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Abstract 

ECG is one of the most important medical scans which is used for diagnosis of various heart 

related conditions and diseases. One of the most common of these is arrhythmia, which is caused by 

the irregularity of the heart beats. Artificial Intelligence has had a major impact in the field of vital 

monitoring and autonomous medical diagnosis. Therefore, a lot of work has demonstrated its 

effectiveness in arrhythmia detection. In this paper, we propose a method that tries to improve upon 

the accuracy of such models with the help of a light weight deep learning architecture that utilized 

2D Separable CNN with a group of graphical representations of the ECG signals like the STFT, 

CWT and MFCC. Our model has achieved an accuracy of 97.41 and an F1 score of 88.20 on a 

processed version of the MIT-BIH dataset and takes on an average 7.93 times less calculations 

compared to a simple 2D Convolution model. 
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1. Introduction 

1.1 Background 

Arrhythmia is one of the most common heart conditions that is diagnosable with 

Electrocardiogram [1]. These are caused by abnormally fast, slow or irregular heartbeats. A variant 

of arrhythmia called atrial fibrillation was mentioned in 175,362 death certificates and was the 

possible cause of death of 25,845 deaths [2]. They are identified by characteristics like missing 

discrete P wave [3], irregularly high ventricular heart rate and the absence of iso-electric baseline 

[4]. Most or all of these observations can be seen in the lead II of the electrocardiogram and till some 

extent in lead V1 [5]. Currently, this diagnosis is done manually by doctors and technicians by 

looking at the ECG graph. This makes the diagnosis slow and delays the treatment the patient 

requires. Therefore, there is a need for methods that can assist them by automating this process. 

This has led to the introduction of methods like machine learning and deep learning to help with 

the classification of the type of arrhythmia from the given beat. Various methods ranging from 

statistical machine learning to deep learning like LSTM based autoencoder [6] and Convolution 

Neural Network [7] has been used to classify heartbeats measured using an ECG device. However, 

recent advancements in the same fields have made it possible to improve the accuracy of such 

models with minor tweaks to the existing methodology. 

1.2 Motivation 

Most of the work in this field is done with keeping the data in a one-dimensional vector. This 

involves the use of methods that can encode a 1D vector into useful features while capturing the 

sequential trend of the signal. Although, the information given by a 1D vector is substantially small 

which is further affected by the low efficacy of a 1-dimensional convolution model. A better manner 

of representation of such signals are spectrograms, that represent the frequency variation with 

respect to time in a graphical format. To process such images, we need to use a 2D CNN model. 

However, different types of representation capture different features. Therefore, the best way to 

utilize the same would be to explore a method that can collectively infer from multiple such 

spectrograms at the same time. This is the primary motivation and goal of this work. Here, we also 



 

explore methods and techniques that can mitigate the increased number of calculations that come 

with the move from a single 1D to an ensemble 2D convolution network.  

The rest of the paper is organized as follows: Section 2 details the Literature Review, Section 3 

describes Research Methodology, Section 4 discusses the results obtained from the experiments and 

Section 5 concludes the work while indicating a future direction. 

2. Literature Review 

2.1 Overview 

Some of the earliest works done in arrhythmia detection with the help of machine learning, like 

the one presented in [8], used algorithms including Random Forest, SVM and Gradient Boosting to 

detect arrhythmia episodes. Since then, the advancements in deep learning have helped in improving 

the accuracy and feature extraction methods in the same.  

In [9], the authors have made a 5-layer CNN model with Exponential Linear Unit and Batch 

Normalization layers. The authors achieved an accuracy of 93.6% and loss of 0.2 on MIT-BIH 

database. The authors of [10] have made a 34-layer convolutional neural network consisting of 16 

residual blocks with 2 convolutional layers per block. They were able to exceed the average 

cardiologist performance in both recall and precision. Authors of [11] have proposed an 11-layer 

CNN model consisting of 5 residual blocks with 2 convolutional layers per block. The authors 

evaluated the network on PhysioNet’s MIT-BIH and PTB diagnostics datasets and achieved an 

accuracy of 93.4%.  

These methods explicitly focused on using 1D models to process the signal directly. Some works 

try to bring this to 2D by attempting to classify the graphical representation of the same. In [12], 

authors of the paper have made an 11-layer 2D CNN model for arrhythmia classification and 

achieved an average accuracy of 99.05% on 7 heartbeat classes present in MIT-BIH arrhythmia 

database by converting the signals into line graph images. A better way of this is the use of 

spectrograms, which can highlight features much more effectively. Work done in [13] and [14] 

shows the effectiveness of the use of spectrograms such as Mel Spectrogram, STFT and CWT to 

detect and classify any arrhythmia episodes. 



 

Based on the literature survey, it has been observed that most of the work done in arrhythmia 

detection and classification on ECG involves the use of 1D model. This shortcoming can be tackled 

with the use of 2D models. Several works have tried to do the same with a variety of inputs ranging 

from basic graphs to spectrograms. However, the efficacy of these models can be improved with the 

help of deep learning centric ensemble techniques, which have not been explored thoroughly in most 

of the existing research work. Along with this, most papers working with 2D CNN models fail to 

address the increased amount of computation that arises with the transition. Therefore, there’s a need 

of a work that addresses both the issues, preferably with a single model. 

2.2 Objective 

The goal of this work is to develop a model that uses an ensemble of spectrograms [15] to make 

a model that can infer the arrhythmia episode from a variety of features to improve the prediction 

capabilities of the model. We also aim to overcome some of the computational overhead that comes 

with the use of an ensemble model with 2D CNN. This includes a method to reduce the number of 

features that are needed to be backpropagated along with reducing the number of calculations 

required to generate the output, which will help reduce both the training and the inference time of 

the model. 



 

3. Methodology 

3.1 Data Preprocessing 

The signal being used here in order to detect and classify arrhythmia is taken from the lead 2 of 

an ECG device with a sampling rate of 125 Hz. The first step in processing the signal is to remove 

any extraneous noises that might arise from electrical interference, breathing motion and other such 

sources. For this, we have used Butterworth filter [16] to only keep the frequencies within the range 

of 1Hz to 25Hz in the signal. The difference in the output is shown in the following Figure 1.  

 

Figure 1. Raw Signal (Left) and the Filtered Signal (Right). The Butterworth bandpass filter 

removes the noise that lies beyond the maximum heart beat frequency of 25 Hz and the baseline 

created due to breathing which lies bellow 1 Hz. 

The filtered signal was then converted into the graphical formats that we required for our model. 

For this work, we have selected 3 representations. They are as follows: 

1) Short Term Fourier Transform: STFT [17] uses the power vs frequency graph extracted 

after applying the Fourier transform [18] on small time segments of the signal to create a time vs 

frequency spectrogram where the color intensity opposite to a frequency reading on the y axis 

depends on the corresponding power in the power vs frequency curve. Here, we have taken 50 for 

the length of the windowed signal. 

2) Continuous Wavelet Transform: A CWT [19] is a convolutional transform calculated 

using Fourier fast transform [20] with a set of functions generated by the mother wavelet. For a 

mother wavelet 𝜓, the wavelet transform is given by: 



 

𝑊(𝑎, 𝑏)  =  ∫ 𝑥(𝑡) 1√|𝑏| 𝜓 (𝑡 − 𝑎𝑏 ) 𝑑𝑡∞
−∞  

 where a is the dilation parameter and b is the location parameter. We have used the Morlet 

wavelet [21] to create the wavelet transform. 

3) Mel Frequency Cepstral Coefficient: MFCC [22] is a set of features that briefly 

represents the shape of the short-term power spectrum of a wave, based on a cosine transform of the 

same on a Mel scale frequency. Similar to the STFT, we have taken 50 for the windowed signal 

length. 

All the three representations are individually resized to a shape of 128x128x3. They’ll be fed to 
a network parallelly by concatenating all the three images into one along the 3rd axis, making the 

final shape of the input 128x128x9. The following Figure 2 shows the spectrogram of one of the 

beats extracted from the dataset. 

 

Figure 2. STFT (left), CWT (middle) and the MFCC (right) of the selected heartbeat 

3.2 Model 

The basis of the model is a general convolution 2D network. This breaks the input image into 

multiple lower resolution feature maps that have more focused features than the input image. Our 

model in total has 7 convolution layers in the backbone. However, the transition from the 

conventional 1D CNN to a 2D CNN with the input image having 9 layers instead of the conventional 

3, increases the amount of computation required. Therefore, to first reduce the number of 



 

calculations, we have replaced the conventional 2D CNN block with Separable 2D Convolution 

[23]. In a separable block, the convolution is done in 2 steps: In the depthwise operation, the block 

convolves each layer individually (unlike grouping them together like a conventional block) with 

our given kernel and feature map specifications. After this, the pointwise convolution operates on 

the output of the depthwise operation with a 1x1 kernel applied across all the layers in order to 

combine the results. This benefits the operation by reducing the number of multiplications required 

during such operations. 

 

For a normal 2D convolution operation, the number of multiplications required are given by:  

 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠 (𝐶𝑁𝑁) = 𝑛 ×  𝐵2  × 𝑘2  × 𝐶 

 
And for a subsequent separable convolution operation, the number of multiplications required 

are: 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠 (𝑆𝑒𝑝 𝐶𝑁𝑁) = 𝐵2  × (𝑘2 + 𝑛)  × 𝐶 

 

Where BxB is the resolution of the output image, n is the required number of feature maps, k is 

the size of the kernel and C is the number of channels in the input image. This makes the ratio: 

 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠 (𝐶𝑁𝑁)𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠 (𝑆𝑒𝑝 𝐶𝑁𝑁) =  𝑛 ×  𝐵2  × 𝑘2  × 𝐶𝐵2  × (𝑘2 + 𝑛)  × 𝐶 =  𝑛 × 𝑘2𝑛 +  𝑘2 

 

To make the convergence rate faster, we have augmented the convolution blocks with a batch 

normalization operation [24] followed by an ELU activation to tackle any possible dying ReLU 

problem. The figure 3 (a) shows the architecture of the base model. 

 

The following Table I shows the computational advantage the separable convolution holds over 

the normal convolution network in the model shown in Figure 3. All the kernels have a size of 3x3. 

 

Table I: Calculation Comparison of CNN and Separable CNN 

 

Feature Map Count Output Dimensions CNN Sep. CNN Advantage (Sep. CNN/ CNN) 

32 126x126 13716864 1952748 7.02439 

32 124x124 141705216 20173312 7.02439 

64 60x60 66355200 8409600 7.89041 

64 58x58 124010496 15716608 7.89041 

128 27x27 53747712 6391872 8.40875 

128 25x25 92160000 10960000 8.40875 

1024 10x10 117964800 13222400 8.92158 



 

 

 

Secondly, to first tackle the calculations over 9 filters, we have used group convolution [25] of 

order 3 instead of the conventional variant. Group Convolution splits the features maps into n groups 

and a separate convolution block is assigned for the processing of each group. This eradicates the 

redundancy of the convolution operation, therefore reducing the number of connections between the 

layers along with the number of trainable parameters of the model. This also helps with the 

regularization in the case where each input group represents different features or are altogether 

different images by not convolving across them at the same time. In our case, we have grouped the 

first 6 blocks and have combined their feature maps using a 1024 feature map normal 2D Separable 

CNN. The same can be seen in figure 3 (b). 

Figure 3. (a) The base model that consist of separable convolution followed by a batch normalization operation and 

an ELU activation. (b) The main model that uses the base model in a group convolution format and combines the output 

with a 1024 separable convolution block. The maps are flattened by global average pooling which is followed by a head 

with 2 dense layers and a dropout [27] before the 5 node SoftMax layer [28] and the argmax operation to get the output.  



 

4. Result and Analysis 

4.1 Dataset 

To evaluate our work, we have used a modified version of the MIT-BIH dataset whose 

preprocessing steps were described in [11]. The original MIT-BIH dataset consists of 14 classes 

with the signal being recorded at 360 Hz [26]. The steps in [11] groups the 14 classes into 4 broad 

ones and reduces the sample rate to 125 Hz. The data from lead II is taken in this case. Here, every 

class is associated with one heartbeat. A beat is extracted by:  

 Finding the R-Peaks in the signal. 

 Calculating the mean R-R distance for 10 seconds. 

 Taking a sample from R-peak to R-peak + mean R-R distance with a 0 padding up to a length 

of 187. 

To balance the classes and reduce the training time, we have reduced the number of samples 

belonging to class 0 in the training set to 10,000 from the original 87,554. 

4.2 Performance Comparison 

To compare our model (referred to as Spectrogram Group-Conv 2D) with the existing 

architectures, we have used various metrics to compare the performance. The main metric has been 

accuracy [29] which is the ratio of the total number of correct predictions and the total entries in the 

dataset. Accuracy is given by: 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  𝑇𝑃 +  𝑇𝑁𝑇𝑃 +  𝐹𝑃 +  𝑇𝑁 +  𝐹𝑁 

 

where TP and TN are true positives and negatives, and FP and FN are false positives and false 

negatives respectively. Precision [30] gives us an idea of the number of relevant instances from the 

extracted batch. Similarly, recall [30] is the fraction of relevant instance that were extracted from 

the dataset. They are given by: 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  𝑇𝑃 𝑇𝑃 +  𝐹𝑃 

 𝑅𝑒𝑐𝑎𝑙𝑙 =  𝑇𝑃 𝑇𝑃 +  𝐹𝑁 



 

To get a combined score from precision and recall, the F1 score [31] is taken that is calculated by 

taking the harmonic mean of the precision and recall scores. This is given by: 
 𝐹1 𝑆𝑐𝑜𝑟𝑒 =  2 . 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 . 𝑅𝑒𝑐𝑎𝑙𝑙 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙  

 

The following Table II compares the result of our model with existing architectures like K-nearest 

neighbors, 5-layer CNN [8], 34-layer CNN [9], 11-layer 1D Convolution with residuals [10] and 

11-layer 2D CNN [11]. 

Table II: Performance comparison 

  
Model Accuracy F1 score Precision Recall 

5-layer CNN [8] 95.39 82.55 77.21 91.16 

34-layer CNN [9] 96.9 85.25 80.00 92.00 

11-layer 1D Convolution [10] 95.85 81.15 75.91 92.88 

11-layer 2D CNN [11] 89.31 89.57 89.31 91.69 

Base Model 1D 96.42 86.60 92.20 82.80 

Spectrogram Group-Conv 2D 97.41 88.20 87.00 90.40 

KNN [32] 95.68 82.17 81.02 83.44 

 

 

The following Table III shows the class wise precision and recall for group convolution model and 

the Figure 4 shows the confusion matrix of the same. 

 

 

Table III: Class Wise Precision and Recall 

 
Class Precision Recall 

Normal 0.98 0.99 

Supra-ventricular 0.77 0.80 

Ventricular 0.98 0.85 

Fusion 0.63 0.89 

Unknown 0.99 0.99 

 

 

Figure 4. Confusion matrix form the group-convolution model  

 



 

From the above tables and the matrix, it is evident that our model outperformed all the existing 

architectures in terms of accuracy when tested on an altered version of the MIT-BIH dataset. It also 

shows a pretty good balance between the precision and the recall score compared to some which are 

leaning heavily on one side. 

The 2D-CNN model trained on the plain graph although outperformed every model in terms of 

F1-score, its low accuracy hinders the effectiveness of the model and makes it impractical to be used 

as a reliable source for diagnosis. 

5. Discussion  

As the results indicate, the method in this paper obtains both its goals of improving accuracy and 

speed of the model. We achieved an accuracy of 97.41% on the altered version of the MIT-BIH 

dataset. The results achieved were better or comparable to the existing architectures that we have 

tested in the same environment. This can be accredited to the use of multiple spectrograms in the 

input.  

Along with that, the number of calculations required for the classification of these spectrograms 

have been reduced significantly with the help of Separable convolution with group convolution also 

helping by reducing the number of trainable features present in the network. As compared to the 

conventional CNN, the separable CNN reduces the number of multiplication required in each layer 

by around 7-8 folds. At the same time, the group convolution makes reduces the input depth that is 

being fed to a CNN layer by 3 times. The presence of batch normalization and dropout along with 

the group convolution architecture also helps with the regularization of the model by preventing it 

from overfitting and boosting the convergence rate during the training process.  

6. Conclusion and Future Scope 

In this paper, we have introduced a novel approach of analyzing ECG signals with machine 

learning to detect any anomalies. The efficacy of this model was shown on the MIT-BIH set for 

classifying the beats into 5 types of arrhythmias.  

The main goal of such models is not to replace doctors or technicians, but rather to assist them in 

diagnosis from ECG readings so that the process of diagnosis and decision making can be 



 

accelerated. Due to its high accuracy and low weight and inference time, this model is suitable for 

deployment in an environment that receives a large number of requests. This can further be improved 

with a deeper architecture which still manages to keep the computation required to a reasonable 

limit. Replacement or modifications to the input spectrograms can also help in improving the 

performance. This method can also be applied to other episodes that can be found in an ECG 

recording such as infarctions and ischemia.  
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