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Abstract Fractional-order systems generalize classical differential systems
and have empirically shown to achieve fine-grain modeling of the temporal dy-
namics and frequency responses of certain real-world phenomena. Although the
study of integer-order memory element (mem-element) emulators has persisted
for several years, the study of fractional-order memory elements (FOMEs) has
received little attention. To promote the study of the characteristics and ap-
plications of mem-element systems in fractional calculus (FC) and memory
systems, in this paper, we propose a novel universal interface for construct-
ing floating FOMEs. When the topological structure of the interface remains
unchanged, the floating fractional-order memristor (FOMR), fractional-order
memcapacitor (FOMC) and fractional-order meminductor (FOMI) emulators
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can be realized by using the impedance combinations of different passive el-
ements, without any mem-element emulators and mutators. When compared
with previously proposed FOMEs, the proposed fractional-order mem-element
emulators based on a universal interface not only feature the characteristics
of floating terminals and simpler circuit structures, but can also realize all
three different types of FOMEs. To explore the dynamical relationships be-
tween the mem-elements and the fractional order, we mathematically derive
and analyze the maximum and minimum possible values of memductance,
memcapacitance and inverse meminductance which accounts for practical de-
sign considerations when building FO systems. The memory characteristics of
FOMEs are analyzed by varying their orders and stimuli frequencies. The con-
sistency of theoretical analysis, numerical calculation and simulation results
validates the correctness of our proposed emulators.

Keywords Memory element emulators · Fractional-order circuits ·
Fractioanal-order capacitor · Memristor · Memcapacitor · Meminductor

1 Introduction

Fractional calculus (FC) is a generalization of ordinary differential systems to
an arbitrary, real order [1]. FC has been used to model real-world physical and
quantum phenomena across a variety of domains which could not be achieved
using integer-order dynamics alone [2–5]. Fractional derivatives have shown
to successfully model the fine-grain memory and hereditary characteristics of
the temporal dynamics and frequency responses of various systems. Several
promising examples of the progress FC has made in applied domains include
oscillators [6, 7], filters [8, 9], controllers [10, 11], sub-atomic phenomena [12],
and biological systems [13,14].

In 1971, Leon Chua theoretically predicted the existence of the ‘miss-
ing fourth fundamental circuit element’, namely the memristor [15]. Several
decades later, in 2008, researchers from Hewlett Packard (HP) Labs discovered
the link between devices exhibiting resistive switching characteristics with the
memristor (MR) [16]. Such memory elements (mem-elements) have since been
generalized to the memcapacitor (MC) and the meminductor (MI) [17]. De-
spite the significant resources pooled into undertaking memristive research,
their accessibility remains limited. Most demonstrations of experimental re-
sults using memristors depend upon specialized fabrication processes [18, 19],
and presently available discretely packaged memristors are extremely sensitive
exhibiting significant variation [20,21], with endurance that limits their prac-
tical application to prototypical experiments [22,23]. This motivates the need
for emulators that facilitate the exploration and design space of mem-elements,
until experimental usage of memristors and resistive random access memories
(RRAM) are made more broadly accessible. Mem-element emulators can be
subdivided into grounded and floating types. With respect to two-terminal em-
ulators, floating mem-elements are more broad in potential applications as one
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of their terminals are not constrained to being grounded. For example, a high-
frequency floating memristor emulator was presented in [24], where one termi-
nal of the emulator is connected to the voltage source, and the other terminal
is connected to an amplifier in a high-frequency modulation scheme, which
cannot be achieved by grounded MR emulators. In general, mem-element em-
ulators have accelerated memristive research that can be adopted by device
researchers for future on-chip integration. In the past, emulators have been
used to build adjustable relaxation oscillators [25–27], digital modulation [28],
adaptive learning circuits [29], chaotic systems [30–34], and neuromorphic cir-
cuits [35–37].

The potential ability of fractional-order models in simulating a more gener-
alized range of systems than corresponding integer-order counterparts [38] has
driven research in memory systems using FC, where a mathematical paradigm
for describing the behavior of FOMEs was proposed in [39]. Later, researchers
proposed individual FOMR emulators [40], and in [41], a FOMR is realized
on the basis of a floating integer-order memristor emulator circuit. More re-
cently, multiple types of FOMEs have been emulated within the same circuit
structure, where in [43], the FOMC and FOMI emulators are proposed based
on fractional-order capacitors (FOC) and integer-order memristor emulators.
A limitation of these approaches are that the constructed FOMC and FOMI
emulators depend on the characteristics of the memristor emulators they are
originally based upon, and the circuit structure thus becomes unnecessarily
complex and difficult to simplify. Generalized grounded and floating FOMEs
emulators that can emulate FOMR and FOMC are proposed by using different
impedance combinations in [44], but these emulators cannot implement FOMI
emulation, and are limited to the functionality of FOMR and FOMC. In [45], a
fractional higher-order FOMR, FOMC and FOMI emulator was implemented
by using a current conveyor (CCII) and analog voltage multiplier (AVM), but
these FOMEs only have one free port, which does not enable flexible usage.
While all of these emulators have helped researchers to explore the character-
istics and potential applications of FOMEs, they all have their own specific
drawbacks. Driven by the above shortcomings, we propose a novel floating uni-
versal interface, based on which floating FOMR, FOMC and FOMI emulators
can be realized, without depending on a mem-element emulator or mutator as
the basis of the design. In doing so, we address the flexibility and simplicity
challenges that plague fractional-order mem-element emulators.

In this paper, three types of floating FOME emulators are realized by us-
ing different impedance combinations, verified using SPICE simulations. Com-
pared with other similar research work, the universal interface can implement
three types of FOME emulators with three key benefits: 1) the use of floating
terminals and thus, enhanced flexibility, 2) without added circuit complexity
over prior designs. 3) simpler circuit structure for easier implementation. The
structure of this paper is as follows. In Sect. 2, we provide a theoretical analysis
of FOMEs. In Sect. 3, three different fractional order mem-element emulators
are presented on the basis of the theoretical analysis of the second section,
which leads to the proposal of a novel universal interface, which uses FOCs to
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achieve fractional-order integration. In Sect. 4, we verify three different FOME
emulators using both SPICE and MATLAB, with an accompanying analysis
of the results obtained of the FOMR, the FOMC and the FOMI emulators. In
Sect. 5 concludes the paper.

2 Theoretical analysis of FOMEs

The fundamental operator of fractional calculus mDα

t can be defined as [46]:

mDα

t =

8

>

<

>

:

dα

dtα
, α > 0

1, α = 0
R t

m
(dτ)−α, α < 0

(1)

where α ∈ R, and m and t are the bounds of the operation. The theoretical
analysis of each of the FOMR, FOMC and FOMI circuits are presented below.

2.1 Theoretical analysis of FOMR

The constitutive relationship between q and ϕ of the integer-order memristive
system [47] is given as follows:

q = q̂(ϕ), (2)

where q and ϕ are the time-domain integrals of current i and voltage v.

By differentiating both sides of equation (2), the i-v relationship of MR
can be expressed as:

dq

dt
= i(t) =

q̂(ϕ)

dϕ

dϕ

dt
= Gmv(t), (3)

where Gm is the memductance (the reciprocal of memristance).

The Taylor expansion of (2) is

q =
∞
X

k=1

gkϕ
k. (4)

By substituting (4) into (3), the expression of the flux-controlled memduc-
tance [48] can be obtained:

Gm(ϕ) = g1 +
∞
X

k=2

kgkϕ
k−1. (5)
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Introducing the fractional-order integral from equation (1), the correspond-
ing expression of the fractional-order integral of voltage is derived:

ϕα(t) =

Z t

−∞

v(t)dtα =

Z 0

−∞

v(t)dtα +

Z t

0

v(t)dtα

= ϕα(0) +

Z t

0

v(t)dtα

= ϕα(0) + 0D
−α

t v(t) (0 < α < 1).

(6)

Assuming the initial value of ϕα(t), ϕα(0) = 0 results in:

ϕα(t) = 0D
−α

t v(t) = 0J
αv(t), (7)

where 0J
αv(t) is the fractional-order integral of voltage v(t), and the notation

of fractional-order integral using Riemann-Liouville’s definition [49] is given
by:

Jαf(t) =
1

Γ (α)

Z t

0

(t− τ)α−1f(τ)dτ. (8)

By taking k = 2 in equation (5), and substituting Jαv(t) into equation (5),
one of possible equations of fractional-order memductance is derived using:

Gm(ϕα) = a1J
αv(t) + b1. (9)

where a1 and b1 are a scaling constant and the initial value of Gm(ϕα), re-
spectively.

2.2 Theoretical analysis of FOMC

The memcapacitor model based on its constitutive relationship was proposed
in [50], and the constitutive relationship between σ and ϕ of a memcapacitative
system [47,51] is given as:

σ = σ̂(ϕ), (10)

where σ and ϕ are the time-domain integrals of charge q and voltage v. By
differentiating both sides of equation (10), the q - v relationship of MC can be
obtained:

dσ

dt
= q(t) =

σ̂(ϕ)

dϕ

dϕ

dt
= Cmv(t), (11)

where Cm is the memcapacitance.
The Taylor expansion of (10) is

σ =
∞
X

k=1

rkϕ
k. (12)
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The memcapacitance is obtained by substituting equation (12) into equa-
tion (11):

Cm(ϕ) = r1 +
∞
X

k=2

krkϕ
k−1. (13)

Substituting Jαv(t) of equation (7) into equation (13), and setting k = 2
leads to one possible equation characterizing a fractional-order memcapaci-
tance:

Cm(ϕα) = a2J
αv(t) + b2. (14)

where a2 is a scaling constant and b2 is the initial value of Cm(ϕα).

2.3 Theoretical analysis of FOMI

The constitutive relationship between q and ρ of the meminductive system [47]
is given as follows:

q = q̂(ρ), (15)

where q and ρ are the time-domain integrals of current i and of flux ϕ. By
differentiating both sides of (15), the i-ϕ relationship can be expressed as:

dq

dt
= i(t) =

q̂(ρ)

dρ

dρ

dt
= L−1

m ϕ(t), (16)

where L−1
m is the inverse meminductance. The Taylor expansion of (15) is

q =

∞
X

k=1

lkρ
k. (17)

By utilizing equations (16) and (17), the inverse meminductance [51] can
be given as:

L−1
m (ρ) = l1 +

∞
X

k=2

klkρ
k−1. (18)

The expression for fractional-order integral of flux is:

ρα(t) =

Z t

−∞

ϕ(t)dtα =

Z 0

−∞

ϕ(t)dtα +

Z t

0

ϕ(t)dtα

= ρα(0) +

Z t

0

ϕ(t)dtα

= ρα(0) + 0D
−α

t ϕ(t),

(19)

where ϕ(t) is the integer-order integral of voltage v(t). Assuming the initial
value of ρα(t), ρα(0) = 0, leads to the following result:

ρα(t) = 0D
−α

t ϕ(t) = 0J
αϕ(t), (20)

where 0J
αϕ(t) is fractional-order integral of the flux ϕ(t).
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Fig. 1 Universal interface for building FOME emulators.

When the parameter k in equation (18) is set to ‘2’, and equation (20) is
substituted into equation (18), one possible equation for the fractional-order
of the inverse meminductance can be given as:

L−1
m (ρα) = a3J

αϕ(t) + b3. (21)

where, analogous to the FOMC case, a3 is a scaling constant and b3 is the
initial value of L−1

m (ρα).
In this section, we have commenced with the theoretical analysis of integer-

order mem-elements, and transitioned to FOMEs analysis.

3 Circuit design of FOME emulators based on a universal interface

circuit and fractional-order capacitor

Before building FOME emulators, we first design a universal interface circuit.
Following that, we will demonstrate the design of the corresponding emulators.

3.1 Design of a universal interface circuit

As shown in Fig. 1, the universal interface is made up of four current-feedback
operational amplifiers AD844 (CFOAs, labeled U1, U2, U4 and U5), one volt-
age multiplier AD633 (U3), one resistor (R2), two impedance elements that
can be either a resistor, capacitor or inductor (Z1 and Z2), a DC voltage source
Vs and one FOC (C1). A and B act as floating terminals of FOME emulators
based on the universal interface, enabling emulators to be connected in se-
ries with other components, and the input voltage is applied between A and
B. There are an unbounded number of ways to model FOMR, FOMC and
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FOMI, and different emulators can be designed by using various combinations
of impedance elements to the interface terminals.

The AD844 behaves as a current conveyor and voltage follower in the uni-
versal interface circuit, where the port characteristics of AD844 can be ex-
pressed as:

ix = iz, iy = 0, (22)

vy = vx, vp = vz. (23)

According to equations (22) and (23), the expressions of current i1, i2, i3
and iAB of this universal interface in the complex frequency domain are:

İ1 = İ2 = −İ3 =
V̇AB

Z1

, (24a)

İ4 = −İAB =
V̇w

Z2

=
V̇z2

Z2

, (24b)

where İ1 and İ2 are the complex frequency domain current responses from
terminals x and z of U1, respectively, V̇z2 is the complex frequency domain
voltage across impedance Z2, and V̇w is the output voltage of AD633 in the
complex frequency domain.

As shown in Fig. 1, the FOC C1 is the equivalent energy-storage element
adopted in proposed emulators to provide the fractional-order integral opera-
tion. Due to the commercial unavailability of a two-port FOC device on the
market, Valsa proposed a helpful method for calculating comparable FOC val-
ues [52], and according to the principle of calculation, different combinations
of resistance and capacitance can be calculated when the FOC takes different
values. According to the analysis of the fractional-order capacitance state [53],
the voltage and current flowing through FOC can be expressed as:

v(t) =
1

C

Z t

0

i(t)dtα ≡
1

C
0D

−α

t i(t) (25)

i(t) = C
dαv(t)

dtα
≡ C0D

α

t v(t), (26)

where 0 < α < 1.
According to the characteristics of FOC in equation (25), and the char-

acteristics of AD844 in equations (22) and (23), voltage vc1 is transmitted to
the output vx1 of terminal p of the AD844-U1 via an internal voltage follower.
Thus, vx1 and vc1 in the complex frequency domain can be calculated by:

V̇x1 = V̇c1 =
İ2

C1sα
=

V̇AB

C1Z1sα
, (27)

where V̇AB/s
α shows the complex frequency domain response of JαvAB(t).
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From equation (24a), and the combination of the characteristics of the
AD844 in equations (22) and (23), the voltage of R2 in the complex frequency
domain can be described as:

V̇2 = V̇y1 = İ3R2 = −İ1R2 = −
V̇AB

Z1

R2. (28)

According to equations (27) and (28), and the input-to-output function of
U3 (AD633), vw in the complex frequency domain can be calculated by:

V̇w = −V̇AB

R2

10Z1

 

1

C1Z1

V̇AB

sα
− Vs

!

, (29)

where Vs is an adjustable direct-current voltage.
Equations (24b) and (29) are combined to derive the relationship between

the input voltage vAB and the input current iAB in the complex frequency
domain:

İAB = −İ4 = −
V̇w

Z2

= V̇AB

R2

10Z1Z2

 

1

C1Z1

V̇AB

sα
− Vs

!

. (30)

This concludes the theoretical characterization of the proposed universal
interface circuit in Fig. 1. In the following sections, we present our design of
the FOMR, FOMC and FOMI based on the universal interface circuit.

3.2 Design of a fractional-order memristor

When the impedance elements Z1 and Z2 in Fig. 1 are resistors R1 and R3

respectively, according to equation (30), the emulator is a FOMR. The re-
lationship between the input voltage vAB and the current iAB in the time
domain can be described as:

iAB = vAB

R2

10R1R3

✓

1

C1R1

JαvAB(t)− Vs

◆

. (31)

The emulator is simulated as a flux-controlled FOMR. According to equa-
tions (9) and (31), the memductance Gm(ϕα) of FOMR can be expressed as:

Gm(ϕα) =
iAB

vAB

= a1J
αvAB(t) + b1. (32)

From equations (31) and (32), a1 and b1 can be expressed as:

a1=
R2

10C1R2
1R3

, b1 = −
R2

10R1R3

Vs. (33)

Equation (32) shows the relationship between the value of the memduc-
tance of the FOMR emulator and the fractional-order integration of the input
voltage vAB . Thus, the internal state of the FOMR emulator is dynamically
varying in accordance with the fractional-order integration of the terminal
input voltage vAB .
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3.3 Design of a fractional-order memcapacitor

The emulator is a FOMC when the impedance elements Z1 and Z2 in Fig. 1 are
a resistor R1 and a capacitor C2. By inserting circuit parameters R1 and C2

into equation (30), in the complex frequency domain, the relationship between
input voltage vAB and the current response iAB is as follows:

İAB = V̇AB

R2sC2

10R1

 

1

C1R1

V̇AB

sα
− Vs

!

. (34)

The emulator is simulated as a flux-controlled FOMC. According to equa-
tion (34), the q-v relationship in the time domain can be written as:

qAB = vAB

R2C2

10R1

✓

1

C1R1

JαvAB(t)− Vs

◆

. (35)

According to equations (14) and (35), the memcapacitance of the FOMC
Cm(ϕα) can be written as:

Cm(ϕα) =
qAB

vAB

= a2J
αvAB(t) + b2. (36)

From equations (35) and (36), a2 and b2 can be written as:

a2 =
C2R2

10R1
2C1

, b2 = −
C2R2

10R1

Vs. (37)

The relationship between the value of the FOMC emulator’s memcapaci-
tance and JαvAB(t) is shown in equation (36). From this equation, there is
an explicit relationship between the internal state of the FOMC emulator and
the fractional-order integration of the terminal input voltage vAB .

3.4 Design of a fractional-order meminductor

The emulator is a FOMI when the impedance elements Z1 and Z2 in Fig. 1
are consist of an inductor L1 and resistor R1. By substituting L1 and R1 into
equation (30), in the complex frequency domain, the following relationship
links input voltage vAB and the current response iAB :

İAB = V̇AB

R2

10sL1R1

 

1

C1L1

V̇AB

sα+1
− Vs

!

, (38)

where V̇AB/s
α+1 indicates JαϕAB(t) in the complex frequency domain.

The emulator is simulated as a ρ-controlled FOMI. According to equation
(38), the i-ϕ relationship in the time domain can be given as:

iAB = ϕAB

R2

10L1R1

✓

1

C1L1

JαϕAB(t)− Vs

◆

. (39)
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Table 1 FOME emulators realized by different impedance combinations

Z1 Z2 Types of FOMEs The expression of FOMEs

R1 R3 FOMR Gm(ϕα) =
R2

10R1R3

⇣

1

C1R1
JαvAB(t)− Vs

⌘

R1 C2 FOMC Cm(ϕα) =
R2C2

10R1

⇣

1

C1R1
JαvAB − Vs

⌘

L1 R1 FOMI L−1
m (ρα) =

R2

10L1R1

⇣

1

C1L1
JαϕAB(t)− Vs

⌘

According to equations (21) and (39), the inverse meminductance L−1
m (ρα)

of FOMI can be given as:

L−1
m (ρα) =

iAB

ϕAB

= a3J
αϕAB(t) + b3. (40)

From equations (39) and (40), a3 and b3 can be expressed as:

a3=
R2

10R1L1
2C1

, b3 = −
R2

10L1R1

Vs. (41)

The relationship between the value of the FOMI emulator’s meminductance
and JαϕAB(t) is seen in equation (40). The equation reveals that the internal
state of the FOMI emulator is affected by the fractional-order integration of
the terminal flux ϕAB .

Table 1 lists different types of FOMEs and their corresponding expressions
when Z1 and Z2 are selected as different impedance elements.

From the above analysis, it is clear that only the impedance elements Z1

and Z2 need to be changed to either resistor, capacitor or inductor to realize
corresponding FOMR, FOMC and FOMI elements.

4 Circuit implementation and simulation results

In this section, we provide SPICE and MATLAB simulation results in or-
der to verify the circuit design of the proposed fractional-order mem-element
emulators in Sect. 3.

The construction of FOMR, FOMC and FOMI emulators is based on a
universal interface, shown in Fig. 1, according to different impedance combi-
nations in Table 1. As charge q and flux ϕ are not directly measurable, instead,
they can be measured by using internal voltages in the FOME emulators as
proxy variables, that are proportional to q or ϕ.

For the FOMR emulator, the impedance elements Z1 and Z2 are resistors
R1 and R3, respectively. According to equation (27), the fractional-order in-
tegral of voltage vAB is proportional to vc1 in the time domain, therefore, vc1
can be used to replace the JαvAB(t) equivalently. Thus, the corresponding
memductance Gm(ϕα) of FOMR can be calculated according to (32) by using
vc1.
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For the FOMC emulator, the impedance elements Z1 and Z2 are a resis-
tor R1 and capacitor C2, respectively. The charge qAB is proportional to the
voltage (−vC2) in the time domain, as can be seen from equation (24b). As a
result, the voltage (−vC2) can be substituted for qAB . Based on the FOMR
analysis above, the voltage vc1 can be used to replace the JαvAB(t) equiva-
lently. Thus, utilizing the voltage vc1, the memcapacitance Cm(ϕα) of FOMC
can be determined according to equation (36).

For the FOMI emulator, the impedance elements Z1 and Z2 are an inductor
L1 and resistor R1, respectively. It is known from equation (24a) that flux ϕAB

is proportional to the current i1 in the time domain. Therefore, flux ϕAB can be
replaced by i1. In addition, the equation (27) shows that the fractional-order
integral of the flux ϕAB is directly proportional to vc1 in the time domain.
Hence, the inverse meminductance L−1

m (ρα) of the FOMI can be computed by
using vc1 based on equation (40).

4.1 Fractional-order memristor circuit response

Here, we apply a sinusoidal waveform vAB(t) = A sin(2πft) = A sin(ωt) (V)
to drive the FOMR. As the frequency f increases, the angular frequency ω

increases accordingly. The emulator is a flux-controlled FOMR when Z1 and
Z2 are R1 and R3, respectively. According to equation (8), the fractional-
order integral of the sinusoidal waveform in the steady-state response [1] can
be expressed as:

Jα (vAB(t))|ss. = Aω−α

⇣

sin
⇣

ωt−
απ

2

⌘

+ sin
⇣απ

2

⌘⌘

. (42)

To explore the effect of fractional-order parameter α on the fractional-order
memductance variation range, we substitute equation (42) into equation (32),
where the steady-state response for memductance of the FOMR can be written
as:

Gm(ϕα)|ss. =
a1A

ωα

⇣

sin
⇣

ωt−
απ

2

⌘

+ sin
⇣απ

2

⌘⌘

+ b1, (43)

where A is the amplitude of the input voltage, and b1 is the initial value of
the fractional-order memductance. In addition, when A and α are constant,
with an increase of the angular frequency ω, the memductance of FOMR shifts
closer to its initial value b1.

According to equation (43), the maximum value, minimum value and the
variation range of the memductance of FOMR are given by the following equa-
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tions under different conditions:

when t =
π(1 + α)

2ω
+

2kπ

ω
(k ∈ Z),

Gmax =
a1A

ωα

⇣

sin
⇣π

2
α
⌘

+ 1
⌘

+ b1, (44a)

when t =
π(α− 1)

2ω
+

2kπ

ω
(k ∈ Z),

Gmin =
a1A

ωα

⇣

sin
⇣π

2
α
⌘

− 1
⌘

+ b1, (44b)

∆G = Gmax −Gmin =
2a1A

ωα

, (44c)

where Z belongs to the integer set.
Through the analysis of equations (44c), when the fractional-order α and

the amplitude of the input voltage remain constant, the value of ∆G decreases
with an increase of the angular frequency ω. In addition, when the amplitude
A and the angular frequency (ω > 1) are constant, the value of ∆G increases
with the decrease of α.

In reality, the value of the fractional-order memductance must be positive,
restricting the value of ω as:

ω > α

s

a1A(1− sin(0.5πα))

b1
. (45)

In our SPICE simulations (conducted in PSPICE), the power supply volt-
ages of chips AD844 and AD633 are ±15 V. A FOC can be electronically
realized with an RC (resistive-capacitive) network as shown in Fig. 2. In the
simulation experiment, a Valsa constant phase element (CPE) implementation
circuit with m = 5 stages is used to emulate the FOC. Resistor and capaci-
tor values of the FOC for C1 = 18.335 nF/sec1−α are summarized in Table 2
for fractional orders of α = 0.95 and α = 0.90, and the circuit parameters are
A = 1 V, R1 = 10 kΩ, R2 = 100 kΩ, R3 = 10 kΩ, Vs = −6 V. By substituting
the set of parameters into equation (33), coefficients a1 and b1 are calculated
as 0.545 Ω−1 V−1 s−α and 6× 10−4 Ω−1, respectively.

Fig. 3 shows the evolution of memductance over time of the FOMR across
several different fractional orders. When the amplitude A and the frequency f
remain constant, the smaller the fractional-order α is, the larger the variation
range of the fractional-order memductance is, which is consistent with the
analysis of equation (44c).

Fig. 4 shows that the pinched hysteresis loop (PHL) of the FOMR emulator
passes through the first and third quadrants in the vAB-iAB plane. In the
vAB-iAB plane, the slope of the PHL is equivalent to the memductance of
the FOMR. When the amplitude A and the angular frequency ω (ω¿1) of the
excitation signal are constant, the variation range of the slope of the PHL
increases with a decrease of α. Thus, the area within the PHL lobes becomes
larger as the value of the fractional-order α decreases when ω > 1. Fig. 4
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Table 2 Resistor and capacitor values of Valsa FOC (C1 = 18.335nF/sec1−α) approxima-
tion circuit realizations at fractional order α = 0.95 and α = 0.90

Circuit element α = 0.95 α = 0.90

R1 (MΩ) 7.5350 4.8086
R2 (MΩ) 1.3213 0.92412
R3 (kΩ) 231.69 177.60
R4 (kΩ) 40.628 34.131
R5 (kΩ) 7.1242 6.5593
Rp (MΩ) 35.435 20.213
C1 (nF) 1.3271 2.0796
C2 (nF) 1.2109 1.7314
C3 (nF) 1.1049 1.4415
C4 (nF) 1.0082 1.2001
C5 (nF) 0.91990 0.99914
Cp (nF) 9.5865 4.9678

. . . 

Rp

R1 R2 Rm

C1 C2 Cm

Cp

Fig. 2 m-stage Valsa CPE schematic.
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Fig. 3 SPICE simulation results of fractional-order memductance at α = 0.90, α = 0.95
and α = 1 when A = 1 V, f = 400 Hz, a1 = 0.545 Ω−1 V−1 s−α and b1 = 6× 10−4 Ω−1.

shows that the simulation results are consistent with the theoretical analyses
of equation (44c).

Fig. 5 shows that when the order is 0.95 and the amplitude A of the ex-
citation signal are constant, the value of ∆G decreases with the increase of
frequency f . Therefore, the PHL decreases with the increase of frequency f .
The simulation results in Fig. 5 are consistent with the theoretical analysis
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Fig. 4 SPICE simulation results of vAB-iAB hysteresis curves at α = 0.90, α = 0.95 and
α = 1 when f = 400 Hz , A = 1 V, a1 = 0.545 Ω−1 V−1 s−α and b1 = 6× 10−4 Ω−1.
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Fig. 5 PSPICE simulation results of vAB-iAB hysteresis curves at f = 0.4 kHz, f =
0.48 kHz and f = 1.2 kHz when α = 0.95, A = 1 V, a1 = 0.545 Ω−1 V−1 s−α and b1 =
6× 10−4 Ω−1.

of equation (44c), which proves the correctness of the FOMR emulator con-
structed by our novel universal interface.

To clearly express the behavioral relationship between the maximum and
minimum fractional-order memductance values, and ω in equations (44a) and
(44b), Fig. 6 was simulated using MATLAB. Fig. 6(a), (b) shows the change
of the maximum and minimum of fractional-order memductance values with a
changing applied frequency f for varying values of α. The maximum/minimum
fractional-order memductance values decreases/increases as the frequency ap-
proaches infinity, respectively, towards the initial of value of the fractional-
order memductance b1, which adheres to the relations found in equations (44a)
and (44b). But according to equation (44b), the minimum of the fractional-
order memductance value remains unchanged with a change of the frequency
when α = 1. In other cases, the larger the value of α, the faster the decrease of
the fractional-order memductance’s variation range. In other words, low frac-
tional orders can be utilized to emulate hysteresis behavior at high frequencies.
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Fig. 6 MATLAB simulation results of (a) the maximum and (b) minimum of fractional-
order memductance values at α = 0.90, α = 0.95 and α = 1, respectively when A = 1 V,
a1 = 0.545 Ω−1 V−1 s−α and b1 = 6× 10−4 Ω−1.

4.2 Fractional-order memcapacitor circuit response

Here, we intend to use a sinusoidal wave vAB(t) = A sin(2πft) = A sin(ωt)
(V) to drive the FOMC, and when the frequency f is increased, the angular
frequency ω also increases. When Z1 and Z2 are set to R1 and C2, respectively,
the emulator is a flux- controlled FOMC. In order to analyze the influence of
the value of fractional-order α on the dynamics of the FOMC, equation (42) is
substituted into the equation (36) and the memcapacitance Cm(ϕ) of FOMC
can be expressed by the following equation:

Cm(ϕα)|ss. =
a2A

ωα

⇣

sin
⇣

ωt−
απ

2

⌘

+ sin
⇣απ

2

⌘⌘

+ b2, (46)

where b2 is the initial value of the memcapacitance of FOMC. When the
fractional-order α and the amplitude of the excitation signal vAB are con-
stant, the equivalent memcapacitance of the FOMC approaches b2 with an
increase of the driving frequency.

In order to explore the influence of the fractional-order α on the FOMC
memcapacitance Cm(ϕα), by analyzing equation (46), the maximum value,
minimum value and the variation range can be obtained:

when t =
π(1 + α)

2ω
+

2kπ

ω
(k ∈ Z),

Cmax =
a2A

ωα

⇣

sin
⇣π

2
α
⌘

+ 1
⌘

+ b2, , (47a)

when t =
π(α− 1)

2ω
+

2kπ

ω
(k ∈ Z),

Cmin =
a2A

ωα

⇣

sin
⇣π

2
α
⌘

− 1
⌘

+ b2, (47b)

∆C = Cmax − Cmin =
2a2A

ωα

, (47c)

where Z belongs to the integer set.
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Table 3 Resistor and capacitor values of Valsa FOC (C1 = 1nF/sec1−α) approximation
circuit realizations at fractional order α = 0.95 and α = 0.90

Circuit element α = 0.95 α = 0.90

R1 (MΩ) 138.16 88.167
R2 (MΩ) 24.226 16.944
R3 (MΩ) 4.2481 3.2563
R4 (kΩ) 744.92 625.79
R5 (kΩ) 130.62 120.27
Rp (MΩ) 649.71 370.61
C1 (pF) 72.382 113.42
C2 (pF) 66.045 94.429
C3 (pF) 60.262 78.617
C4 (pF) 54.986 65.453
C5 (pF) 50.171 54.493
Cp (pF) 522.85 270.94

It can be seen from equation (47c) that ∆C is proportional to A/ωα. Thus,
when the value of fractional order α and the input voltage amplitude A remain
constant, the value of ∆C decreases with the increase of the angular frequency
ω. Furthermore, when the amplitude A and the angular frequency ω (ω > 1)
of the input signals are constant, a decrease in α causes ∆C to also drop.

To keep the fractional-order memcapacitance Cm(ϕα) positive, a the fol-
lowing condition is imposed upon the applied angular frequency:

ω > α

s

a2A(1− sin(0.5πα))

b2
. (48)

A SPICE analysis is used for simulation verification. Fractional-order ca-
pacitance C1 = 1 nF/sec1−α, and the corresponding values of equivalent cir-
cuit RC components for fractional orders α = 0.95 and α = 0.90 are shown in
Table 3. The power supply voltages of chips AD844 and AD633 are ±15 V,
while circuit parameters are set to A = 1 V, R1 = 50 kΩ, R2 = 100 kΩ,
C2 = 1 nF and Vs = −6 V. Substituting these circuit parameters into equa-
tion (37), coefficients a2 and b2 can be calculated as 4 uFV−1s−α and 1.2 nF,
respectively.

Fig. 7 shows the transient response of the fractional-order memcapacitance
value changing for a given excitation voltage, across several different fractional
orders. The corresponding PHLs in Fig. 8 show that the smaller the fractional
order, the larger the variation range of the fractional-order memcapacitance
Cm(ϕα). Equation (47c) highlights the trend of the range of the fractional-
order memcapacitance Cm(ϕα) with a change of the fractional-order parameter
α.

On the vAB-qAB plane in Fig. 8, the slope of the PHL is equivalent to the
memcapacitance of the FOMC. When the excitation signal amplitude A and
the angular frequency ω are both constant, the variable range of the slope of
the PHL increases as the value of fractional-order α decreases. As a result, the
area of the PHL lobes grow in size as the value of fractional order α drops
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Fig. 7 SPICE simulation results of the fractional-order memcapacitance Cm(ϕ) at α = 0.90,
α = 0.95 and α = 1 when A = 1 V, f = 2.5 kHz, a2 = 4 uFV−1s−α and b2 = 1.2 nF.

-1.0 -0.5 0.0 0.5 1.0

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

=1

=0.95

=0.90

-v
C
2
(V

) 
∝

 q

v
AB
(V)

Fig. 8 PSPICE simulation results of vAB-qAB hysteresis curves at α = 0.90, α = 0.95 and
α = 1 when A = 1 V, f = 2.5 kHz, a2 = 4 uFV−1s−α and b2 = 1.2 nF.
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Fig. 9 PSPICE simulation results of vAB-qAB hysteresis curves at f = 1.5 kHz, f = 2 kHz
and f = 2.5 kHz when A = 1 V, α = 0.95, a2 = 4 uFV−1s−α and b2 = 1.2 nF.

when ω > 1. The simulation results are consistent with the theoretical analysis
of equation (47c), as seen in Fig. 8.

The slope of the PHL on the vAB-qAB plane is equivalent to the mem-
capacitance of the FOMC. When the order is 0.95 and the amplitude A of
the excitation signal remains constant, the value of ∆C decreases as the fre-
quency f increases. Thus, as the frequency f increases, the PHL shrinks. The
simulation findings in Fig. 9 are consistent with the derived equation (47c).
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Fig. 10 MATLAB simulation results for the FOMC with A = 1 V, a2 = 4 uFV−1s−α and
b2 = 1.2 nF: (a) the maximum fractional-order memcapacitance values, (b) the minimum
fractional-order memcapacitance values at α = 0.90, α = 0.95 and α = 1.

The maximum and minimum values of fractional-order memcapacitance
are illustrated using functional simulations in MATLAB according to the
equations (47a) and (47b). Fig. 10 shows that the maximum and minimum
fractional-order memcapacitance values approach infinity as the excitation
frequency increases, other than for the case where α = 1 in Fig. 10(b). It
can be seen from Fig. 10 that the smaller the value of order α, the slower
the maximum and minimum values of fractional-order memcapacitance reach
the initial memcapacitance. Therefore, in a higher frequency range, a smaller
fractional-order α can better emulate the hysteresis behavior of the FOMC.

4.3 Fractional-order meminductor circuit response

In this section, we apply a cosine wave vAB(t) = A cos(2πft) = A cos(ωt)
(mV) to drive the FOMI, and the angular frequency ω grows in lockstep with
the increase of the frequency f . The construction of the FOMI emulator circuit
is based on the universal emulator circuit. When Z1 and Z2 are L1 and R1

respectively, the emulator is a ρ - controlled FOMI. The integer integration of
a cosine wave vAB(t) can be written as:

ϕAB(t) =

Z

vAB =
A

ω
sin(ωt). (49)

According to equation (8), the fractional-order integral of the flux ϕAB(t)
in the steady-state response can be obtained as:

ρα(t) = Jα (ϕAB(t))|ss.

=
A

ωα+1

⇣

sin
⇣

ωt−
π

2
α
⌘

+ sin
⇣απ

2

⌘⌘

.
(50)

In order to obtain the specific expression of the inverse meminductance of
the FOMI, equation (50) is substituted into equation (40) to obtain:

L−1
m (ρα)

�

�

ss.
=

a3A

ωα+1

⇣

sin
⇣

ωt−
π

2
α
⌘

+ sin
⇣απ

2

⌘⌘

+ b3. (51)
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From equation (51), when the fractional order α and the amplitude A of the
excitation signal are constant, the inverse fractional-order meminductance will
become infinitely close to the initial value b3 with an increase of the angular
frequency ω. Therefore, the PHL of the FOMI will approach a straight line in
the limit of an increasing frequency f .

According to equation (51), the maximum, minimum and variation range
of the inverse meminductance of FOMI are given by:

when t =
π(1 + α)

2ω
+

2kπ

ω
(k ∈ Z),

L−1
max =

a3A

ωα+1

⇣

sin
⇣π

2
α
⌘

+ 1
⌘

+ b3, (52a)

when t =
π(α− 1)

2ω
+

2kπ

ω
(k ∈ Z),

L−1
min =

a3A

ωα+1

⇣

sin
⇣π

2
α
⌘

− 1
⌘

+ b3, (52b)

∆L−1 = L−1
max − L−1

min =
2a3A

ωα+1
, (52c)

where Z belongs to the integer set.
By observing equation (52c), when the amplitude A of the input voltage

and the value of fractional order α are fixed, the value of ∆L−1 decreases as
the angular frequency ω increases. Besides, the value of ∆L−1 increases as the
value of fractional order α decreases when the amplitude A and the angular
frequency ω are unchanged.

In order to make the inverse fractional-order meminductance positive, the
following condition must be satisfied:

ω > α+1

s

a3A(1− sin(0.5πα))

b3
. (53)

In order to verify the correctness of the above theoretical analysis, SPICE
is used to simulate the analog circuit. Fractional-order capacitance C1 = 1
nF/sec1−α, and the corresponding value of the equivalent circuit of resistors
and capacitors is shown in Table 3. The power supply voltages of chips AD844
and AD633 are ±15 V, and other corresponding circuit parameters are A = 5
mV, L1 = 1 mH, R1 = 50 kΩ, R2 = 10 kΩ and Vs = −12 V. By substituting
these given parameters into equation (41), a3 = 2× 1013 H−1 Wb−1 s−α and
b3 = 240 H−1 can be obtained.

Through the comparison of different orders in Fig. 11, it can be seen that
under the same frequency f and amplitude A of the excitation signal, the
variation range of the inverse fractional order meminduction will increase with
a decrease of fractional order. This result is consistent with the theoretical
analysis of equation (52c).

From the ϕAB − iAB plane in Fig. 12, the slope is equivalent to the inverse
meminductance of the FOMI. When the excitation signal amplitude A and
angular frequency ω are both constant, the variable range of the slope of the
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Fig. 11 PSPICE simulation results waveforms of the inverse fractional-order meminduc-
tance at α = 0.90, α = 0.95 and α = 1 when A = 5 mV, f = 4.2 kHz, a3 = 2 × 1013

H−1 Wb−1 s−α and b3 = 240 H−1.
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Fig. 12 PSPICE simulation results of ϕAB − iAB hysteresis curves of FOMI at α = 0.90,
α = 0.95 and α = 1 when A = 5 mV, f = 4.2 kHz, a3 = 2 × 1013 H−1 Wb−1 s−α and
b3 = 240 H−1.

PHL increases as the value of the fractional-order α decreases. Hence, as the
fractional-order α declines and ω > 1, the area within the PHL lobe increases.
As shown in Fig. 12, the simulation findings are consistent with the theoretical
analysis of equation (52c).

On the ϕAB − iAB plane in Fig. 13, the slope of the PHL is equivalent to
the inverse meminductance of the FOMI. From equation (49), the flux ϕAB(t)
is proportional to A/ω. Therefore, the amplitude of the flux ϕAB(t) decreases
with an increase of the frequency f when the amplitude A of the input signal
is constant. In addition, when A = 5 mV and α = 0.95, the value of ∆L−1

decreases with an increasing frequency f . As a consequence, this fact causes
the PHL of FOMI to shrink inward as the frequency increases. Furthermore,
the theoretical analysis of equation (52c) also well illustrates the influence of
the frequency f on the variation range of the slope of the PHL in Fig. 13.

In order to intuitively express equations (52a) and (52b), Fig. 14 was illus-
trated using MATLAB. The maximum and the minimum values of the inverse
fractional-order meminductance are infinitely close to the initial value b3 as
the frequency increases, shown in Fig. 14. In Fig. 14, the maximum and the
minimum value of the inverse fractional-order meminductance will reach the
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Fig. 13 SPICE simulation results of ϕAB − iAB hysteresis curves at f = 5 kHz, f = 6 kHz
and f = 7 kHz when A = 5 mV, α = 0.95, a3 = 2 × 1013 H−1 Wb−1 s−α and b3 = 240
H−1.
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Fig. 14 MATLAB simulation results of (a) the maximum value of the inverse fractional-
order meminductance, (b) the minimum value of the inverse fractional-order meminductance
at α = 0.90, α = 0.95 and α = 1 when A = 5 mV, a3 = 2 × 1013 H−1 Wb−1 s−α and
b3 = 240 H−1.

Table 4 Comparison of different emulators of the FOMEs

Reference Number of active elements Number of passive elements excluding FOC Type of mutator/emulator

Floating emulator [41] 5(AD844×5) 3(R×3) FOMR
[42] 8(AD844×5, AD633×3) 8(R×8) FOMR
[44] 6(CCII×5, multiplier×1 4(R×4) FOMR

4(R×3, C×1) FOMC
proposed 5(AD844×4, AD633×1) 3(R×3) FOMR

3(R×2, C×1) FOMC
3(R×2, L×1) FOMI

initial value faster by increasing the fractional order α. In particular, for α = 1,
the value of L−1

min is constant. Therefore, the lower the value of order α, the
more evident the PHL behavior of FOMI is at the same frequency.

To summarize, these simulation results have shown consistency with the
theoretical analysis, which effectively proves that the proposed novel universal
interface for constructing floating fractional order mem-elements is valid.

Table 4 provides comparisons among the proposed FOME based on a uni-
versal interface and prior floating FOME emulators, in the aspects of a) the
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number of active elements, b) the number of passive elements excluding FOC
and c) the ability to realize different types of FOMEs. These several aspects
of the comparison are crucial, because the fewer number of active and passive
elements, the simpler the structures of FOME emulators will have; and the
more types of FOMEs for implementation, the broader application prospects
the FOME emulators should have. As for the number of active and passive ele-
ments, the proposed FOME emulators based on a universal interface obviously
possess fewer active elements and passive elements excluding FOC, ensuring
circuits structures of the proposed FOME emulators simpler and easier to im-
plement. Regarding the ability to realize different types of FOMEs, only single
FOMR emulators are proposed in [41] and [42]. In addition, FOMI emulator
cannot be realized in [44]. However, the proposed FOME emulators have the
ability to flexibly realize three types of FOMEs, which is more functional.
Therefore, the proposed FOME emulators provide a new idea for the realiza-
tion of simple and useful FOME emulators in the future.

5 Conclusion

This paper presented a novel universal interface circuit. The emulators of
FOMR, FOMC and FOMI may be realized when Z1 and Z2 are selected using
different impedance elements. Theoretical analyses are undertaken to verify
the operation of these designed FOME emulators. SPICE simulations are un-
dertaken in PSPICE to perform circuit analyses, and MATLAB simulations
are used for dynamical analyses, presenting the influence of fractional-order
parameters and excitation frequencies on the PHL of the FOME emulators,
as well as the range of the fractional-order memductance, the fractional-order
memcapacitance and the inverse fractional-order meminductance. From the
consistency between our theoretical analyses and simulation results, we can
see that the fractional-order parameter provides an extra degree of freedom
and increases the controllability on memory-based systems. The newly pro-
posed floating universal interface will facilitate further FOMR, FOMC and
FOMI-based research by providing a method to emulate three types of FOMEs.
Compared with other similar research work, the FOME emulators based on
the proposed universal interface in this paper have the following advantages:
1) have floating terminals; 2) have reconfigurability among the three types
of FOMEs that are not based on any other mem-emulators; 3) simpler cir-
cuit structure. Our proposed interface provides value for the future research,
development and application of FOMEs.
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