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Abstract 22 

Background: Recently, machine learning (ML) is becoming attractive in genomic 23 

prediction, while its superiority in genomic prediction and the choosing of optimal ML 24 

methods are needed investigation.  25 

Results: In this study, 2566 Chinese Yorkshire pigs with reproduction traits records 26 

were used, they were genotyped with GenoBaits Porcine SNP 50K and PorcineSNP50 27 

panel. Four ML methods, including support vector regression (SVR), kernel ridge 28 

regression (KRR), random forest (RF) and Adaboost.R2 were implemented. Through 29 

20 replicates of five-fold cross-validation, the genomic prediction abilities of ML 30 

methods were explored. Compared with genomic BLUP(GBLUP), single-step GBLUP 31 

(ssGBLUP) and Bayesian method BayesHE, our results indicated that ML methods 32 

significantly outperformed. The prediction accuracy of ML methods was improved by 33 

19.3%, 15.0% and 20.8% on average over GBLUP, ssGBLUP and BayesHE, ranging 34 

from 8.9% to 24.0%, 7.6% to 17.5% and 11.1% to 24.6%, respectively. In addition, ML 35 

methods yielded smaller mean squared error (MSE) and mean absolute error (MAE) in 36 

all scenarios. ssGBLUP yielded improvement of 3.7% on average compared to GBLUP, 37 

and the performance of BayesHE was close to GBLUP. Among four ML methods, SVR 38 

and KRR had the most robust prediction abilities, which yielded higher accuracies, 39 

lower bias, lower MSE and MAE, and comparable computing efficiency as GBLUP. 40 

RF demonstrated the lowest prediction ability and computational efficiency among ML 41 

methods.  42 

Conclusion: Our findings demonstrated that ML methods are more efficient than 43 



traditional genomic selection methods, and it could be new options for genomic 44 

prediction. 45 

Key words: machine learning, genomic prediction, prediction accuracy, pig 46 

 47 

Background 48 

Genomic selection (GS) has been widely recognized and successfully implemented in 49 

animal and plant breeding programs [1-3]. It is reported that the breeding costs of dairy 50 

cattle using GS were 92% lower than that of tradition progeny testing [4]. At present, the 51 

genetic gain rate of the annual yield traits of US Holstein dairy cattle has increased from 52 

around 50% to 100%[5]. The accuracy of GS depends on methods of genomic breeding 53 

values estimation (GEBV), reference population size, marker density, and heritability, 54 

etc. Currently, parametric methods are most commonly used for livestock and poultry 55 

genomic selection, mainly based on either the genomic covariance between genotyped 56 

individuals e.g. genomic BLUP (GBLUP)[6] or single-step GBLUP (ssGBLUP)[7, 8] ) or 57 

Bayesian regression models[9, 10], with differences mainly depends on the prior 58 

distribution of marker effects. Nevertheless, these linear models usually only take into 59 

account the additive inheritance and ignore the complex non-linear relationships that 60 

may exist between markers and phenotypes (e.g. epistasis, dominance, genotype-by-61 

environment interactions). In addition, parametric methods usually provide limited 62 

flexibility for handling non-linear effects in high-dimensional genomic data, resulting 63 

in huge computational demands [11], while considering nonlinearity may enhance the 64 

predictive ability of complex traits [12]. Therefore, new strategy should be explored to 65 



more accurately estimate the genomic breeding values.  66 

Driven by applications in intelligent robots, self-driving cars, automatic translation, 67 

face recognition, artificial intelligence games and medical services, machine learning 68 

(ML) has gained considerable attention in the past decade. Some characteristics of the 69 

ML methods make it potentially attractive to deal with high-order non-linear 70 

relationships in high-dimensional genomic data, e.g. allowing the number of variables 71 

larger than the sample size [13], capable of capturing the hidden relationship between 72 

genotype and phenotype in an adaptive manner, and imposing little or no specific 73 

distribution assumptions about the predictor variables as GBLUP and Bayesian 74 

methods [14, 15] .  75 

Studies have shown that random forest (RF), support vector regression (SVR), kernel 76 

ridge regression (KRR) and other machine learning methods gained advantage over 77 

GBLUP and Bayes B, etc. [16-18]. Ornella et al. compared the performance of support 78 

vector regression, random forest regression, Reproducing Kernel Hilbert space (RKHS), 79 

ridge regression, and Bayesian Lasso in genomic prediction, and found that RKHS and 80 

random forest regression were the best [19]. González-Camacho et al. reported the 81 

support vector machine (SVM) with linear kernel performed the best in comparison 82 

with other ML methods and linear models in the genomic prediction of the rust 83 

resistance of wheat [18]. Additionally, ML algorithms have also been widely used in the 84 

fields of gene screening, genotype imputation, and protein structure and function 85 

prediction, etc. [20-23], demonstrating its superiority as well. However, one challenge for 86 

the ML is choosing the optimum ML method as a series of ML algorithms have been 87 



proposed and each has its own characteristics and shows different prediction abilities 88 

in different datasets and traits.  89 

Therefore, the objective of this study was to assess the performance of machine learning 90 

methods in genomic prediction through the comparison with existing prevail GBLUP 91 

and Bayesian methods, and on the other hand, the efficiency of different ML methods 92 

were compared as well in order to explore the ideal ML algorithm for genomic 93 

prediction.  94 

Materials and Methods 95 

Ethics Statement 96 

The whole procedure for blood sample collection was carried out in strict accordance 97 

with the protocol approved by the Animal Care and Use Committee of China 98 

Agricultural University (Permit Number: DK996). 99 

Population and Phenotypes 100 

A Yorkshire pig population from DHHS, a breeding farm in Hebei province, China, was 101 

studied. A total 2566 animals born between 2016 and 2020 were sampled and 4274 102 

reproductive records of total number of piglets born (TNB) and number of piglets born 103 

alive (NBA) were available, and 3893 animals were traced back to construct pedigree 104 

relationship matrix (A matrix). A single-trait repeatability model was used to estimate 105 

heritabilities. The fixed effects included herd-year-season, and the random effects 106 

included additive genetic effects, random residuals, and permanent effects. The 107 

information of the animals, phenotypes and genetic components, as well as the 108 

estimated heritabilities were listed in Table 1. The estimated heritabilities of TNB and 109 



NBA were both 0.12.  110 

Derivation of corrected phenotypes 111 

In order to avoid double counting of parental information, the corrected phenotypes (yc) 112 

derived from the estimated breeding values (EBV) were used as response variable in 113 

genomic prediction. The pedigree-based BLUP and single-trait repeatability model 114 

were performed to estimate the breeding values for each trait separately. 115 𝑦 = 𝑋𝑏 + 𝑍𝑎𝑎 + 𝑍𝑝𝑒𝑝𝑒 + 𝑒,       (1) 116 

where 𝑦 is the vector of phenotypic values; 𝑏 is the vector of fixed effects including 117 

herd-year-season; 𝑎 represent additive genetic effects, following a norm distribution 118 

N(0, Aσ2
a), where A is the pedigree-based relationship matrix, σ2

a  is the additive 119 

genetic variance. 𝑝𝑒  is permanent environment effects with norm distribution N(0, 120 

Iσ2
pe ), where σ2

pe  is permanent environment variance. e is the vector of random error, 121 

following a norm N(0, Iσ2
e ), where σ2

e represents residual variance. 𝑋, 𝑍𝑎, and 𝑍𝑝𝑒 122 

are incidence matrices linked 𝑏 , 𝑎  and 𝑝𝑒  to 𝑦 . A total of 3893 individuals were 123 

traced to construct A matrix. Their EBVs were calculated using the DMUAI procedure 124 

of the DMU software [24] . The yc were calculated as EBV plus the average estimated 125 

residuals for multiple parties of a sow following Guo et al. [25] . 126 

Genotype data and imputation 127 

Two kinds of 50K SNP panels, PorcineSNP50 BeadChip (Illumina, CA, USA) and 128 

GenoBaits Porcine SNP 50K (Molbreeding, China) were used for the genotyping. A 129 

total of 1189 sows were genotyped with PorcineSNP50 BeadChip, which includes 130 

50,697 SNPs across the genome, and 1978 individuals were genotyped using GenoBaits 131 



Porcine SNP 50K with 52,000 SNPs. There are 30,998 common SNPs between these 132 

two SNP panels, and 601 individuals were genotyped with both SNP panels and, 2566 133 

genotyped individuals were therefore finally used for further analysis including 1189 134 

animals with PorcineSNP50 BeadChip and 1377 pigs with GenoBaits Porcine SNP 50K. 135 

The animals genotyped with GenoBaits Porcine SNP 50K were imputed to 136 

PorcineSNP50 BeadChip using Beagle 5.0 [26]. The reference population size for 137 

genotype imputation was 3720. Imputation accuracy was assessed by the dosage R-138 

squared measure (DR2), which is the estimated squared correlation between the 139 

estimated allele dose and the true allele dose. The genotype correlation (COR) and the 140 

genotype concordance rate (CR) were also calculated based on the 601 overlap animals 141 

to evaluate the imputation accuracy. After imputation, the quality control on genotype 142 

were carried out using PLINK software [27], SNPs with minor allele frequency (MAF) 143 

lower than 0.01 and call rate lower than 0.90 were removed, and individuals with call 144 

rate lower than 0.90 were excluded. Finally, all animals and 44,922 SNPs on autosomes 145 

were remained for further analysis. 146 

Statistical models 147 

GBLUP, ssGBLUP, Bayesian Horseshoe (BayesHE) and four ML regression methods, 148 

support vector regression (SVR), Kernel ridge regression (KRR), Random forest (RF), 149 

and Adaboost.R2 were used to predict GEBV. For ssGBLUP, in order to prevent the 150 

problem that singular matrix cannot be inverted, Gw = (1-w)Ga + wA22, and w was equal 151 

to 0.05 [28]. BayesHE was developed by Shi. et al [29], it is based on Global-local priors 152 

to increase the flexibility and adaptability of the Bayesian model. In this study, the first 153 



form of BayesHE (BayesHE1) was used [29], and the Markov chain Monte Carlo 154 

(MCMC) chain was run for 50,000 cycles, with the first 20,000 cycles being discarded 155 

as burn-in and every 50 sample of the remaining 30,000 iterations were saved to infer 156 

posterior statistics. In-house scripts written in Fortran 95 were used for BayesHE 157 

analyses, and the DMUAI procedure implemented in DMU software was used for 158 

GBLUP and ssGBLUP analyses. Meanwhile, the four ML regression methods are 159 

introduced as follows. 160 

Support vector regression 161 

Support vector machine (SVM) was proposed by Vapnik [30] for binary classification. 162 

SVR is the application of SVM in regression for dealing with quantitative responses, 163 

which uses a linear or non-linear kernel function to map the input space (the marker 164 

dataset) to a higher dimensional feature space, and performed modeling and prediction 165 

on the feature space [31]. In other words, we can build a linear model in the feature space 166 

to deal with regression problems. The model formulation of SVR can be expressed as: 167 𝑓(𝑥) = 𝛽0 + ℎ(𝑥)𝑇𝛽,          (2) 168 

in which ℎ(𝑥)𝑇𝛽 is the kernel function, 𝛽 is the vector of weights, and 𝛽0 is the bias. 169 

Generally, the formalized SVR is given by minimizing the following restricted loss 170 

function: 171 𝑚𝑖𝑛𝛽0,𝛽 12 ‖𝛽‖2 + 𝐶 ∑ 𝑉(𝑦𝑖 − 𝑓(𝑥𝑖)),𝑛𝑖=1      (3) 172 

in which 173 𝑉𝜀(𝑟) = { 0,   𝑖𝑓|𝑟| < 𝜀|𝑟| − 𝜀, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.      (4) 174 𝑉𝜀(𝑟) is the ε-insensitive loss and 𝐶 (“cost parameter”) is the regularization constant 175 



that controls the trade-off between prediction error and model complexity. 𝑦 is a 176 

quantitative response and ||·|| is the norm in the Hilbert space. After optimization, the 177 

final form of SVR can be written as: 178 𝑓(𝑥) = ∑ (�̂�𝑖 − 𝑎𝑖)𝑘(𝑥, 𝑥𝑖),𝑚𝑖=1      (5) 179 

in which 𝑘(𝑥𝑖 , 𝑥𝑗) = 𝜙(𝑥𝑖)𝑇𝜙(𝑥𝑗) is the kernel function. In this research, grid search 180 

was used to find the best kernel function and the best hyper-parameters of 𝐶  and 181 

gamma. An internal five-fold cross validation (5-fold CV) strategy was performed to 182 

adjust the hyper-parameters when performing a grid search. 183 

Kernel ridge regression 184 

Kernel ridge regression (KRR) is a non-linear regression method, which can effectively 185 

discover the non-linear structure of the data[32]. KRR uses a non-linear kernel function 186 

to map the data to a higher dimensional kernel space, and then builds a ridge regression 187 

model to make the data linearly separable in this kernel space. The linear function in 188 

the kernel space is selected according to the mean squared error loss of ridge 189 

regularization [32]. The final KRR prediction model can be written as: 190 𝑦(𝑥𝑖) = 𝑘′(𝐾 + 𝜆𝐼)−1�̂�,       (6) 191 

where 𝜆  is the regularization constant; 𝐾  is the Gram matrix with entries 𝐾𝑖𝑗 =192 𝐾(𝑥𝑖, 𝑥𝑗) = 𝜙(𝑥𝑖) · 𝜙(𝑥𝑗)𝑇, thus, for n training samples, the obtained kernel matrix is: 193 
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𝐼  is the identity matrix; 𝑘′ = 𝐾(𝑥𝑖, 𝑥𝑗)  with 𝑗  = 1,2,3,…,n, n is the number of 195 

training samples, and 𝑥𝑖 is the test sample. In the expanded form,  196 
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The grid search was used to find the most suitable kernel function and  in this study, 198 

and an internal 5-fold CV strategy was used for tuning the hyper-parameters.  199 

Random forest 200 

Random forest (RF) is a machine learning method that uses voting or the average of 201 

multiple decision trees to determine the classification or predicted values of new 202 

instances [33]. Random forest is essentially a collection of decision trees, and each 203 

decision tree is slightly different from other trees [34]. Random forest reduces the risk of 204 

overfitting by averaging the prediction results of many decision trees [18]. Random forest 205 

regression can be written in the following form: 206 𝑦 = 1𝑀 ∑ 𝑡𝑚(𝜓𝑚(𝑦: 𝑋)),𝑀𝑚=1        (9) 207 

in which 𝑦 is the predicted value of random forest regression, 𝑡𝑚(𝜓𝑚(𝑦: 𝑋))is an 208 

individual regression tree, and 𝑀 is the number of decision trees in the forest. The 209 

prediction is obtained by passing down the predictor variables in the flowchart of each 210 

tree, and the corresponding estimated value at the terminal node is used as the predicted 211 

value. Finally, the predictions of each tree in RF are averaged to calculate the final 212 

prediction of unobserved data. The grid search was used to find the most suitable hyper-213 

parameter 𝑀  and the maximum depth of the tree, and the inner 5-fold CV was 214 

performed to tune the hyper-parameters.  215 

Adaboost.R2 216 

Adaboost.R2 [35] is an ad hoc modification of Adaboost.R and is an extension of 217 



Adaboost.M2 to deal with regression problems, which repeatedly uses a regression tree 218 

as a weak learner followed by increasing the weights of incorrectly predicted samples 219 

and decreasing the weights of correctly predicted samples. It builds a “committee” by 220 

integrating multiple weak learners, making its prediction effect better than those of 221 

weak learners [36]. Adaboost.R2 regression model can be written as: 222 𝑦 = 𝑖𝑛𝑓 [𝑦 ∈ 𝑌: ∑ 𝑙𝑜𝑔 1𝜀𝑡 ≥ 12 ∑ 𝑙𝑜𝑔 1𝜀𝑡𝑡𝑡:𝑓𝑡(𝑥)≤𝑦 ],      (10) 223 

in which 𝑦 is the predicted GEBV, 𝑓𝑡(𝑥) is predicted value of the t-th weak learner, 224 

and 𝜀𝑡  is the error rate of 𝑓𝑡(𝑥) , 𝜀𝑡 = �̅�𝑡 ∕ (1 − �̅�𝑡)  and the average loss �̅�𝑡 =225 ∑ 𝐿𝑡(𝑖)𝐷𝑡(𝑖)𝑚𝑖=1 , in which 𝐿𝑡(𝑖) is the error between the actual observation value and 226 

the predicted value of the i-th predicted individual, and 𝐷𝑡(𝑖) is the weight distribution 227 

of 𝑓𝑡(𝑥). After 𝑓𝑡(𝑥) is trained, the weight distribution 𝐷𝑡(𝑖) will become 𝐷𝑡+1(𝑖),  228 𝐷𝑡+1(𝑖) = 𝐷𝑡(𝑖)𝛽𝑡(1−𝐿𝑡(𝑖))𝑍𝑡  ,         (11) 229 

in which 𝑍𝑡 is a normalization factor chosen such that 𝐷𝑡+1(𝑖) will be a distribution. 230 

In current study, SVR and KRR were respectively used as weak learners of 231 

Adaboost.R2.  232 

For these four ML methods, the vectors of genotypes (coded as 0, 1, 2) were the input 233 

independent variables and yc were used as response variables, and Sklearn package for 234 

Python (V0.22) was used for genomic prediction. 235 

Meanwhile, the optimal hyper-parameters for SVR, KRR, RF and Adaboost.R2 236 

according to the grid search were shown in Table S1. 237 

Accuracy of genomic prediction 238 

Five-fold cross validation was used to estimate the accuracies of genomic prediction, 239 



in which 2566 individuals were randomly split into five groups with 513 individuals 240 

each. For each cross validation, four of the five groups were defined as reference 241 

population, and the left one was treated as the validation population. The genotyped 242 

reference and validation sets in each replicate of 5-fold CV were same for all methods, 243 

and it should be noted that non-genotyped individuals were added in the reference 244 

population in ssGBLUP. For all methods, the accuracy of genomic prediction was 245 

calculated as the Pearson correlation between the GEBVs and corrected phenotypes yc 246 

in validation population. In addition, the prediction unbiasedness was also calculated 247 

as the regression of yc on the GEBVs of validation population. The 5-fold CV scheme 248 

was repeated 20 times, and the overall prediction accuracy and unbiasedness was the 249 

average of 20 replicates. The Hotelling-Williams Test [37] was performed to compare 250 

the prediction accuracy of different methods. 251 

Meanwhile, prediction ability metrics e.g. mean squared error (MSE) and mean 252 

absolute error (MAE) were also used to evaluate the performance of regression models 253 

in the present study. MSE can take both prediction accuracy and bias into account [38], 254 

and the smaller the value of MSE, the better the accuracy of the model to describe the 255 

experimental data is. MAE can better reflect the actual situation of the predicted value 256 

error. Their formulas can be written as follows. 257 𝑀𝑆𝐸 = 1𝑚 ∑ (𝑓𝑖 − 𝑦𝑖)𝑚𝑖=1 2
, and 258 𝑀𝐴𝐸 = 1𝑚 ∑ |𝑓𝑖 − 𝑦𝑖|𝑚𝑖=1 ,        (12) 259 

where 𝑚 represents the number of animals in each cross-validation test fold of the 5-260 

fold CV, 𝑓 is the vector of predicted values (GEBVs) and 𝑦 is the vector of observed 261 



values (yc). The final MSE and MAE were the average of 20 replicates. 262 

Results 263 

Genotype imputation accuracy 264 

Figure 1 illustrates the accuracy of imputing GenoBaits Porcine SNP 50K to 265 

PorcineSNP50 BeadChip across minor allele frequency (MAF) intervals and 266 

chromosomes. DR2, CR and COR were not sensitive to MAF except that COR was 267 

lower when the MAF was less than 0.05 and in the range of 0.45 to 0.5 (Figure 1a). 268 

DR2, CR and COR on each chromosome were 0.978~0.988, 0.984~0.988 and 269 

0.957~0.972, respectively, and no significant differences were observed in DR2, CR 270 

and COR between chromosomes (Figure 1b). In the same scenarios, the values of COR 271 

were smaller than those of DR2, CR. The averaged DR2, CR and COR across all 272 

variants were 0.984, 0.985 and 0.964, respectively, indicating the imputation is enough 273 

accurate to analysis two SNP panel together.  274 

Accuracy of genomic prediction  275 

Comparison of ML methods with (ss)GBLUP and BayesHE 276 

Table 2 shows the prediction accuracies and unbiasedness of machine learning methods, 277 

(ss)GBLUP and BayesHE on traits of TNB and NBA. The accuracies of ML methods 278 

were significantly higher than those of (ss)GBLUP and BayesHE. The improvements 279 

of ML methods over GBLUP, ssGBLUP and BayesHE were 19.3%, 15.0% and 20.8% 280 

on average, ranging from 8.9% to 24.0%, 7.6% to 17.5% and 11.1% to 24.6%, 281 

respectively. For trait TNB, compared with GBLUP, the average accuracy of all ML 282 

methods in this study has been improved, support vector regression (SVR) gained 283 



improvement of 19.0% as same as Kernel ridge regression (KRR), Adaboost.R2 based 284 

on SVR and KRR obtained the improvement of 18.1% and 17.7%, respectively, while 285 

random forest (RF) yielded the lowest improvement of 8.9% advantage over GBLUP. 286 

The similar advantage of ML were also over ssGBLUP, the improvements of SVR, 287 

KRR, RF, Adaboost.R2_SVR and Adaboost.R2_KRR were 17.5%, 17.5%, 7.6%, 16.7% 288 

and 16.3%, respectively. ML methods gained the largest advantage over BayeHE, the 289 

accuracy from SVR, KRR, RF, Adaboost.R2_SVR and Adaboost.R2_KRR were 290 

respectively improved by 21.4%, 21.4%, 11.1%, 20.6% and 20.2% compared with 291 

BayeHE. For trait NBA, although ML methods still performed better than GBLUP, 292 

ssGBLUP and BayesHE, Adaboost.R2_KRR gained the largest improvement in all 293 

comparisons, and KRR obtained the second largest improvement. SVR and 294 

Adaboost.R2 based on SVR yielded same improvements on GBLUP, ssGBLUP and 295 

BayesHE. RF still gained the lowest improvement compared with other ML methods.  296 

Meanwhile, GBLUP, ssGBLUP and BayesHE had similar performance, and no 297 

statistical differences of prediction accuracy were found among them. Nevertheless, 298 

ssGBLUP produced average improvement of 3.7% compared with GBLUP (1.2% for 299 

TNB; 6.3% for NBA), while less bias was observed by GBLUP in all scenarios. 300 

BayesHE yielded similar accuracy with GBLUP (0.243 and 0.248 for TNB; 0.207 and 301 

0.208 for NBA), but the unbiasedness of BayesHE was much closer to 1 (1.015 for 302 

TNB; 1.009 for NBA). 303 

On the other hand, mean squared error (MSE) and mean absolute error (MAE) were 304 

also used to assess the performance of different methods. As shown in Table 3, ML 305 



methods were generally superior to GBLUP, ssGBLUP and BayesHE in terms of MSE 306 

and MAE. For two reproduction traits TNB and NBA, all ML methods yielded lower 307 

MSE and MAE than GBLUP, ssGBLUP and BayesHE. The performance of GBLUP, 308 

ssGBLUP and BayesHE was very close, and ssGBLUP produced a bit lower MSE (5.26 309 

for TNB; 3.95 for NBA) and MAE (1.748 for TNB; 1.532 for NBA) among these three 310 

methods, while they were still higher than those obtained from RF, which performed 311 

the worst among four ML methods, and generated 5.212 and 3.901 of MSE and 1.747 312 

and 1.527 of MAE on TNB and NBA, respectively. Among ML models, the 313 

performance of SVR and KRR was the best, and they yielded the smallest MSE and 314 

MAE in all scenarios.  315 

Comparison between ML methods  316 

Table 2 and 3 indicates that ML methods performed better than GBLUP, ssGBLUP and 317 

BayesHE. They also show RF had the lowest accuracy even though no significant 318 

differences were observed among the ML methods in this study. The accuracies of SVR, 319 

KRR, Adaboost.R2_SVR and Adaboost.R2_KRR were improved by an average of 320 

5.8%, 6.2%, 5.5% and 6.1% compared to RF, ranging from 8.1% to 9.3% for TNB and 321 

from 2.4% to 4.0% for NBA, respectively. For TNB, SVR and KRR showed the highest 322 

accuracies (0.295 for both), and Adaboost.R2_KRR yielded the highest accuracies on 323 

NBA (0.258). In the meantime, in the comparison of unbiasedness, SVR produced the 324 

lowest genomic prediction bias, and the regression coefficient was close to 1.0, while 325 

Adaboost.R2 method with both base learner SVR and KRR produced larger bias. As a 326 

trade-off between accuracy and unbiasedness, SVR and KRR had the most robust 327 



prediction ability, which also confirmed by the results of MSE and MAE, in which SVR 328 

and KRR had the smallest MSE and MAE in all scenarios.  329 

It should be noted that the better performance of ML methods was acquired by tuning 330 

hyper-parameters (Table S1). Compared with using the default hyper-parameters, the 331 

accuracy was improved by 14.3% on average from the ML methods with optimal hyper-332 

parameters (Table S2), the accuracy of SVR, KRR, RF and Adaboost.R2 with optimal 333 

hyper-parameters gained improvements by 15.7%, 11.7%, 9.8% and 15.0% respectively 334 

on the genomic prediction accuracies for TNB, and for NBA, the improvements were 335 

13.4%, 15.3%, 10.2% and 23.4%, respectively. As for unbiasedness, except for SVR on 336 

TNB, the unbiasedness of all ML methods using the default parameters was lower than 337 

the unbiasedness using the optimal parameters. 338 

Computing time 339 

The computing time of each method is demonstrated in Table 4. Among all methods, 340 

KRR was the fastest algorithm, it took an average of 1.16 minutes in each iteration of 341 

cross-validation to complete the analysis, requiring considerably less time than GBLUP 342 

(2.07 minutes) and ssGBLUP (3.23 minutes). The computing efficiency of SVR (5.28 343 

minutes) and Adaboost.R2_KRR (5.16 minutes) were comparable with KRR, GBLUP 344 

and ssGBLUP. However, RF (53.45 min) and Adaboost.R2_SVR (85.34 min) ran 345 

slowly among ML methods. Adaboost.R2 based on KRR (Adaboost.R2_KRR) was 346 

much more time-saving than Adaboost.R2_SVR. Since the MCMC algorithm required 347 

more iteration time to reach convergence, BayesHE was the slowest as expected, and it 348 

took 226.12 minutes for each cross-validation.  349 



Discussion 350 

Our results elucidated that ssGBLUP performed better than GBLUP in accuracy in all 351 

scenarios investigated, which was consistent with previous studies [25, 39-41] . It could be 352 

explained by the fact that GBLUP utilized phenotypic information only from genotyped 353 

individuals, while ssGBLUP simultaneously used information of both genotyped and 354 

non-genotyped individuals to construct a genotype-pedigree relationship matrix (H 355 

matrix). Since non-genotyped individuals were related to individuals in the validation 356 

population on the pedigree, ssGBLUP took advantage of the phenotypic information of 357 

the whole population to obtain better prediction results. However, in our research, 358 

ssGBLUP only produced slightly higher accuracies for the two reproduction traits, and 359 

the improvements were much lower than those obtained by all ML methods. The lower 360 

improvement of ssGBLUP may be due to the following reasons. (I) Weak relationship 361 

between the non-genotyped reference population and genotyped candidates in the 362 

pedigree. In our study, only 143 of the 789 non-genotyped reference population used 363 

by ssGBLUP had pedigree information, and only 46 and 40 individuals’ sires and dams 364 

were included in the 2566 genotyped individuals, indicating that the relationship 365 

between non-genotyped reference animals and genotyped candidates was pretty weak, 366 

making tiny contribution to the genomic prediction. Li et al.[40] showed that the 367 

improvement of ssGBLUP over GBLUP on accuracy was almost entirely contributed 368 

by non-genotyped close relatives of candidates. It can also be observed from Figure S1 369 

that the greater the weight of the A matrix, the lower the accuracy, indicating that the 370 

information obtained from pedigree is limited, resulting in ssGBLUP not exerting its 371 



advantages greatly. (II) The low heritabilities of TNB and NBA. In this study, the 372 

heritabilities for the two traits were both 0.12, which was generally consistent with other 373 

reports [25, 42, 43], therefore, it cannot get enough accuracy from the pedigree information. 374 

This also confirmed by other studies, that a certain improvement can be achieved by 375 

adding a smaller reference population for traits with medium or high heritability[2, 44].  376 

 377 

In this study, we investigated the performance of ML methods in genomic prediction, 378 

and demonstrated their superiorities compared to classical methods GBLUP, ssGBLUP 379 

and Bayesian methods. Generally, the following characteristics of ML methods make it 380 

potentially attractive to genomic prediction. (I) Although ML methods generally require 381 

moderate fine-tuning of hyper-parameters, and the default hyper-parameters usually do 382 

not perform badly [33]. According to our results, the average improvement of ML 383 

methods after tuning parameters was 14.3% over using the default hyper-parameters, 384 

nonetheless, all ML results without tuning hyper-parameters performed better than 385 

GBLUP except for RF in TNB, with an improvement from 0.5% to 8.2% (Table S2). 386 

(II) ML methods could handle the number of parameters larger than the sample size, it 387 

is very efficient in the case with high-density genetic markers for GS [45]. (III) ML 388 

methods do not make distribution assumptions about the genetic determinism 389 

underlying the trait, enabling to capture the possible non-linear relationships between 390 

genotype and phenotype in a flexible way [45], and it is different from GBLUP and 391 

Bayesian methods, which assumes that all marker effects follow the same normal 392 

distribution, or have different classes of shrinkage for different SNP effects. In addition, 393 



ML methods can take the correlation and interaction of markers into account as well, 394 

while linear models based on pedigree and genomic relationships may not provide a 395 

sufficient approximation of the genetic signals generated by complex genetic systems 396 

[14]. Consequently, when traits are affected by non-additive effects, especially epistasis, 397 

ML methods can achieve more accurate predictions [23].These make ML methods gain 398 

large advantage over GBLUP and BayesHE even they only use genotyped animals. 399 

Our results showed that ML methods have improved the prediction accuracy of the 400 

reproduction traits in Chinese Yorkshire pig population. SVR, KRR, RF and 401 

Adaboost.R2 reflected the superiority of the ML methods, with an average 402 

improvement of 20.5%, 21.0%, 14.1% and 20.5% respectively over GBLUP. Liang et 403 

al. [46] pointed out that the average improvement of SVR on beef cattle reached a 404 

staggering 12.7% . An et al. [13] designed a Cosine kernel-based KRR (KcRR) and 405 

reported that the accuracy of KcRR was improved by 13.1% compared with GBLUP in 406 

three traits of Chinese Simmental beef cattle population. Alves et al.[38] reported SVR 407 

has the highest genomic prediction ability in the comparison with GBLUP, BLASSO, 408 

Bayesian regularized ANN and RF in the genomic prediction on the reproductive traits 409 

of Nellore cattle.  410 

Currently, many ML methods are available, and their performance varied in different 411 

scenarios. It is difficult to pick the optimal ML method for genomic prediction. In this 412 

study, we implemented SVR, KRR, RF and Adaboost.R2 in the genomic prediction. On 413 

the whole, SVR and KRR performed best, and our findings were consistent with other 414 

studies showing SVR and KRR had been widely used in the genomic prediction [13, 18, 415 



23, 47]. In the present study, for SVR and KRR, we used a non-linear kernel function 416 

(RBF kernel) to map the original input data to a high-dimensional feature space and 417 

then constructed a linear model in the feature space to estimate GEBVs, and finally 418 

constructed a nonlinear model. In all scenarios of this study, the prediction accuracy of 419 

SVR and KRR were almost equivalent. One explanation is that the main difference 420 

between SVR and KRR is that KRR assumes that most features hardly affect the 421 

estimation of GEBVs, so the coefficients of a large number of features are as close to 422 

zero as possible, and only certain features have a greater impact on GEBV [46]. SVR and 423 

KRR were therefore respectively chosen as weak learners for Adaboost.R2. 424 

However, Adaboost.R2 did not show the advantages of its integration capabilities 425 

compared with single learning algorithms (SVR and KRR). It mainly because the 426 

currently SVR and KRR are sufficient to exert prediction abilities, which may limit the 427 

benefit of using ensemble learning. Besides, owing to the slow tuning process of 428 

Adaboost.R2, we did not precisely tune the hyper-parameters in this research, resulting 429 

in slightly lower prediction accuracy than SVR and KRR. One alternative strategy for 430 

Adaboost.R2 is integrating more learners. Liang et al. [48] developed a stacking 431 

ensemble learning framework (SELF) that integrated SVR, KRR, and ENET to predict 432 

GEBVs and showed excellent performance. Among all ML methods in this study, RF 433 

demonstrated low prediction ability and computational efficiency. The prediction 434 

accuracy of RF is mainly affected by the number and maximum depth of decision trees 435 

[46], but in order to weigh the practical application feasibility of RF, it is impractical to 436 

precisely tune the number of trees, resulting in not training the most ideal RF model, 437 



thus compromising its prediction accuracy.  438 

Although ML significantly outperformed GBLUP and Bayesian methods, one problem 439 

should be noted is the hyper-parameter optimization. In this study, the average 440 

improvement after tuning parameters was 14.3% over without tuning. Since ML models 441 

have multiple hyper-parameters and they are generally sensitive to changes in hyper-442 

parameters, it might be time-consuming to perform strict hyper-parameter adjustments 443 

in the process of training models to obtain high accuracies. And the optimal hyper-444 

parameter depends on the character of traits, data sets etc.. Usually, the effect of the 445 

default hyper-parameters did not perform poorly as discussed above, and failure to find 446 

suitable hyper-parameters may greatly reduce the prediction effect of ML methods [46]. 447 

If hyper-parameter automation can be realized during ML operation, it will greatly 448 

reduce the time used for hyper-parameter adjustment and greatly increase the 449 

application of ML methods in genomic prediction. 450 

Conclusions 451 

In this study, we compared four ML methods with GBLUP, ssGBLUP and BayesHE to 452 

explore their efficiency of genomic prediction on reproduction traits in pigs. We 453 

compared the prediction accuracy, unbiasedness, MSE, MAE and computation time of 454 

different methods through 20 replicates of 5-fold CV. Our results showed that ML 455 

methods possess a significant potential to improve genomic prediction over GBLUP, 456 

ssGBLUP and BayesHE. ML methods outperformed in all scenarios, they yielded 457 

higher accuracy and smaller MSE and MAE. Among ML methods, SVR and KRR 458 

performed the best overall, which yielded higher accuracies, lower bias, and higher 459 



computing efficiency. Our findings demonstrated that ML methods are more efficient 460 

than traditional genomic selection methods, it could be new options for genomic 461 

prediction. 462 
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 617 

Table 1  Summary of two reproduction traits of Yorkshire pigs 618 

Traita 

Number of 

records 

Birth year 

Genotyped 

animals 

Mean SD Minim

um 

Maxim

um 

σ2
a σ2

e 

h2(SE) 

TNB 4274 2016-2020 2566 13 3.38 3 24 1.26 8.95 0.12(0.034) 

NBA 4274 2016-2020 2566 12 3.13 3 24 0.98 7.13 0.12(0.032) 

a TNB: total number of piglets born; NBA: number of piglets born alive 619 

SE: standard error 620 

 621 

Table 2 Accuracies and unbiasedness of genomic prediction on TNB and NBA from 7 methods in 622 



20 replicates of 5-fold Cross-validation 623 

Method 

TNB NBA 

Accuracy Unbiasedness Accuracy Unbiasedness 

GBLUP 0.248a ±0.026 0.958±0.132 0.208a ±0.025 0.931±0.142 

ssGBLUP 0.251a ±0.026 0.901±0.121 0.221ab ±0.026 0.844±0.113 

BayesHE 0.243a ±0.025 1.015±0.148 0.207a ±0.026 1.009±0.171 

SVR 0.295b±0.025 1.23±0.119 0.254b ±0.023 1.106±0.11 

KRR 0.295b ±0.025 1.266±0.125 0.256b ±0.023 1.151±0.113 

RF 0.270ab ±0.029 1.229±0.152 0.248ab ±0.028 1.188±0.147 

Adaboost.R2_SVR 0.293b ±0.025 1.363±0.138 0.254b ±0.024 1.256±0.131 

Adaboost.R2_KRR 0.292b ±0.025  1.344±0.136 0.258b ±0.024 1.249±0.129 

The different superscript of accuracy indicates the significant difference by the Hotelling-Williams 624 

test. 625 

 626 

Table 3 MAE and MSE of 7 methods for TNB and NBA as assessed with 20 replicates of 5-fold 627 

CV 628 

Method 

TNB NBA 

MSEa MAEb MSEa MAEb 

GBLUP 5.259 1.749 4.168 1.606 

ssGBLUP 5.26 1.748 3.95 1.532 

BayesHE 5.32 1.763 4.023 1.556 

SVR 5.129 1.730 3.880 1.521 



KRR 5.134 1.731 3.876 1.521 

RF 5.212 1.747 3.901 1.527 

Adaboost.R2_SVR 5.158 1.739 3.892 1.528 

Adaboost.R2_KRR 5.153 1.737 3.883 1.526 

a MSE: mean squared error  629 

b MAE: mean absolute error 630 

 631 

Table 4 Average computing time in one each iteration of the 5-fold Cross validation for different 632 

genomic prediction methods 633 

Method TNB NBA 

GBLUP 2min 06s 2min 02s 

ssGBLUP 3min 12s 3min 16s 

BayesHE 3h 57min 1s 3h 35min 13s 

SVR 5min 27s 5min 07s 

KRR 1min 04s 1min 16s 

RF 50min 38s 56min 16s 

Adaboost.R2_(SVR) 1h 35min 13s 1h 15min 28s 

Adaboost.R2_(KRR) 5min 03s 5min 16s 

 634 



Figure captions 635 

Figure 1 Imputation accuracy 636 

Imputation accuracy of GenoBaits Porcine SNP 50K to PorcineSNP50 BeadChip at 637 

different minor allele frequency (MAF) intervals (a) and chromosomes (b). 638 

DR2, the estimated squared correlation between the estimated allele dose and the true 639 

allele dose; Genotype concordance rate (CR), the ratio of the correctly imputed 640 

genotypes; Genotype correlation (COR), the correlation coefficient between the 641 

imputed variants and the true variants. 642 
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Figures

Figure 1

Imputation accuracy Imputation accuracy of GenoBaits Porcine SNP 50K to PorcineSNP50 BeadChip at
different minor allele frequency (MAF) intervals (a) and chromosomes (b). DR2, the estimated squared
correlation between the estimated allele dose and the true allele dose; Genotype concordance rate (CR),
the ratio of the correctly imputed genotypes; Genotype correlation (COR), the correlation coe�cient
between the imputed variants and the true variants.
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