+ nodes labeled with a cell of the form

(r(P ), h, e).

Overall, for each of the O(n3m) nodes of the reconciliation graph, we need to

keep an extra set of size O(nm3). The space complexity is therefore O(n4m4). For

each OR node and for each of its O(n2) grandchild couples, we need to compute

the Cartesian sum of two sets of EVs of size O(nm3) each; this can be done naively

in time O(n2m6) (to improve this, see, e.g. [33]). The overall time complexity is

O(n5m7).

The backtracking technique for finding one optimal reconciliation given its event

vector is quite standard. Here we present it concisely without proof. We define a

function Backtrack that takes two parameters: an OR+ node s in the reconcilia-

tion graph G and a vector ~v satisfying ~v 2 EV(s). The function returns an optimal

subproblem reconciliation �s 2 T (C/{s}) such that ~e (�s) = ~v. We choose to rep-
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resent a reconciliation as a sequence of triples of the form (p, h, e). The function

Backtrack(s,~v) can be implemented as follows:

1 Let (p, h, e) be the cell with which s is labeled. Output the triple (p, h, e). If

s is a goal node, stop. Otherwise, go to Step 2.

2 Let {
�
(pi1, h

i
1, e

i
1), (p

i
2, h

i
2, e

i
2)
�
}1≤i≤k be the grandchild couples of s. Find any

index i such that there exists ~u 2 EV(pi1, h
i
1, e

i
1) and ~w 2 EV(pi2, h

i
2, e

i
2) such

that the sum inside the big braces of Equation (4) is equal to ~v (such i neces-

sarily exists). Choose any such ~u and ~w. Then do Backtrack((pi1, h
i
1, e

i
1), ~u)

and Backtrack((pi2, h
i
2, e

i
2), ~w).

Given a start node s and an event vector ~v 2 EV(s), it suffices to call Back-

track(s,~v) to get one representative of the V-equivalence class ~v. Finally, if we

replace “any” by “all” in Step 2 of Backtrack, we can easily adapt the algo-

rithm in such a way that it enumerates all reconciliations, or counts the number of

reconciliations of a V-equivalence class.

E-equivalence class enumeration

By Definition 11, an E-equivalence class is a function from the set of nodes V (P )

of the parasite tree to the set E := {C,D, S,T} of events. In this section, we will

represent an E-equivalence class as a set T of ordered pairs of the form (p, e) where

p 2 V (P ) and e 2 E . In the same manner, a reconciliation �, i.e. a solution subtree

in T (G), can be written as a set of ordered triples of the form (p, h, e). We say that

a reconciliation � belongs to the E-equivalence class T , and denote it as ⇡(�) = T ,

if for each (p, h, e) 2 �, there exists a unique couple (p, e) 2 T . Using this notation,

a set of couples of the form (p, e) is an E-equivalence class if and only if there exists

� 2 T (G) such that ⇡(�) = T ; the set of all E-equivalence classes is denoted by

⇡(T (G)).

The problem of studying a particular E-equivalence class is easy: given an E-

equivalence class T , the reconciliation graph G can be pruned in such a way that its

set of solution subtrees corresponds to the reconciliations that belong to the class

T (we simply need to remove all OR nodes unless its label (p, h, e) corroborates the

given class: (p, e) 2 T ). Counting and enumerating the E-equivalence classes are,

however, more challenging problems. We will at present concentrate on the problem

of enumerating all E-equivalence classes.
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The algorithm is based on the simple idea of traversing the reconciliation graph in

a top-down fashion (a similar approach can be used in the algorithm that finds all

the solution subtrees). In order to obtain a polynomial time delay algorithm, during

the traversal, we can no longer consider the nodes one by one; the sets of nodes

that are in the solution subtrees of the same E-equivalence class must be traversed

together. To make this clear, it is convenient to define the color of the OR+ nodes;

an E-equivalence class will then simply be a set of colors.

Definition 12 (Color of a node, Color couple)

• If an OR+ node s in the reconciliation graph is labeled by (p, h, e) 2 U , we

say that s is colored by the ordered pair (p, e) 2 V (P )⇥ E.

• Let s1 and s2 be two OR+ nodes colored respectively by (p1, e1) and by

(p2, e2). The color couple of the couple of nodes (s1, s2) is the couple of colors

((p1, e1), (p2, e2)).

To enumerate the E-equivalence classes by a top-down recursive traversal of the

reconciliation graph, our algorithm should achieve the following goal: given a set O

of OR+ nodes of the same color (p, e), enumerate ⇡(T (G/O)), i.e. all E-equivalence

classes of the subgraph G/O. Any such a class will include the color (p, e). If p is

not a leaf, the events of the two children of the node p are given by the color couples

of the grandchild couples gch(O) (by extension, gch of a set of nodes is the union

of gch of every node in the set). A naive algorithm can be described as follows: for

each color couple ((p1, e1), (p2, e2)) of gch(O), first take the union O1 of the first

grandchildren of color (p1, e1) and the union O2 of the second grandchildren of color

(p2, e2), then call the algorithm on O1 and independently on O2, and finally combine

the results together, that is, perform a Cartesian product between ⇡(T (G/O1)) and

⇡(T (G/O2)).

The pitfall of the naive approach is that not every combination between the E-

equivalence classes of the reconciliations of the two child subtrees is valid. Our

algorithm, shown in Algorithm 1, can be viewed as an improved version of the

naive algorithm in which particular care has been taken to ensure that only valid

combinations are outputted. Along with each E-equivalence class T , it also outputs

a set eO which is a subset of the input set O: it is equal the union of the root OR+

nodes of all solution subtrees � 2 T (G/O) such that ⇡(�) = T . Notice that in
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Algorithm 1 we employ both the return and the yield statements for the output,

the difference being that the latter does not halt the algorithm.

Algorithm 1: Enumerating E-equivalence classes

1 Input: a node p of the parasite tree, an event e ∈ E, a set O of OR+ nodes

2 Require: The nodes in O are all colored with (p, e).

3 Output: all E-equivalence classes of G/O, and for each class, a subset of O

4 Function Enumerate(p, e, O):

5 if p is a leaf then // necessarily e = T and O only contains goal nodes

6 return {(p, e)}, O

7 end

/* otherwise, necessarily e ∈ {C,D, S} and O only contains OR nodes */

8 Let (p1, p2) be the children of p

9 Partition the set of grandchild couples gch(O) according to their color couples

10 for each subset {(si
1
, si

2
)}1≤i≤k of gch(O) of color couple ((p1, e1), (p2, e2)) do

11 Let O1 :=
S

1≤i≤k
{si

1
} // O1 is the set of the first grandchildren

12 for each pair of T1 and fO1 outputted by Enumerate(p1, e1, O1) do

13 Let O2 :=
S

1≤i≤k

n
si
2

�� it exists s1 ∈ fO1 such that (s1, si2) ∈ gch(O)
o

/* O2 is the set of the second grandchildren compatible with fO1 */

14 for each pair of T2 and fO2 outputted by Enumerate(p2, e2, O2) do

15 Let eO :=
n
s ∈ O

�� ∃s1 ∈ fO1, ∃s2 ∈ fO2, s.t. (s1, s2) ∈ gch(s)
o

16 yield T1 ∪ T2 ∪ {(p, e)}, eO
17 end

18 end

19 end

Before the proof of correctness, let us recall some important notations. For a

subgraph G/O of the reconciliation graph G, a solution subtree is denoted by � 2

T (G/O). The root OR+ node of a solution subtree � is denoted by r(�). If the root

node r(�) is labeled by (p, h, e), the solution subtree � is interpreted as an optimal

reconciliation between the parasite subtree P |p and the host tree H such that p is

mapped to h and the event of p is e (shortly, we say that � is a reconciliation of

P |p). We will use interchangeably the terms solution subtree and reconciliation, and

we will represent a reconciliation � as a set of triples.

Lemma 13 In Algorithm 1, Enumerate(p, e, O) outputs all E-equivalence classes

in ⇡(T (G/O)) exactly once, and for each outputted pair of T and eO, we have eO =
S

� {r(�) | ⇡(�) = T, � 2 T (G/O)}.

Proof The proof is by induction on the height hp of the P |p. We use the fact that

the pre-condition in the Require statement in Algorithm 1 is true for all recursive
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calls of Enumerate (easy induction). When hp = 0, p is a leaf and {(p,�(p),T)}

is the only reconciliation in T (G/O), therefore, {(p, e)} is the only E-equivalence

class. The outputted set O contains in this case the unique goal node of G labeled

by (p,�(p),T). Now we assume hp > 0.

(First direction) Consider a fixed pair of T := T1 [ T2 [ {(p, e)} and eO outputted

at Line 16, and take a node s in eO. We show that there exists a reconciliation

� 2 T (G/O) such that s = r(�) and ⇡(�) = T (i.e. T is a valid E-equivalence

class). By the induction hypotheses, T1 is an E-equivalence class so there exists a

reconciliation �1 of P |p1
such that ⇡(�1) = T1. Let s1 := r(�1). Take a node s2 2 O2

such that (s1, s2) 2 gch(s). By the induction hypotheses, there exists a reconciliation

�2 of P |p2
such that r(�2) = s2 and ⇡(�2) = T2. Define � := �1 [ �2 [ {(p, h, e)},

where (p, h, e) is the label of s. Then � is a valid reconciliation in T (G/O) (notice

that � is a solution subtree of G/O if and only if (s1, s2) 2 gch(s)), and satisfies

⇡(�) = T .

(Second direction) Consider an E-equivalence class T 2 ⇡(T (G/O)), and take a

reconciliation � 2 T (G/O) such that ⇡(�) = T . We show that T is outputted exactly

once at Line 16 together with a set eO containing the root node of �. Assume that the

root node s := r(�) is labeled with the triple (p, h, e), then � can be uniquely written

as the union �1 [�2 [ {(p, h, e)} where �1 and �2 are respectively reconciliations of

P |p1
and P |p2

. Furthermore, T can be uniquely written as the union T1[T2[{(p, e)}

where T1 = ⇡(�1) and T2 = ⇡(�2). Notice that T1 and T2 do not depend on the

choice of �; for T to be outputted exactly once, it suffices to show that each of T1

and T2 is outputted exactly once. For i = 1, 2, let si := r(�i) and let (pi, ei) be

the color of si. At Line 10, we only need to consider the iteration corresponding to

the color couple ((p1, e1), (p2, e2)), as no other iteration can output T1 or T2 from

a recursive call. Since s1 2 O1 and �1 2 T (G/O1), by the induction hypotheses, T1

is outputted exactly once in Line 12 together with a set fO1 containing s1. For this

pair of T1 and fO1, the set O2 computed at Line 13 contains the node s2. Hence, by

applying again the induction hypotheses to �2 2 T (G/O2), T2 is outputted exactly

once in Line 14 together with fO2 containing s2. It remains to check that the set O

outputted together with T does contain the node s. As si 2 fOi for i = 1, 2, this is

straightforward from the computation of O.
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Theorem 14 Using Algorithm 1, the E-equivalence classes of a reconciliation

graph can be enumerated in O(mn2) time delay, where m = |V (P )| and n = |V (H)|.

Proof To obtain all E-equivalence classes ⇡(T (G)), it suffices to first partition the

set of start nodes of the reconciliation graph according to their colors, then, for

each subset Oi of start nodes of color (p, e), make one call of Enumerate(p, e, O).

By Lemma 13, we output every E-equivalence class of T (G/O) exactly once. Since

any E-equivalence class of T (G) is an E-equivalence class of T (G/Ok) for a unique

k, we output every E-equivalence class of T (G) exactly once.

For the complexity, consider the recursion tree formed by the recursive calls of

Enumerate. Notice that each node p of the parasite tree corresponds to exactly one

recursive call, the size of the recursion tree is thus O(m). In each recursive call, the

partitioning of gch(O) and the computation of the sets O1, O2, and eO can all be

done in time linear in the size of gch(O), which is O(n2). Therefore, O(mn2) time

is needed in the worst case between outputting two E-equivalence classes.

CD-equivalence class enumeration

For the CD-equivalence relation, the problems of enumerating the equivalence

classes and studying one particular equivalence class can be solved using the exact

same method as for the E-equivalence relation. One only needs to adapt the Defi-

nition 12 of the color of an OR+ node. Instead of the couple (p, e), the color of an

OR+ node labeled by (p, h, e) 2 U is now a triple: the triple (p, h, e) for e 6= S, or,

when e = S, the triple (p, ?, S) (see Definition 11).

Experimental results

To evaluate the usefulness of the equivalence classes in practice, we obtained 20 real

datasets from the literature. The choice of the datasets was motivated by the goal

of covering many different situations (such as different sizes of the trees), different

contexts (such as the genes/species one that has been shown to be very closely re-

lated to the hosts/parasites context, see for instance [34, 35]), different topologies,

etc. We also chose five cost vectors ~c := (c(C), c(D), c(S), c(L)) from the litera-

ture, namely (�1, 1, 1, 1) (maximizing the cospeciation), (0, 1, 1, 1) (minimizing the

events that lead to incongruencies between the tree topologies), (0, 1, 2, 1), (0, 2, 3, 1)
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(host-switches are more penalized), and (0, 1, 1, 0) which is a vector chosen only for

theoretical purposes and does not penalize cospeciations and losses.

Reducing the space of the optimal solutions

The goal of the first set of experiments is to check that when the number of all

optimal reconciliations is large, the number of equivalence classes is significantly

smaller. To this end, we ran the algorithm on all the datasets with all the five

cost vectors, and computed the number of optimal solutions and the number of

equivalence classes. For each instance (i.e. dataset and cost vector) having at least

50 optimal reconciliations, we computed for each equivalence relation a value that

we called Reduction and which is equal to the number of equivalence classes over the

number of optimal reconciliations. In Figure 3, each x coordinate corresponds to an

instance; for each instance we plotted three points that correspond to the Reduction

values for the three equivalence relations. One can observe that the Reduction values

of the V- and the E-equivalence relations (blue circles and red triangles) are almost

all below the value of 0.1. In other words, for these two definitions of equivalence,

one can strongly hope for at least a ten-fold decrease, and in some cases for a

thousand-fold decrease in the number of reconciliations that need to be analyzed.

As expected, the V- and the E-equivalence relations are the ones that usually lead

to a small number of equivalence classes, while the CD-equivalence relation may

lead to a larger number of classes, sometimes close to the optimal reconciliations

(Reduction close to 1).

Figure 3 X-axis: All 46 instances (i.e. the pairs of datasets and cost vectors). Y-axis: In

logarithmic scale, the Reduction value that is equal to the number of equivalence classes over the

total number of reconciliations. For each instance, three points are plotted: the blue circle, the red

triangle, and the black X, corresponding respectively to the V-, E-, and CD-equivalence relations.

Four points of Reduction values less than 10−6 are omitted.

The utility of equivalence classes enumeration in the analysis of real datasets

We show now that the equivalence classes not only allow us to reduce the number

of reconciliations to consider, but also provide useful information about the set

of optimal reconciliations. In particular, we will see that even when the number

of optimal reconciliations are too large for exhaustive enumeration, the number
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of event vectors (V-equivalence classes) can still remain small, and there can be

already much biological insight to be gained from the event vectors alone.

To illustrate the utility of our algorithms, we focus on two real datasets among

the ones used in the previous experiment. The first is the FD dataset which consists

in a host tree of 20 taxa corresponding to species of fish and a tree of their parasites

Dactylogyrus of 51 taxa [36, 37]. The second is the WOLB dataset representing the

Wolbachia genus and the various arthropods that host them [38, 39]. This dataset

was selected because of its size: the trees have each 387 leaves. In Table 1, we present

the detailed results obtained for these datasets and the five cost vectors.

First notice that even for trees of medium size like in the FD dataset, for the cost

vector (0, 1, 1, 1) that is commonly used in the literature, we have 25184 optimal rec-

onciliations which are impossible to be analyzed manually. However, the number of

event vectors is only 11; the vectors are: (9, 17, 24, 2), (9, 16, 25, 2), (7, 16, 27, 0),

(7, 17, 26, 0), (7, 18, 25, 0), (8, 16, 26, 1), (8, 18, 24, 1), (10, 16, 24, 3), (10, 17, 23, 3),

(8, 17, 25, 1), (9, 18, 23, 2). These vectors are all very similar, and can indicate that

the parasites have a strong capacity to change hosts (high number of host-switches),

while the hosts have a strong capacity to retain their parasites (low number of

losses). This is in agreement with what is suggested in the literature that host-

switching plays an important role in the evolutionary history of the Dactylogyrus

species [40]. Moreover, as the number of cospeciations is always lower than the num-

ber of duplications, there is evidence that, for this cost vector, the parasites evolve

faster than their hosts.

For what concerns the WOLB dataset all the cost vectors lead to a number of

optimal reconciliations that is at least 1042, a number too large for any exhaustive

enumeration method. However, in all cases there are only a small number of optimal

event vectors (except for the least biologically meaningful cost vector (0, 1, 1, 0)).

For the cost vector (0, 2, 3, 1), the seven optimal event vectors are: (102, 0, 284, 36),

(103, 0, 283, 39), (104, 0, 282, 42), (105, 0, 281, 45), (106, 0, 280, 48), (107, 0, 279, 51),

and (108, 0, 278, 54). From the list of event vectors, one can see that the dataset

can be explained by a large number of host-switches and cospeciations, and that

there have probably been no duplication.Again this seems in agreement with what

is known in the literature as duplications are believed to be a rare event in the

evolutionary history of Wolbachia whereas host-switches are common [38, 39].
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Therefore, by simply considering the equivalence classes one already has an idea

of the diversity of the optimal reconciliations. Our approach is thus helpful for

drawing conclusions about the co-evolutionary history of this pair of host/parasite

association for which few prior analysis methods apply.

Table 1 Experimental results for the FD and Wolbachia dataset and for each cost vector. |L(H)| and

|L(S)| are the number of leaves of the host tree and the parasite tree; |R| is the number of optimal

reconciliations; |Veq|, |Peq|, and |CDeq| are respectively the number of V-, E-, and CD-equivalent

classes. The dash indicates that the counting of the equivalence classes did not finish.

Dataset |L(H)| |L(S)| Cost vector |R| |Veq| |Eeq| |CDeq|

FD [36, 37] 20 51

(−1, 1, 1, 1)

(0, 1, 1, 1)

(0, 1, 2, 1)

(0, 2, 3, 1)

(0, 1, 1, 0)

944

25184

408

80

≈ 1015

8

11

10

2

2146

14

52

20

2

54336

18

72

20

2

≈ 1013

WOLB [38, 39] 387 387

(−1, 1, 1, 1)

(0, 1, 1, 1)

(0, 1, 2, 1)

(0, 2, 3, 1)

(0, 1, 1, 0)

≈ 1047

≈ 1048

≈ 1047

≈ 1042

≈ 10136

10

11

10

7

—

4080

40960

4080

96

≈ 1027

24192

76800

24192

1152

—

Estimation of event reliability

As there can be a large number of equally optimal reconciliations, the reliability of

the predicted evolutionary events may be questioned. It is thus interesting to define

support measures that estimate the event reliability (see for example [19]). These

measures are mostly based on the idea that in the space of optimal reconciliations,

each reconciliation is equally likely and then the support of an event is proportional

to the number of optimal reconciliations that confirm it. In this direction, the sup-

port of an event can be thought as a rough estimation of the probability of that

event in the space of optimal solutions.

The algorithms proposed in this paper allow us to compute these measures ef-

ficiently and accurately. Indeed, we can compute not only the equivalence classes

but also their size. Once we have the list of event-vectors and the size of each V -

equivalence class, we have an accurate estimate of the probabilities of the four types

of events, assuming that each optimal reconciliation is equally probable. In Table 2

for the WOLB dataset and cost vector (0, 2, 3, 1) we list the V -equivalence classes

(i.e., the event vectors) together with their size as proportions of the solution space

(i.e., the proportion of optimal reconciliations in each V -equivalence class among
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all optimal reconciliations). We can immediately see that ⇡ 85% of the optimal rec-

onciliations have 105± 1 cospeciations and it is less probable to find reconciliations

with a number of cospeciations far from 105.

We could also extend this argument to the E-equivalence classes. Recall that an

E-equivalence class can be viewed as a labeling of the nodes of the parasite tree

with an event type. In this case, the support of the pair (node of the parasite

tree, event) is proportional to the number of optimal reconciliations that confirm

it. In particular, it is interesting to identify the nodes of the parasite tree that are

labeled by the same event in all the E-equivalence classes. This may seem a strong

requirement but in practice, for the datasets we analyzed, this number is significant.

For the WOLB dataset, only 15 nodes are assigned to different event types, in other

words, all the other 371 internal nodes receive a consistent event type across the

entire solution space. This means that we have further confirmed that the diversity

of the solution space is low: not only the event vectors are similar, the distributions

of the events on the nodes of the parasite tree are also similar.

Table 2 The V -equivalence classes for the WOLB dataset, cost vector (0, 2, 3, 1) and their size, as

proportions of the solution space, sorted in the decreasing order of the size.

Event vector Proportion of the solution space

(105, 0, 281, 45) 36.5425%

(106, 0, 280, 48) 29.5704%

(104, 0, 282, 42) 18.7570%

(107, 0, 279, 51) 10.5588%

(103, 0, 283, 39) 3.1628%

(108, 0, 278, 54) 1.3807%

(102, 0, 284, 36) 0.0277%

Finally, the algorithm is quite efficient in practice, as for example for the cost

vector (�1, 1, 1, 1), to enumerate all the optimal event vectors, it took around 8

minutes for the dataset of Wolbachia and their arthropod hosts on a single thread

of the Intel Core i5-3380M CPU. The enumeration of equivalence classes, together

with other features such as the visualization of the E- and the CD-equivalence

classes, is freely available in the software Capybara; more information can be found

in [32].
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Discussion

Comparison with eMPRess

eMPRess [13, 10] is a tool that includes the possibility for the user to cluster the

space of optimal solutions using agglomerative hierarchical clustering. The user can

define the desired final number of clusters and a lower bound for the initial number

of clusters (the actual initial number depends on the structure of the reconcilia-

tion graph, and can be much larger than the chosen lower bound). Then, pairs of

clusters are merged using a linkage criterion until the desired number of clusters

is obtained. The authors consider two different linkage criteria: (i) minimizing the

average distance between the solutions within each cluster with respect to a given

distance metric (the symmetric distance or the path distance), (ii) maximizing the

average event support in each cluster.

As already mentioned in the introduction, the approach of eMPRess is fundamen-

tally different from the one we propose. We believe that it is interesting to remark

some of the differences between the two methods that the user should keep in mind

when applying one method or the other.

It is important to notice that the results obtained with our algorithm and with

eMPRess can be very different. Two solutions that may be considered equivalent

may have a large symmetric or path distance. Indeed, the symmetric distance be-

tween two reconciliations is defined as the number of associations that are found in

one reconciliation or the other but not in both. Inside an E-equivalence class, even

though the type of the events is consistent among the reconciliations, all the asso-

ciations can potentially be different, so the symmetric distance can take the largest

possible value. Moreover, when using the event support criterion, it is important

to keep in mind that within a cluster, by construction, the more ancestral events

are more supported than the more recent events. While this may be biologically

motivated, it is a bias that we may not want in some datasets.

These differences are also seen in practice as we applied eMPRess to some of the

datasets used in the previous section, requiring that the number of final clusters

is the same (or slightly larger) than the number of equivalence classes that we

have found for that dataset. By analyzing the median reconciliations of the final

clusters, we saw that, even for the V-equivalence relation (which is among those

most analyzed in practical studies), some classes are not represented.
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Finally, the worst case running time of the clustering method of eMPRess depends

quadratically on the initial number of clusters and the time can be a limitation in

practice. When we applied it to the Wolbachia dataset with the default cost vector

(0, 2, 3, 1) and the symmetric distance criterion, by starting with 336 initial clusters

(level L = 6 in [13]) and choosing 10 as the final number of clusters, the software

did not finish within 24 hours.

Conclusion

In this paper, we proposed a method that lists representative reconciliations from

the (often huge) space of optimal solutions. To this purpose, we first defined when

two reconciliations can be considered equivalent and then we provided efficient algo-

rithms that output in polynomial delay only one reconciliation from each equivalence

class. We proposed three different biologically motivated equivalence relations. We

applied our algorithms to real datasets and showed that we were able to analyze the

space of optimal reconciliations even in cases when the latter has a huge size (e.g.

1042). As a future direction, we plan to extend our algorithms to other definitions

of equivalence for reconciliations.
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