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Abstract 1 

Purpose: 2 

Deep learning is an emerging reconstruction method for positron emission tomography (PET) that 3 

can tackle complex PET corrections in an integrated procedure. This study optimized the direct PET 4 

reconstruction from sinogram on a long axial field of view (LAFOV) PET.  5 

Methods: 6 

This study developed a new deep learning architecture to reduce the biases during direct 7 

reconstruction from sinograms to images. This architecture is based on an encoder-decoder network 8 

and perceptual loss is adopted with pre-trained convolutional layers. It is trained and tested on data 9 

of 80 patients acquired from recent Siemens Biograph Vision Quadra PET/CT. The patients were 10 

randomly split into a training dataset of 60 patients, the validation dataset of 10 patients, and the 11 

test data set of 10 patients. The 3D sinograms were converted into 2D sinogram slices and were 12 

used as input to the network, and the vendor reconstructed images were considered as ground truths. 13 

The proposed method was compared with DeepPET, a benchmark deep learning method for PET 14 

reconstruction.  15 

Results: 16 

Compared to the DeepPET, the proposed network significantly reduced the root-mean-squared error 17 

(rRMSE) from 0.63 to 0.6 (p<0.01), and the structural similarity index (SSIM) and peak signal-to-18 

noise ratio (PSNR) were improved from 0.93 to 0.95(p<0.01) and from 82.02 to 82.36(p<0.01), 19 

respectively. The reconstruction time was approximately 10s per patient, which was shortened by 20 

36 times compared with the reconstruction using the conventional method. The errors of average 21 

standardized uptake values (SUV) for lesions between ground truth and the predicted result was 22 
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reduced from 33.5% to 18.7% (P=0.03), and the error of max SUV was reduced from 32.7% to 21.8% 1 

(P=0.02). 2 

Conclusion: 3 

The results demonstrated the feasibility of using deep learning to reconstruct images with acceptable 4 

image quality and short reconstruction time. It showed that the proposed method can improve the 5 

quality of deep learning-based reconstructed images without additional CT images for attenuation 6 

and scattering corrections. This learning-based approach may provide the potential to accommodate 7 

more complex corrections for LAFOV PET.  8 

 9 
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I Introduction 1 

With the development of PET instrumentation, the axial field of view continually increases leading 2 

to the new area of long axial field of view (LAFOV) PET or total-body PET. Compared with a 3 

current clinically standard of care axial field of view (FOV) PET system (the typical range of 26 4 

cm), the long-axial FOV - PET systems have the larger solid angle coverage and longer axial FOV. 5 

Furthermore, a large anatomical region can be covered with one single bed position. As a result, the 6 

total acquisition time can be substantially reduced by a large factor due to the increased 7 

sensitivity[1-3].  8 

Many image reconstruction algorithms have been previously studied to reconstruct tomographic 9 

images using projection data. Conventional methods can solve a mapping function from 10 

measurement space to image space based on physical principles. Clinically established methods 11 

include analytical and iterative. Analytical methods, such as filtered back projection (FBP)[4], can 12 

achieve fast image reconstruction, but image quality is characterized by a high level of noise. The 13 

iterative method, for example, the maximum-likelihood expectation-maximization (MLEM)[5], 14 

ordered-subset expectation maximization (OSEM)[6] with iteratively back- and forward-projecting, 15 

which are clinically accepted standards of care, can obtain images with the lower noise level and 16 

good contrast recovery, but the iterative process is time-consuming. In addition, to perform 17 

attenuation correction, typically a CT or MRI image is used to estimate attenuation. In recent years, 18 

neural networks have been applied to tomographic image reconstruction to achieve higher quality 19 

reconstruction results with sparse information and short reconstruction time[7, 8]. The deep learning 20 

method has previously been applied. Examples include：(1) noise reduction to enable low-dose PET 21 

imaging protocols [9-11]. (2) A neural network was integrated into the iterative process to speed up 22 
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the convergence speed and improve the reconstruction quality [12, 13]. (3) Train a neural network 1 

to directly convert from projection data to image data. For the direct method, an automated method 2 

has been developed that utilizes transform by manifold approximation (AUTOMAP) to learn the 3 

relationship between sensor domain and image domain[14] While the paper mainly focused on MRI 4 

image reconstruction, a PET system application was anticipated in the article [14]. A deep encoder-5 

decoder network named DeepPET was used in direct reconstruction for PET images. PET images 6 

and projection data simulated based on XCAT digital phantom were used to train the network [15]. 7 

Kandarpa et al. proposed a double U-Net to learn the sinogram-to-image transformation, and the 8 

deep-learning pipeline consisted of denoising, image reconstruction, and super-resolution 9 

segments[16]. William et al. proposed a DirectPET network to achieve full-size neural network PET 10 

reconstruction from histoimages data, in which the XCT-based attenuation maps were used as 11 

additional input for corrections [17]. And the reconstruction from histo-images using a U-net 12 

network was also explored by the same team, also CT-based attenuation was required[18]. 13 

In this work, we explored the application of the encoder-decoder network to long-axial FOV PET 14 

reconstruction using clinical patient data. The work focuses on achieving end-to-end PET 15 

reconstruction directly from the detector domain to the images domain; attenuation correction is 16 

integrated into the training process.   17 

 18 

II Material and Methods 19 

Patients & imaging 20 

Clinical patient list mode data were collected using Biograph Vision Quadra (Siemens Healthineers) 21 

at the University of Bern, Switzerland. This system is with a FOV of 106 cm. Preliminary 22 



6 

 

assessments of this scanner’s characteristics reveal a sensitivity of 174 cps/kBq and a time of flight 1 

(TOF) resolution of 219 ps in ultra-high sensitivity mode[19]. 2 

The selected patients were injected with 18F- FDG and performed PET/CT examination, including 3 

80 cases (median age, 63 years; age range, 50-76 years; 44 females; BMI, 73.9±17 kg/m2) of patients 4 

In all cases, subjects fasted for more than 4 h and had a blood glucose of no more than 200 mg/dl, 5 

all patients were injected with 18F-FDG with an uptake time of 90 min ± 10%, and the patients 6 

without complete PET/CT scan images from above head to below thigh, or poor image quality 7 

because of patients’ movement were been excluded. The 80 patients were randomly split into a 8 

training dataset of 60 patients, the validation dataset of 10 patients, and the test data set of 10 patients 9 

(median age, 67 years; age range, 40-81 years; 5 females; BMI, 23.85±2.38 kg/m2). The study was 10 

conducted in accordance with the requirements of the respective local ethics committees in 11 

Switzerland (Req-2021-00517). 12 

Data pre-processing  13 

List-mode data obtained from the scanner was reconstructed with industry software (e7-tools, 14 

Siemens Healthineers) with CT-based attenuation correction. The used reconstruction method was 15 

PSF-TOF with 4 iterations and 5 subsets.  644 slides for each patient were reconstructed and used 16 

as ground truth in this work. The image size was 440×440 with voxel dimensions of 1.65×1.65×1.65 17 

mm3. Furthermore, the list-mode data was transferred and uncompressed into 3-dimensional (3D) 18 

sinogram data. The 3D sinogram was converted into 2-dimensional (2D) slices by single-slice 19 

rebinning (SSRB)[4]. 644 2D sinogram slices were obtained for each patient, corresponding to 644 20 

reconstructed images.  21 

The input dataset of the network was 2D sinogram slices, and the reconstructed images from e7-22 



7 

 

tools were used as training targets. Several images of the starting and ending positions of each 1 

patient's data had a low count and were therefore excluded. Each patient retained 599 sets of data 2 

(2D sinogram and reconstructed image). 60 patients were designated for training, 10 patients for 3 

validation, and 10 for the testing. 4 

 5 

Deep Neural Network structure 6 

We developed an encoder-decoder network for direct image reconstruction. It is comprised of two 7 

parts, image transform network and perceptual loss[20] network (Fig.1).  8 

The structure of our training network was inspired by DeepPET [15]. The network is consisting of 9 

the encoder part, transformation part, and decoder part (Fig.1,Supplemental Fig.1,2)[21]. 31 10 

convolution blocks and one single convolution layer are involved. Each convolution block includes 11 

a convolution layer to extract features, a batch normalization (BN) layer to speed up the training 12 

and convergence of the network, and a rectified linear unit (ReLU) activation function. In the 13 

decoder and transformation part, the convolution filter sizes are selected as 7×7 for the first two 14 

blocks，5×5 for followed two blocks, and 3×3 for others. The numbers of extracted features increase 15 

from 32 to 1024. The widths and lengths of the feature maps are decreased by the convolution layer 16 

with a kernel stride of 2. In the decoder part, the convolution filter sizes are 3×3 and the feature 17 

maps are enlarged by upsampling layers. The output layer is a convolution layer with one feature. 18 

The 2D sinogram slices are resized as 288×269 as inputs of the network. The outputs of the image 19 

transform network are reconstructed images, which are put in the perceptual loss network.  20 

The perceptual loss network adopts the first 3 convolution block of VGG19[22] (Fig.7). The VGG 21 

network uses the accumulation of multiple small-scale convolution kernels (3×3) instead of large-22 
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scale convolution kernels. This establishment can form multiple non-linear layers to increase the 1 

depth of the network and achieve complex feature learning. The convolution blocks in VGG19 are 2 

consist of a convolution layer followed by ReLU. The sizes of feature maps are reduced by pooling 3 

layers. VGG19 network weights pre-trained on the ImageNet database(image-net.org) are used in 4 

this work. The outputs of the first 3 pooling layers are extracted to be used as feature reconstruction 5 

loss as expressed below: 6 

𝐿𝑉𝐺𝐺 = 13 ∑ |𝑉𝐺𝐺(𝑥)𝑖 − 𝑉𝐺𝐺(𝑦)𝑖|3𝑖=1    (1) 7 

where VGG(x)i and VGG(y)i represent the output of i-th pooling layer in VGG19 with the input of 8 

ground truth and predict image of image transform network. 9 

The other two parts are also involved in the loss function, mean square error (MSE) loss and 10 

structural similarity (SSIM) [23]loss. The functions are shown as follows: 11 

𝐿𝑀𝑆𝐸 = 1𝑛 ∑ (𝑥𝑖 − 𝑦𝑖)2𝑛𝑖=1    (2) 12 

where x is the ground truth, y is the predicted image of the image transform network, and n is the 13 

total number of image pixels. 14 

𝐿𝑆𝑆𝐼𝑀 = 1 − (2𝑢𝑥𝑢𝑦+𝐶1)(2𝜎𝑥𝑦+𝐶2)(𝑢𝑥2+𝑢𝑦2 +𝐶1)(𝜎𝑥2+𝜎𝑦2+𝐶2)   (3) 15 

𝐶1 = (0.01 ⋅ 𝑚𝑎𝑥(𝑥)) 2   (4) 16 

𝐶2 = (0.03 ⋅ 𝑚𝑎𝑥(𝑥)) 2   (5) 17 

where 𝑢𝑥 and 𝜎𝑥2 are mean and variance of ground truth image pixels, 𝑢𝑦 and 𝜎𝑦2 are mean and 18 

variance of ground truth image pixels, and 𝜎𝑥𝑦 is the covariance of ground truth and predict image. 19 

The 𝑚𝑎𝑥(𝑥) is the maximum of ground truth image value. 20 

The total loss function consists of the above three parts. 21 

𝑙𝑜𝑠𝑠 = 𝐿𝑀𝑆𝐸 + 𝐿𝑆𝑆𝐼𝑀 + 𝐿𝑉𝐺𝐺 22 
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 1 

FIGURE.1 The network adopted in this work includes two parts, image transform network, and perceptual loss 2 

network.( The detailed structures of image transform network and the perceptual loss network are shown in 3 

supplemental FIGURE. 1,2) 4 

 5 

Network training and test procedure 6 

The network was implemented in TensorFlow(www.tensorflow.org)[24], the training of the network 7 

was performed using a GPU (Tesla V100-PCIe-16GB, NVIDIA) and tested using GeForce RTX 8 

2080 Ti (NVIDIA). Adam optimization method [25] was used as optimized with a learning rate of 9 

10-4. All images in the training dataset (35940 2D sinogram and reconstructed images) were used as 10 

input to the network by the batch size of 50 and trained with 300 epochs. The trained network was 11 

tested on 10 patients’ data (5590 2D sinograms and reconstructed images). 12 

 13 

Image quality evaluation 14 

The image quality evaluation was processed with structural similarity index (SSIM), root-mean-15 

squared error (rRMSE), and peak signal-to-noise ratio (PSNR)[23] for the regions of the body. SSIM 16 
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is an index used to measure the similarity of two images. The mean is used as an estimate of 1 

brightness, the standard deviation is used as an estimate of contrast, and covariance is used as a 2 

measure of structural similarity. The value range is [0,1], the closer to 1 means the output image is 3 

more similar to the target image. The SSIMs were calculated as shown below, and the meaning of 4 

the character is consistent with Equation (3-5).  5 

𝑆𝑆𝐼𝑀 = (2𝑢𝑥𝑢𝑦+𝐶1)(2𝜎𝑥𝑦+𝐶2)(𝑢𝑥2+𝑢𝑦2 +𝐶1)(𝜎𝑥2+𝜎𝑦2+𝐶2)   (6) 6 

Root-mean-squared error (rRMSE) was calculated based on mean square error (MSE), that is, 7 

𝑟𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸�̅�   (7) 8 

𝑀𝑆𝐸 = ∑ (𝑥𝑖 − 𝑦𝑖)2𝑛𝑖=1  (8) 9 

 10 

where the �̅� is the average value of all pixels in the ground truth image, x is the ground truth, y is 11 

the predicted image of the network. 12 

The SNR was defined as follows: 13 

𝑃𝑆𝑁𝑅 = 20 ⋅ 𝑙𝑜𝑔10 (𝑀𝐴𝑋𝐼√𝑀𝑆𝐸)  (9) 14 

where the 𝑀𝐴𝑋𝐼 is the maximum value of the reconstructed images. 15 

Clinical evaluation 16 

The results on the test data set were further evaluated by 2 nuclear medicine physicians. For each 17 

patient, a typical lesion was selected and delineated manually. Among the 10 patients, 1 patient was 18 

proved to have no lesion. The average standardized uptake values (SUVmean) and max standardized 19 

uptake values (SUVmax) were measured of the tracer uptake in a region of interest of selected 20 

lesions. The relative errors between ground truth and DeepPET results and this work were calculated 21 

and compared. 22 
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III Results 1 

The average time cost for the prediction of 1 patient (644 images) is 9.85±0.27s，including 6.41±2 

0.11s for the data preparation process (SSRB) on and 3.44±0.17s for network prediction on NVIDIA 3 

GeForce RTX 2080 Ti. The predicted time for a single image was about 5 ms. And the standard 4 

industry software (e7-tools, Siemens Healthineers) reconstructed 1 patient’s data using about 360s 5 

on average.  The comparison of the time cost by the two methods is shown in the figure below. 6 

 7 

FIGURE.2 Time cost comparison. The data preparation process of this work for 1 patient costs 8 

about 6.41 s and the prediction costs about 3.44 s. The e7-tools use about 360 s to reconstruct 1 9 

patient’s data. 10 

The predicted images of the network in this work and DeepPET are shown in Fig.3, along with the 11 

ground truth and input sinogram. Fig.4 shows the image quality evaluation results of this work for 12 

ten test patients, including MSE, rRMSE, PSNR, and SSIM. The same patients’ data were also tested 13 

by DeepPET. The average results of ten patients are shown in Table 1. 14 

In Fig. 3 we show the input images and reconstruction results from different areas of the body. It 15 

can be seen from the images that there is a strong similarity between the results of this work and the 16 

ground truth. Especially in regions where tracer uptake is high, such as the head, chest, and heart, 17 

the results of this work are in good agreement with the reference values. In the pelvic cavity, legs, 18 

and other areas, there are point-like high uptake positions, and the network of this work can also 19 



12 

 

restore them well. At the same time, we have also observed that there are some slight structural 1 

differences at the edge regions of some structures, such as the details of the brain, the edge of the 2 

heart, which are manifested in the blur of the edges. This is mainly because the true value image is 3 

directly reconstructed from the 3D sinogram, and the input used for prediction in this work is 2D 4 

sinograms. When the 3D sinogram is converted to a 2D sinogram, a certain amount of information 5 

is lost and errors are introduced. Compared with the test results of the original DeepPET structure 6 

network, the image structure restoration and detail restoration have been improved, indicating the 7 

effectiveness of the introduction of the perceptual loss network. 8 

From the quantitative results statistics in Fig. 4 and Table 1, the SSIM of the original DeepPET 9 

structure prediction result compared with the true value is 0.95 ± 0.02, and the network has a 2% 10 

improvement in SSIM after the perceptual loss structure is added in this work, which is close to 1. 11 

At the same time, from the statistical results of PSNR, the work improves the signal-to-noise ratio 12 

from 82.02±0.90 to 82.36±0.87, which is a slight improvement. In addition, MSE decreased from 13 

161.67±84.83 to 132.59±75.01, and rRMSE decreased from 0.63±0.06 to 0.60±0.06, indicating that 14 

the reconstructed picture is closer to the true value. The quantitative results of the two networks 15 

were statically analyzed with paired t-test，all showed significant improvement. 16 
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 1 

FIGURE.3 test set reconstructions using both DeepPET, as well as the predicted results of this work. Left to right: 2 

PET sinogram, ground truth, DeepPET, and results of this work. Images are labeled with SSIM, rRMSE, and 3 

PSNR relative ground truth. 4 
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 1 

FIGURE.4 The image quality evaluation results of this work for ten test patients: including mean square error 2 

(MSE), root-mean-squared error (rRMSE), peak signal-to-noise ratio (PSNR), and structural similarity index 3 

(SSIM). 4 

The average standardized uptake values (SUV) and max standardized uptake values (SUV) were 5 

measured of the tracer uptake in a region of interest of lesions(Fig. 5) for test sets (median age, 67 6 

years; age range, 40-81 years; 5 females; BMI, 23.85±2.38 kg/m2). The relative errors between 7 

ground truth and DeepPET results and this work were calculated and shown in Table 2. From the 8 

comparison for smaller lesions, for example, lesions 1 and 6, the reconstruction results of this work 9 

are closer to the ground truth value. For larger lesions, such as lesions 3 and 7, the recovery of this 10 

work and DeepPET on SUV (max) is slightly worse, but comparing the shape and contour of the 11 

lesion in the figure, the results of this work are more similar to the ground truth. For some cases, the 12 

two reconstruction results are not enough to the details, and lesion 8 is not significantly separated. 13 

In addition, a good sign is this work shows superior performance in anatomical structure with non-14 

intensive uptaken, e.g. in the same layer of lesion 7, this work shows better in displaying the non-15 
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uptaken area in the liver, which the DeepPET is not clearly shown. In general, compared with the 1 

DeepPET, the SUV(average) and SUV(max) of lesions of this work are closer to the ground truths. 2 

This indicates that the prediction results of this work can provide a better clinical reference at the 3 

level of the lesion. The currently trained network and DeepPET both have the possible degradation 4 

of the small lesions, for example, the lesion 2. 5 

 6 

 7 

FIGURE.5 The average standardized uptake values (SUV) and max standardized uptake values (SUV) were 8 

measured of the tracer uptake in a region of interest of lesions 9 

IV Discussion 10 

This study followed the mainstream of AI development for PET reconstruction and focused on the 11 
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direct reconstruction from Sinogram. In contrast to most previous research on Sinogram data from 1 

phantom-based simulation [15] or anthropomorphic simulation by projecting real patient data [26], 2 

the training and test in this study were directly on real PET measurements. A critical concern for AI 3 

development is its reproducibility and extensibility to complexity in real applications [27]. 4 

Compared to the development on simulated sinogram data, the development on real measurement 5 

data in this study can better tackle the challenges of physical and physiological complexity and 6 

enhance the translational potential of data-driven methods.  7 

An advanced LAFOV PET scanner was employed in the development and test of the AI-based direct 8 

reconstruction from Sinogram data in this study. Although the Sinogram of LAFOV PET did not 9 

consider all the rich information in the acquisition of this powerful scanner leading to downgraded 10 

measurement data, the preliminary results confirmed that the deep neural network can reconstruct 11 

PET images with corrections of attenuation and scattering directly from Sinogram without the input 12 

of CT. This potential of AI in complex reconstruction with various corrections may bring benefits 13 

for the reconstruction of LAFOV PET considering the increased complexity in the reconstruction 14 

of LAFOV PET [28]. The LAFOV of total-body PET increases the probability of the detection of 15 

LORs to increase the sensitivity. However, the high obliqueness of the LORs between distant rings 16 

suffers from the parallax error [1], and introduced large heterogeneity in the image quality [29, 30]. 17 

The increased Compton scattering and the ratio between multiple over single scattered photons is 18 

another critical bottleneck for the reconstruction of LAFOV PET [28]. The fraction of multiple 19 

scatters changes heterogeneously in LAFOV PET [31]. The fractions of random events are also 20 

dependent on the difference of rings in LAFOV PET [30]. The correction of heterogeneity of random 21 

and multiple scattered events makes the reconstruction more difficult than in conventional scanners. 22 
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Although the current study did not consider all the challenging issues such as larger and 1 

heterogenous solid angle in LAFOV PET reconstruction, the advantage of AI methods may dealing 2 

with complexity and heterogeneity encourage the development of such technology. At this stage, 3 

the AI-based reconstruction may be less advanced and accurate compared with physics-based 4 

reconstruction. Further improvement of the input Sinogram and the training data with more accurate 5 

corrections may enhance the performance of this data-driven approach in LAFOV PET 6 

reconstruction and eventually may reach or even outperform the physics-based reconstruction. 7 

    8 

Due to the huge number of LORs received in LAFOV PET, the storage and processing of the 9 

acquisition data is daunting [28, 31]. For example, the 2-m LAFOV system has roughly 10 times of 10 

data to process compared to a 20-cm PET system. But with more oblique LORs used, there could 11 

be a 40-fold increase [31]. Remarkably, the prompts count rate peaked at 10 million events, a few 12 

orders of magnitude larger than for a traditional PET scanner [28]. Conventional PET reconstruction 13 

algorithms are inefficient in the processing of the vast data of LAFOV PET reconstruction. Although 14 

our test was performed on Sinogram data for reconstruction, the results confirmed that deep learning 15 

can significantly shorten (up to 36 times) the reconstruction time for whole-body imaging compared 16 

with a conventional iterative algorithm. The potential in accelerating the computational speed may 17 

bring advantages for the practice of LAFOV PET in the clinical routine.  18 

The preliminary results demonstrated that the improvement of deep learning architecture can 19 

improve the performance of AI-based reconstruction. In response to the challenge of real data 20 

training, this work employed the perceptual loss network structure to optimize the neural network. 21 

The pre-trained VGG network was used to extract the feature map from predicted images and the 22 
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ground truth. The perceptual loss was added into the loss function calculation, which can improve 1 

the training efficiency and effect of the network. The comparison of the prediction results shows 2 

that the similarity of the reconstructed image structure and the signal-to-noise ratio is improved. 3 

This is because the perceptual loss function can calculate the distance between the predicted image 4 

and the target image from the feature level, but not from pixel level, so the structure of the image 5 

can be reconstructed better in a larger area[20]. 6 

Based on lesion demarcation, overall image quality, and visually assessed signal-to-noise ratio, this 7 

work displays better quality than the traditional DeepPET approach.  Also, the semiquantitative 8 

measurement method was used and the result is shown in table 2. In this study, we estimated a series 9 

of lesions located in different organs, including the rib, muscle, mediastinum, retroperitoneal space 10 

soft tissue, which is shown in Fig. 5.  For illustration, lesion 1 and 2 both presents a lesion located 11 

in the rib, the image of this work shows a better-outlined shape than the traditional DeepPET, which 12 

would easily misdiagnose to be located in the sternum.  Considering the purpose of optimizing 13 

reconstruction, the outputs show satisfying performance in presenting the morphological character 14 

of the primary lesion with elevator uptake values. The lack of structure details leads to misdiagnosis 15 

in location and concealing some small lesions in worse cases.  This may be due to the limited 16 

training cases. The use of more varied and larger capacity training sets can make contributions to 17 

improving the accuracy of predictions. Another limitation of this work was the loss in the conversion 18 

of 3D sinograms to 2D sinograms. Due to the limited GPU memory, we transferred the vendor 19 

output of the 3D sinograms to the 2D sinograms as the input of this network. In the conversion 20 

process, certain noises were introduced, and part of the spatial information in the axial direction was 21 

lost. This resulted in the inability to fully recover all the details of the ground truth images. The 22 



19 

 

development on 3D sinogram data with more data and computational resources may improve the 1 

performance.  2 

 3 

V Conclusion 4 

This study developed a network structure combing encoding-decoding and perceptual loss structure 5 

to improve the direct PET image reconstruction from projection data. For the first time, such kind 6 

of AI-based reconstruction methods were tested on real clinical data on a LAFOV PET. Despite the 7 

limitations of AI-based methods, the end-to-end reconstruction process from the sinogram data 8 

demonstrates the potential of deep learning to learn complex reconstruction principles such as 9 

projection, normalization, attenuation correction and scattering correction. Further optimization and 10 

development of AI-based reconstruction may provide an effective solution for complex PET 11 

reconstruction such as LAFOV PET. 12 

TABLE. 1 Quality evaluation results of the test database, MSE, rRMSE, PSNR, and SSIM. The quantitative results 13 

of the two networks were statically analyzed with paired t-test 14 

 This work DeepPET Paired t-test 

MSE 132.6±75.0 161.7±84.8 -3.1 (p<0.01) 

rRMSE 0.60±0.04 0.63±0.04 -6.9 (p<0.01) 

PSNR 82.4±0.87 82.1±0.90 7.1 (p<0.01) 

SSIM 0.95±0.02 0.93±0.03 7.3 (p<0.01) 

TABLE. 2 The average standardized uptake values (SUV) errors and max standardized uptake values (SUV) errors 15 

between ground truth and DeepPET results and this work for lesions from test cases. 16 

Lesions SUV(Ave) Relative Errors SUV(Max) Relative Errors 
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DeepPET This Work DeepPET This Work 

Lesion_1 53.0% 2.9% 41.8% 6.4% 

Lesion_2 81.3% 77.0% 83.3% 80.3% 

Lesion_3 5.4% 2.1% 8.6% 12.1% 

Lesion_4 9.1% 8.7% 7.2% 0.9% 

Lesion_5 11.7% 2.6% 11.8% 4.5% 

Lesion_6 8.7% 2.0% 14.0% 5.0% 

Lesion_7 27.6% 16.8% 35.1% 29.7% 

Lesion_8 67.7% 43.3% 72.2% 48.1% 

Lesion_9 37.1% 13.0% 20.1% 9.4% 

Average 33.5% 18.7% 32.7% 21.8% 

Paired t-test P=0.03 P=0.02 
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