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Abstract
Background: Acute liver failure (ALF) patients are often accompanied by severe energy metabolism
abnormalities and intestinal microecological imbalance. The intestinal mucosal barrier is severely
damaged. Intestinal endotoxin can induce intestinal endotoxemia through the "Gut-Liver axis". More and
more evidence shows that members of the gut microbiota, especially Fusobacterium nucleatum (F.
nucleatum), are related to inflammatory bowel disease, but whether F. nucleatum is involved in the
development of ALF and whether it affects the liver energy metabolism is unclear.

Methods: This study first detected the abundance of F. nucleatum and its effect on ALF disease, and
explored whether F. nucleatum aggravated liver inflammation in vitro and in vivo.

Results: Our data showed that liver tissues of ALF patients contained different abundances of F.
nucleatum, which were related to the degree of liver inflammation. In addition, we found that F. nucleatum
infection affected the energy metabolism of the liver during the development of ALF, inhibited the
synthesis pathway of nicotinamide adenine dinucleotide (NAD+)'s salvage metabolism, and promoted
inflammatory damage in the liver. In terms of mechanism, F. nucleatum inhibited NAD+ and the NAD+-
dependent SIRT1/AMPK signaling pathway, and promoted liver damage of ALF.

Conclusions: F. nucleatum coordinates a molecular network including NAD+ and SIRT1 to control the
progress of ALF. Detection and targeting of F. nucleatum and its related pathways may provide valuable
insights for the treatment of ALF.

Background
Acute liver failure (ALF) is a clinically critical illness that causes severe disorders of liver synthesis,
detoxification, and metabolism due to multiple factors. Its pathological manifestations are massive
necrosis of liver cells, accompanied by severe degeneration of viable liver cells [1]. At present, medical
treatment for ALF is limited to etiological treatment and symptomatic treatment, and there is still no
effective treatment for its pathogenesis [2]. 

The liver is the central organ of human nutrient metabolism, and its abnormal function can be
accompanied by severe energy metabolism disorders. The mitochondria of hepatocytes, as the main
place of the tricarboxylic acid cycle [2], which provides sufficient energy for the metabolism and function
of the liver [3]. Patients with ALF are often accompanied by severe energy metabolism abnormalities and
intestinal microecological imbalances. The intestinal mucosal barrier is severely damaged, and intestinal
endotoxin can induce intestinal endotoxemia through the "Gut-Liver axis" [4]. Endotoxin derived from the
intestine can not only directly destroy liver tissues, but also induce local non-specific hypersensitivity
reactions in the liver, induce hepatic macrophages to release a large number of cytokines, and further
produce a natural immune cascade reaction, resulting in a "second blow" , and aggravated the damage of
liver cell during ALF [5]. Liver failure is accompanied by severe abnormal energy metabolism. Intestinal
endotoxemia damages the energy metabolism of liver cells and may be an important factor in the



Page 3/23

occurrence of liver failure [4]. Studies have shown that endotoxin can directly damage the mitochondria
of liver cells [6], disrupt the tricarboxylic acid cycle, and induce liver cell apoptosis [5]. Therefore, how to
reduce the damage of endotoxin to liver cell energy metabolism may provide new ideas for the clinical
treatment of liver failure.

Nicotinamide adenine dinucleotide (NAD+) is an important coenzyme in the process of biological
metabolism. It plays an indispensable cofactor in mitochondrial oxidative phosphorylation and
participates in oxidative phosphorylation and redox reactions, DNA repair and inflammation [7, 8]. The
main mechanism for maintaining NAD+ levels in mammalian cells is the salvage synthesis pathway,
accounting for 85% of human NAD+ sources. In this pathway, Nicotinamide (NAM), as the precursor of
NAD+, is converted into nicotinamide mononucleotide (NMN) under the action of nicotinamide
phosphoribosyl transferase (NAMPT) and then converted for NAD+[9]. Recent studies have shown that an
important feature of aging is the reduction of NAD+ level [10, 11]. In animal models, supplementation of
NAD+ can also treat age-related fatty liver and diabetes [12]. There is evidence that the mammalian NAD+

salvage synthesis pathway plays a key role in mediating bacteria and NAD+ homeostasis[8], indicating
that NAD+ may be involved in the signal exchange between the host and the bacteria. However, the
specific mechanism between the reduction of NAD+ and the development of ALF is still rarely reported.

In recent years, the intestinal flora has played a key role in colitis [13]. The balance of the intestinal flora is
very important to the stability of the intestinal immune system. The imbalance of the flora will trigger an
excessive intestinal immune response, and in severe cases, it will lead to the destruction of the intestinal
mucosal barrier [14]. Fusobacterium nucleatum (F. nucleatum) has been found to cause opportunistic
infections for a long time. In recent years, it has been considered to be related to colitis and colorectal
cancer and has been found in many patient tissues and can promote the progression of the disease [15].
A complete intestinal mucosal barrier is essential to prevent toxins and antigens from entering the
immune cells [16]. Studies have shown that after the bacterial biofilm of F. nucleatum and cells contact
incubation, the bacteria can penetrate the basement membrane barrier and invade the collagen matrix
[17]. In patients with colitis and colorectal cancer, F. nucleatum can invade the mucosa and destroy the
mucosal barrier function [18, 19]. Once the homeostasis of the intestinal environment is destroyed, the
intestinal flora and its products will enter the liver through hepatoenteric circulation, causing a series of
immune and inflammatory reactions in the liver. However, whether F. nucleatum can affect the
progression of ALF through the "Gut-Liver axis" is unclear.

In this study, we tried to explore the exact relationship between energy metabolism and intestinal flora in
the occurrence and development of liver inflammation. We confirmed the reduction of liver NAD+ content
in ALF and the invasion of F. nucleatum might promote the progression of ALF, and found that NAMPT-
mediated NAD+ salvage synthesis pathway was impaired, while the indolamine 2,3-dioxygenase (IDO)-
mediated NAD+ de novo synthesis pathway was not impaired, Besides, F. nucleatum inhibited the
expression of SIRT1 through the NAMPT/NAD+ pathway, aggravating liver damage.
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Materials And Methods
Clinical samples

The liver tissues of ALF patients used in this study came from patients undergoing liver transplantation
at the Renmin Hospital of Wuhan University (Hubei, China). Normal tissue biopsies were obtained from
the donor liver in liver transplantation. The project was approved by the institutional review board and all
participants provided informed consent (Approve number: 2021-K016). The patients were screened and
excluded including infectious diarrhea, primary sclerosing cholangitis, recent malignant tumors, history of
hormone or immunosuppressive therapy and flora transplantation in the past two years, and those who
have used antibiotics in the past six months. Formalin-fixed and paraffin-embedded liver tissues were
used for fluorescence in situ hybridization (FISH) analysis and immunohistochemical staining.

Liquid Chromatography–Mass Spectrometry (LC–MS) Metabolomics:

For liver tissue samples, mixed 20 mg of tissue with 200 μL of pre-chilled water and 800 μL of pre-chilled
methanol/acetonitrile (1:1, v/v). Centrifuged at 16000g for 20 min at 4 °C. Added the same amount of
internal standard L-Glutamate-d5 to each sample and dried it in vacuum. And then added 100 μL of
acetonitrile-water solution (1:1, v/v) for reconstitution, centrifuged at 16000g at 4 °C for 15 min, and taked
the supernatant for analysis. Shimadzu Nexera X2 LC-30AD high performance liquid chromatography
was used for separation. The relevant liquid phase gradient were as follows: 0-2 min, B liquid was
maintained at 95%, 2-9 min, B liquid changed linearly from 95% to 70%, 9-10 min, B liquid changed
linearly from 70% to 30%, 10-11 minutes, B solution maintained at 30%, 11-11.5 minutes, B solution
changed linearly from 30% to 95%, 11.5-15 minutes, B solution maintained at 95%. All materials were
purchased from Sigma-Aldrich or Shanghai Yuanye Biology, Acetonitrile (Millipore, 1.00030.4008),
methanol (Millipore, 1.06007.4008), formic acid (Fluka, 06450), ammonium acetate (Sigma, 70221).

Bacterial strains and Cell culture

The human liver cell line L02 obtained from China Center for Type Culture Collection (CCTCC) were
cultured in DMEM medium (HyClone, USA) containing 10 % heat-inactivated FBS (GIBCO, USA) and 100 U
penicillin/100 g streptomycin (Sigma, USA) at CO2 atmosphere with a temperature of 37 °C and a
humidity of 5 %. TNF-α (100 ng/mL, Sigma, USA) combined with D-Galactosamine (D-Gal, 44 μg/mL,
Sigma, USA) were used to establish the ALF model in vitro. Constructed NAMPT overexpression plasmid
and enveloped it with lentiviral vectors (LV, GeneCreate, China). Besides, the cells were treated with the
fresh media containing 1 mM AMPK activator 5-aminoimidazole-4-carboxamide-1-b-D-riboside (AICAR).
After 24 h treatment, the cells were harvested for further experiments. F. nucleatum (ATCC10953, Beijing,
China) were cultured on tryptic soy under anaerobic conditions. Escherichia coli (E.coli) strain (Beijing,
China) were cultured in Luria-Bertani (LB) medium. 

Mice
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Male C57BL/6J wild-type mice aged 5-6 weeks purchased from Wuhan Biomedical Research Institute
were raised in the specific pathogen free (SPF) animal facility of Renmin Hospital of Wuhan University
under conditions of light-controlled, room temperature 25 °C, humidity 55 ± 5 % and they were free to eat
and drink. The laboratory animal facility use license number was No. SYXK (Hubei) 2015–
0027. The operations were approved by the Animal Care and Use Committee of Renmin Hospital of
Wuhan University, China. 

Animal models

All mice were randomly divided into nine treatment groups: saline control group, ALF group, E.coli group,
F. nucleatum group, E.coli + ALF group, F. nucleatum + ALF group, F. nucleatum + ALF +Ad-lacZ group, F.
nucleatum + ALF + Ad-SIRT1 group and F. nucleatum + ALF + Nicotinamide Riboside (NR) group. All mice
were given 2 mg/ml streptomycin in drinking water for 3 days. After that, PBS-resuspended F. nucleatum
(109 CFU/ml) or PBS alone was administered to mice by gavage every day for 4 weeks [20]. In NR
supplement group, NR was administered to mice by gavage every day for 4 weeks [21]. The adenovirus
overexpressing mouse SIRT1 was prepared with RAPAd® adenovirus expression system (Cell Biolabs,
Inc) and purified to 1011 PFU. Ad-LacZ (control, 50 μl) and Ad-SIRT1 (50 μl) were injected to mice once a
week. Intraperitoneal injection of LPS (100 μg/kg, L2880, Sigma) and D-gal (400 mg/kg, G0050,
Sigma) [22] was used to establish the ALF model after NR and F. nucleatum pretreatment for 4 weeks.
Animals were quickly euthanized at 24 h time point after D-gal and LPS administration and blood
samples and liver tissues were harvested. Blood samples were collected for biochemical analyses. A
small part of the liver tissue was fixed with paraformaldehyde and the other part was immediately frozen
in liquid nitrogen.

Fluorescence in situ hybridization (FISH)

Performed microbial FISH as described [23]. Prepared 5-µm-thick sections and hybridized by using
commercial kits (FOCOFISH, Guangzhou, China). The sequence of the probe were as follows: 5’-GCT GCC
TCC CGT AGG AGT-3’ for “universal bacterial” probe (EUB338, Cy3 labeled), 5’-CTT GTA GTT CCG C(C/T)
TAC CTC-3’ for F. nucleatum-targeted probe (FUS664, FITC labeled). Slides were examined using a
microscope (BX53F, Olympus, Tokyo, Japan). Five random 200× magnification fields per sample were
evaluated by an observer who was blinded to the experimental protocol, and the average number of
bacteria per field was calculated. We defined a negative or positive of F. nucleatum as an average of < 10
or > 10 visualized FUS664 probes per field, respectively. Other bacteria were noted as positive with >5
bacteria per field with EUB 338 probe.

Histopathological examination

Fresh liver tissue was fixed with paraformaldehyde for 24 h. The liver tissues were sliced completely and
the thickness is 4-6 μm and uniform, no wrinkles and no knife marks and then stained with
haematoxylin–eosin (HE). Hematoxylin stained the nucleus into bright blue, eosin stained the cytoplasm
into different shades of pink, and the eosinophilic particles in the cytoplasm were bright red under strong
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light. Light microscope (Olympus, Japan) was used to observe and evaluate the pathological changes of
liver tissues. The liver histology score was used to judge the degree of liver damage in the ALF model,
including inflammation and necrosis scores [24]. 

Immunohistochemical staining and immunofluorescent staining

The liver tissues were sliced completely and the thickness was 4-6 μm and uniform. Drop the cell
suspension of L02 cells onto the cover glass and place it in an incubator with a CO2 concentration of 5 %
at 37 °C until the cells are fixed (about 2h). The infiltration of macrophages and  inflammatory factors
were assessed using immunohistochemical assays and immunofluorescent assays. Sections were
dewaxed, incubated with 3 % H2O2, blocking serum and thereafter incubated with a 1:100 dilution of
polyclonal antibodies against TNF-α, IL-1β, F4/80 or CD68 (Santa Cruz Biotechnologies, CA, USA)
according to the instructions of manufacturer (Beyotime, Shanghai, China). Slides were imaged using
light microscope (Nikon) and fluorescent microscope (Olympus, Japan). 

Biochemical analyses and Detection of NAD+

Hitachi Automatic Analyzer (Japan) was used to detect the levels of alanine aminotransferase (ALT) and
aspartate aminotransferase (AST). Commercial kits (Nanjing Jiancheng Bioengineering Institute, Nanjing,
China) were used to detect the levels of superoxide dismutase (SOD), malondialdehyde (MDA) and
glutathione peroxidase (GSH-Px). The levels of NAD+ in liver tissues and L02 cells were detected by  
commercial kits (Nanjing Jiancheng Bioengineering Institute, Nanjing, China). Mixed RAPI lysis buffer
and protease inhibitor to obtain the extracts. Incubated the sample at 30 °C for 10 minutes to allow NAD+

to degrade, and incubated with dithiothreitol 2 mM for 10 minutes

Detection of reactive oxygen species (ROS) production

Cell suspension of L02 cells was put onto the cover glass and place in an incubator with a CO2

concentration of 5 % at 37 °C until the cells are fixed about 2 h. Add 2 ml cell culture fluid and continue to
culture for about 6 h. Pour out the culture medium and wash with PBS 3 times for 5 minutes each time.
Dissolve a 5 ml solution of dihydroethidium (DHE, 2 mmol · L-1, Molecular Probes, D-1168) in DMSO,
dilute the solution at a ratio of 1:1000, and store in the dark for use. Add 1 ml of diluted solution to each
well and incubate at 37 °C for 30 minutes in the dark. Aspirate the solution and wash with PBS 3 times
for 5 minutes each time. Aspirate the PBS and add an appropriate amount of DAPI solution to the wells,
and stain for 10 minutes in the dark. Aspirate PBS, add a drop of anti-fluorescence quenching mounting
plate into the hole, mount the cover glass, observe and take pictures under a fluorescent microscope
(Olympus, Japan).

Western blotting

Protein extraction from cells and tissues was performed using a radioimmunoprecipitation assay (RIPA)
kit following as instructed by the manufacturer (Sigma-Aldrich, USA). Added 5-10 μL of the collected
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protein samples to the SDS-PAGE gel sample holes. The proteins were transferred to polyvinylidene
fluoride membranes after electrophoresis was completed, and incubated with the primary antibodies at 4
°C overnight, then incubated the membranes with the secondary antibodies at 37 °C for 1 h the next day.
Primary antibodies against the following targets were used: SIRT1 (Cat.No. 9475, CST), NAMPT (Cat.No.
236874, Abcam), IDO (Cat.No. 13268-1-AP, Sanying), AMPK (Cat.No. 32047, Abcam), p-AMPK (Cat.No.
131357, Abcam) and GAPDH (Cat.No. 8245, Abcam). The blots where developed with ECL (GE
Healthcare, Pittsburgh, PA, USA) according to the instruction of manufacturer. The intensity of the bands
on the western blots was evaluated by Image Lab statistical software (Bio-Rad, USA).

Statistical analyses

Each experiment was repeated at least three times and the data are expressed as the means ± SDs.
Moreover, for the data sets of Western blotting and the expression of mRNA, all the data were adjusted by
the values of internal standard (such as GAPDH). Firstly, we calculated the control mean and then
expressed all the individual control values and all the individual test values as fold of control mean and
conducted appropriate statistical analyses on these normalized values. The Y axis was labelled as fold of
control mean. Statistical analysis was performed using GraphPad Prism software version 8.0.
Differences among multiple groups were evaluated using conventional Student’s t test or ANOVA
followed by Tukey’s multiple comparison post hoc test (normally distributed data). Statistical significance
was considered at P < 0.05.

Results
F. nucleatum was abundant in liver tissues of ALF and linked to disease severity

To explore the potential relationship between F. nucleatum and ALF, we used FISH to detect the
abundance of F. nucleatum in 15 liver tissues of ALF patients and 15 normal liver tissues. The liver
histological score and the abundance of F. nucleatum detected in liver tissues of ALF patients was
significantly higher than that of normal liver tissues (Fig. 1 a, b). Then we analyzed the metabolic
patterns of liver tissues of ALF patients and normal controls. Compared with the normal control group,
the liver tissue of ALF patients showed inhibition of energy metabolism (Fig. 1 c). As ATP and NAD+ have
an excitatory effect on immune cells and adenosine has an anti-inflammatory effect on immune cells,
NAD+ is an important coenzyme that mediates redox reactions [25]. We have detected that compared with
normal liver tissue, liver NAD+ levels in ALF patients are significantly lower (Fig. 1 d). According to reports,
lack of NAD+ can cause moderate hepatic inflammation and damage [26]. We speculated that in the
process of ALF, NAD+ biosynthesis was impaired. To this end, we tested the expression levels of major
enzymes that control NAD+ biosynthesis, NAMPT and indolamine 2,3-dioxygenase (IDO) are rate-limiting
enzymes for NAD+ salvage and de novo biosynthesis pathways respectively [27]. Interestingly, we found
that the expression of NAMPT in liver tissues of ALF patients decreased. At the same time, the expression
level of IDO had not changed much (Fig. 1 e, f). We then evaluated the relationship between the
abundance of F. nucleatum and clinicopathological features as shown in Table 1. The abundance of F.
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nucleatum was positively associated with the clinical course and refractory behavior (P < 0.05). These
results showed that the NAD+ salvage synthesis pathway controlled by NAMPT might be an important
factor in the consumption of NAD+ in the process of ALF, and the infection of F. nucleatum might be an
important link, while the NAD+ de novo synthesis pathway might be an adaptive response.

F. nucleatum aggravated the degree of inflammatory damage in ALF model and regulated the expression
of NAMPT

We hypothesized that the infection of F. nucleatum might aggravated the degree of inflammatory
damage during ALF. To tested this hypothesis, we established the model of ALF. Compared with the
normal control group, the mice treated with F. nucleatum or E. coli alone did not change significantly.
However, mice treated with ALF + F. nucleatum exhibited more severe liver inflammation symptoms
compared with the ALF group and E. coli + ALF group, including massive hemorrhagic necrosis, liver
lobule structure disorder, and obvious inflammatory cell infiltration and higher histological scores (Fig. 2
a, b). In addition, we evaluated the liver NAD+ levels and plasma levels of liver enzymes in each group.
Consistent with previous observations, ALF mice showed lower NAD+ levels after the pretreatment of F.
nucleatum (Fig. 2 c). The levels of ALT and AST in the ALF group increased significantly and F. nucleatum
treatment could significantly aggravate this abnormal increase (Fig. 2 d). In addition, we tested the
expression levels of NAMPT and IDO in vivo and in vitro respectively. Immunohistochemical staining
showed that the expression level of NAMPT in mice interfered with F. nucleatum decreased, while that in
ALF mice decreased significantly, and the expression level decreased further after the intervention of F.
nucleatum. During this period, the expression level of IDO did not decrease but increased slightly (Fig. 2
e). In vitro we incubated L02 cells with F. nucleatum or E. coli in a time-dependent manner. Western
blotting results showed that the level of NAMPT was positively correlated with the time of F. nucleatum
intervention, while the level of IDO did not change significantly. In addition, the intervention of E. coli had
no effect on the expression of NAMPT and IDO (Fig. 2 f, g). We also tested the level of NAD+ at the
cellular level, and the results showed that with the intervention of F. nucleatum, the level of NAD+

gradually decreased, while the intervention of E. coli had no effect (Fig. 2 h, i). These results showed that
F. nucleatum might affect NAD+ by regulating the expression level of NAMPT, and further promote the
progress of ALF.

F. nucleatumaggravated macrophages infiltration and pro-inflammatory response in ALF model

Since endotoxins derived from the intestine can not only directly destroy liver tissues, but also induce
local non-specific hypersensitivity reactions in the liver, induce macrophages to release a large amount of
cytokines, and further produce natural immune cascades, resulting in a "second blow" , and aggravated
the damage of liver cells in the process of ALF. Therefore, we tested the level of macrophages infiltration
and the degree of inflammatory response. As showed in Fig. 3 a, the result of immunofluorescence
revealed that the number of macrophages within liver tissues was increased in ALF model and infection
with F. nucleatum enhanced this effect, but there was no similar macrophages infiltration in E. coli
pretreated mice (Fig. 3 a, c). Besides, the expression of TNF-α, and IL-1β in the liver tissues of ALF model
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were up-regulated and pretreatment with F. nucleatumenhanced this effect. At the same time, the
structural damage of the liver lobules was more obvious and E.coli pretreated mice had no such
effect (Fig. 3 b, d). We found the same phenomenon in vitro. As the infection time of F. nucleatum
increased, the expression levels of TNF-α and IL-1β also increased, but after 12 hours of infection, there
seemed to be no more obvious effect (Fig. 3 e-g). These results indicated that the infection of F.
nucleatum might aggravate macrophages infiltration and inflammation in the ALF model.

F. nucleatum inhibited the antioxidant capacity of the ALF model

Next, we investigated the molecular mechanisms of the pro-inflammatory effect of F. nucleatum on the
ALF model. Oxidative stress has been shown to promote inflammation during ALF [28]. Therefore, we
evaluated the antioxidant capacity of the ALF model 24 hours after the infection of F. nucleatum. As
showed in Fig. 4 a, b, the level of ROS stimulated in ALF model was significantly enhanced by F.
nucleatum. Compared to the control group, the activities of malondialdehyde (MDA) were increased with
the intervention of F. nucleatum, while superoxide dismutase (SOD) and glutathione peroxidase (GSH‐Px)
were opposite, indicating that the antioxidant activity was decreased (Fig. 4 c-e). The involvement of
SIRT1 in the process of anti-oxidation and anti-inflammatory is well known. According to reports, NAD+

can affect the activity of SIRT1 and its expression level [29]. Our experiments showed that the expression
of SIRT1 in the ALF model was reduced, and further decreased after the infection of F. nucleatum (Fig. 4 f,
g). These results showed that F. nucleatum might have the ability to inhibit the antioxidant capacity in the
ALF model.

NAD+ supplementation reversed the inhibition of F. nucleatum on the antioxidant capacity of ALF models

Since SIRT1 is the most studied NAD+-dependent effector [30], we measured SIRT1 expression in L02
cells stimulated with F. nucleatum,as showed in Fig. 5 a, administration of different concentrations of
NAD+ in L02 cells could increase the expression of SIRT1 in a concentration-dependent manner even with
the intervention of F. nucleatum, but the effect was not so obvious when the NAD+ concentration exceeds
1000 nM. Next, we used 1000nM of NAD+ to intervene in L02 cells and detected the level of ROS
production. Consistent with the previous results, NAD+ intervention could alleviate the generation of ROS
in L02 cells stimulated by F. nucleatum (Fig. 5 b, c). Besides, the activities of SOD and GSH‐Px were
significantly enhanced with the intervention of NAD+, while MDA levels were reduced (Fig. 5 d-f). These
results showed that the supplementation of NAD+ might reverse the inhibition of F. nucleatum on the
antioxidant capacity of ALF models.

Supplemented the natural NAD+ precursor NR corrected the progression of ALF induced by F. nucleatum
infection significantly instead of overexpression of SIRT1

Next, we verified the effect of supplementing NAD+ on the ALF model of F. nucleatum infection in vivo.
Mice were pretreated with F. nucleatum and NAD+ precursor NR, a widely-used NAD+ precursor for
increasing NAD+ content [31]. Consistent with in vitro experimental results, compared with the ALF model
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of F. nucleatum infection, NR treatment could reduce the histological score of the ALF model (Fig. 6 a, d),
reduce the infiltration of macrophages (Fig. 6 a, e) and the expression of inflammatory factors (Fig. 6 b,
f). In addition, we investigated whether the loss of SIRT1 caused by NAD+ pool consumption could totally
explain the susceptibility of F. nucleatum infection to the ALF model. In vivo, we injected the adenovirus
carrying SIRT1 (Ad-SIRT1) from the tail vein to increase the protein expression level of SIRT1 in the liver of
mice in the ALF model (Fig. 6 c). As showed, SIRT1 overexpression significantly reversed the histological
score in the ALF model, but the effect was not as obvious as the NR pretreatment group (Fig. 6 a, d). The
results of immunofluorescence and immunohistochemistry also demonstrated that SIRT1 overexpression
could inhibit macrophages infiltration and the expression of inflammatory factors at a certain extent, but
the effect was insufficient obviously compared with the NR pretreatment group (Fig. 6 a-f). These results
showed that the supplementation of NAD+ precursor NR corrected the progression of ALF induced by F.
nucleatum infection significantly instead of overexpression of SIRT1.

F. nucleatum inhibited SIRT1 expression in a NAMPT/NAD+ dependent manner in the ALF model

Many factors in the cell can regulate the content of NAD+ through different ways. Among the most
important factors, besides NAMPT, AMPK increases the content of NAD+ by increasing mitochondrial β-
oxidation [32]. Therefore, we tested the effect of F. nucleatum on the expression level of p-AMPK in the
ALF model in vivo and in vitro. The results showed that the intervention of F. nucleatum could reduce the
expression of p-AMPK indeed, and it gradually decreased in L02 cells in a time-dependent manner (Fig. 7
a, b). Next, we wanted to figure out the main reason for the decrease of NAD+ and SIRT1 in F. nucleatum
infection. We constructed the NAMPT overexpression plasmid and pretreated the cells with AMPK
activator AICAR. As showed in Fig. 7 c, western blotting results showed that the expression of SIRT1 was
up-regulated after overexpression of NAMPT or activation of AMPK under the intervention of F.
nucleatum, but the overexpression of NAMPT was significantly more effective than the activation of
AMPK. In the case of supplementation of NAMPT, it was more effective after the activation of AMPK. We
also found the same results in the NAD+ test (Fig. 7 d). We continued to compare the levels of ROS in L02
cells after different treatments. Compared with activating AMPK, the overexpression of NAMPT could
clear ROS in the ALF model infected by F. nucleatum significantly more effectively (Fig. 7 e, f). In addition,
immunofluorescence detected the expression level of inflammatory factors, and the inflammatory
response after activating AMPK was still more severe than the overexpression of NAMPT, but the
inflammatory response was significantly weaker when the overexpression of NAMPT combined with the
activation of AMPK (Fig. 7 g, h). These results showed that the inhibition of F. nucleatum on NAD+ and
SIRT1 was mainly through the salvage synthesis pathway of NAD+.

Discussion
Since the liver is an important organ for human nutrition and metabolism, patients with ALF are often
accompanied by severe metabolism abnormalities and intestinal microecological imbalances [33]. In
addition, intestinal endotoxins can induce intestinal endotoxemia through the "Gut-Liver axis" and further
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damage liver cells when the intestinal mucosal barrier is severely damaged [4, 34]. Endotoxin derived
from the intestine can not only directly destroy liver tissues, but also induce local non-specific
hypersensitivity reactions in the liver, induce hepatic macrophages to release a large number of cytokines,
and further produce a natural immune cascade reaction, resulting in a "second blow" , and aggravated the
damage of liver cell during ALF [5, 33]. Liver failure is accompanied by severe abnormal energy
metabolism. Intestinal endotoxemia damages the energy metabolism of liver cells and may be an
important factor in the occurrence of liver failure [4]. Therefore, we tried to start with the microbiota that
cause intestinal inflammation and destroy the intestinal mucosal barrier, and explored the relationship
between microbiota and ALF. 

There are multiple cases reported that F. nucleatum is involved in the progression of acute purulent liver
abscesses [35, 36, 37]. Infections involving F. nucleatum are uncommon and can be serious, with many
abscesses requiring surgery [38]. Among non-spore-forming anaerobes, F. nucleatum can cause clinically
unique single-microbial infections, usually accompanied by severe sequelae [39, 40]. Although F.
nucleatum can cause serious infections, it is still a rare pathogen in clinical practice. According to the
results of previous studies, F. nucleatum may play an important role in the damage of the intestinal
mucosal barrier function [41, 42]. Therefore, we have to think about the role of F. nucleatum in acute liver
inflammation. In our research results, F. nucleatum might be an opportunistic risk factor for patients with
ALF. In addition, we established the ALF model to evaluate the role of F. nucleatum in acute liver
inflammation and we have confirmed that the enrichment of F. nucleatum in liver tissues of ALF would
aggravate the severity of liver inflammation. 

It has been confirmed that ALF patients are accompanied by severe metabolic dysfunction, and we found
that ALF patients had a disorder of energy metabolism through metabolomics analysis. Studies have
confirmed that F. nucleatum and glucose metabolism are related to colorectal cancer in mechanism,
biology and clinical [43]. However, there are few reports on the relationship between F. nucleatum and
energy metabolism during ALF. Next, we started from the perspective of NAD+. It is an important
coenzyme ubiquitous in biological metabolism, the center of energy metabolism, and an indispensable
cofactor for mitochondrial oxidative phosphorylation. NAD+ can directly or indirectly affect many key
cells functions, including oxidative phosphorylation and redox reaction, DNA repair and inflammation,
cellular senescence and immune cell function [44]. We tested the level of NAD+ and the expression of key
enzymes in the two main ways of NAD+ synthesis. We found that the level of NAD+ decreased during ALF,
and the invasion of F. nucleatum aggravated this trend. Importantly, the invasion of F. nucleatum only
affected the salvage synthesis pathway of NAD+, and had no obvious effect on the de novo synthesis
pathway. In addition, since endotoxin from the intestine can not only directly destroy liver tissues, but also
induce local non-specific hypersensitivity reactions in the liver and induce hepatic macrophages to
release a large amount of cytokines. Therefore, we also tested the the influence of invasion of F.
nucleatum on macrophage infiltration and pro-inflammatory response during ALF, the results showed that
the invasion of F. nucleatum gradually aggravated the inflammatory response during ALF in a time-
dependent manner and recruited more macrophages. Besides, ALF is often accompanied by hypoxia,
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ROS and the production of pro-inflammatory cytokines [45]. ROS increase with aging and are closely
related to various diseases. The pro-inflammatory response mediated by ROS in macrophages is
considered to be harmful in sepsis [46]. Therefore, it is necessary to detect whether the invasion of F.
nucleatum has an impact on the production of ROS. As expected, the invasion of F. nucleatum increased
the generation of ROS in the ALF model and significantly weakened the antioxidant capacity of liver cells.
Accompanying the decrease of antioxidant capacity was the activity of SIRT1, which is a NAD+-
dependent deacetylase. According to reports, SIRT1 is involved in the process of anti-oxidation and anti-
inflammatory [47]. In general, F. nucleatum inhibited the production of NAD+ and the activity of SIRT1,
leading to more serious oxidative damage during ALF. Therefore, we speculated that F. nucleatum might
promote the progress of ALF and aggravate redox reaction by regulating the salvage synthesis pathway
of NAD+. 

In the rescue experiment, it was not expected that the effect of supplementation of NR was much better
than that of SIRT1 overexpression. Among the sirtuin deacetylases that consume NAD+, SIRT1 is
considered to be the best factor regulating metabolism and inflammation [48]. However, we found that
under the invasion of F. nucleatum, although SIRT1 overexpression partially prevented the liver
inflammation in ALF mice, it failed to correct all the pathogenic effects. However, supplementation with
NAD+ precursor seemed to be completely effective for liver inflammation in mice. These results
suggested that other NAD+ depletion factors might also be involved in the progression of ALF besides
SIRT1. Of course, this needs to be further confirmed.

It is reported that AMPK can increase NAD+ content by increasing mitochondrial β-oxidation [49]. In order
to study whether F. nucleatum only affected the production of NAD+ through the salvage synthesis
pathway, we compared NAMPT and p-AMPK. In our study, it was indeed observed that F. nucleatum
infection reduced the activity of AMPK, but in follow-up experiments, we found that even if AMPK was
activated, the recovery level of NAD+ was not as obvious as the overexpression of NAMPT, and the
detection of SIRT1 also showed the same results. Not only that, we tested the antioxidant capacity and
inflammatory response of liver cells again, and got the same results as before. Perhaps the regulation of
F. nucleatum on NAD+ and SIRT1 was dependent on the NAMPT/NAD+ pathway.

Our research has significant clinical significance. Our work emphasizes the role of F. nucleatum in the
progression of ALF and the therapeutic value of NAD+. In fact, other NAD+ substrates, such as
nicotinamide, has also been shown to improve liver function [50]. Therefore, assessing the microbial
population and restoring the NAD+ pool seems to provide a new way to improve inflammation. Of course,
the potential clinical evaluations on more microbiota and other NAD+ substrates are necessary. In
addition, our study may have a limitation: We did not collect more patient specimens, the amount of liver
transplantation was too small. The limitation might cause errors in our research results. Nevertheless,
these data on the invasion of F. nucleatum and the decline of NAD+ in ALF patients are still very
interesting. Of course, this needs to be confirmed in more patients.
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Conclusion
In summary, our research results indicate that NAD+ deficiency associated with F. nucleatum is a risk
factor for the onset of ALF, and suggest that prevention of infection and supplementation of NAD+ may
be a therapeutic strategy for the prevention and treatment of ALF.
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Table 1: Clinicopathologic characteristics in F. nucleatum-negative vs. F. nucleatum-positive ALF
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Characteristics F.nucleatum-negative (n=15) F.nucleatum-positive(n=15) p valuea

Gender

  Male

     Female

 

6

9

 

9

6

 

0.126

Age

≤16

≤40

>40  

 

0

11

4

 

1

7

7

 

0.505

Clinical course

  Moderate

Severe

Remission

 

11

2

2

 

2

13

0

 

0.035*

Behavior          

B1               

B2               

B3

 

7

5

3

 

5

4

6

 

0.495

Surgery 

Yes

  No

 

3

12

 

11

4

 

0.017*

aChi-square test, *P < 0.05

Figures

Figure 1

F. nucleatum is Associated with ALF activity
(a) The representative images of HE staining and FISH of
liver in each group to assess the amount of F. nucleatum in ALF and healthy control tissues. FUS664
(green) is a FITC-conjugated F. nucleatum-specific oligonucleotide probe, EUB338 (red) is a Cy3-
conjugated universal bacterial oligonucleotide probe. Magnification, 200×.
(b) The liver histological score
of liver in each group (*P < 0.05, unpaired Student’s t-test, the error bars indicate the SDs).
(c) Liquid
Chromatography–Mass Spectrometry (LC–MS) Metabolomics of liver in each group.
(d) NAD+ level in
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liver tissues obtained by hepatectomy from patients (e, f) Immunohistochemistry analysis on the protein
levels of NAMPT and IDO in liver tissues obtained by hepatectomy from patients.
*P < 0.05, unpaired
Student’s t-test, The error bars indicate the SDs for triplicate samples.

Figure 2

F. nucleatum aggravated the degree of damage in ALF model and regulated the expression of NAMPT in
vitro and in vivo
(a) Mice (n = 5-7 per group) were administered F. nucleatum, E.coli or PBS for 4 weeks
and treated with LPS and D-gal for another 24 h. The representative images of FISH to assess the
amount of F. nucleatum in livers of each group. Representative images of histological analyses are
shown in (a) and quantified in (b) (200× magnification).
(c) NAD+ level in liver tissues obtained from
mice. (d) The plasma levels of ALT and AST were measured in each group.
(e) Immunohistochemistry
analysis on the protein levels of NAMPT and IDO in liver tissues obtained from mice.
(f, g) Western
blotting was performed to measure the expression of NAMPT and IDO in L02 cells cocultured with F.
nucleatum, E. coli or PBS (Control, Con) and quantified. Data shown are means ±SD of three separate
experiments. *P < 0.05, one-way ANOVA combined with Bonferroni's post hoc test, the error bars indicate
the SDs for triplicate samples.
(h, i) The NAD+ content of L02 cells treated by F. nucleatum or E.coli with a
time gradient.
*P < 0.05, unpaired Student’s t-test, The error bars indicate the SDs for triplicate samples.

Figure 3

F. nucleatum aggravated macrophages infiltration and pro-inflammatory response in vitro and in vivo
(a)
Representative images and quantitative analysis (c) of infiltrated monocytes by F4/80 (left panel) and
CD68 (right panel) immunofluorescence staining in liver tissues of each group. *P < 0.05. n = 6 for each
group.
(b) Immunohistochemistry analyses of the pro-inflammatory factors TNF-α and IL-1β in liver
tissues and quantitative analysis (d). *P < 0.05. n = 6 for each group.
(e-g) real-time PCR and
immunofluorescence staining were performed to measure levels of pro-inflammatory cytokines in L02
cells infected by F. nucleatum with a time gradient. *P < 0.05 vs. Data were analysed by Student’s t-test.
The error bars indicate the SDs for triplicate samples.
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Figure 4

F. nucleatum inhibited the antioxidant capacity of L02 cells (a) ROS productions were detected by DHE
staining. Representative images of the DHE staining in different groups.
(b) ROS productions were
evaluated by quantification of mean fluorescence intensity in DHE staining.
(c-e) Levels of
Malondialdehyde (MDA), Superoxide dismutase (SOD) and Glutathione peroxidase (GSH‐Px) in L02 cells.
(f) Immunoblotting analysis on the protein levels of SIRT1 and quantified in (g).
L02 cells stimulated with
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TNF-α (100 ng/mL) and D-Gal (44 μg/mL) were treated with F. nucleatum for 24 h. Data shown are
means ±SD of three separate experiments. *P < 0.05, one-way ANOVA combined with Bonferroni's post
hoc test, the error bars indicate the SDs .

Figure 5

NAD+ supplementation reversed the inhibition of F. nucleatum on the antioxidant capacity of L02 cells
(a)
Immunoblotting analysis on the protein levels of SIRT1 in L02 cells treated with different concentrations
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of NAD+ and stimulated with TNF-α (100 ng/mL), D-Gal (44 μg/mL) and F. nucleatum for 24 h.
(b) ROS
productions were detected by DHE staining. Representative images of the DHE staining in different
groups.
(c) ROS productions were evaluated by quantification of mean fluorescence intensity in DHE
staining.
(d-f) Levels of Malondialdehyde (MDA), Superoxide dismutase (SOD) and Glutathione
peroxidase (GSH‐Px) in L02 cells.
Data shown are means ±SD of three separate experiments. *P < 0.05,
one-way ANOVA combined with Bonferroni's post hoc test, the error bars indicate the SDs.

Figure 6

NR replenishment, but not SIRT1 overexpression, completely corrected the progression of ALF induced by
F. nucleatum infection
(a) Representative images of HE staining and infiltrated monocytes by F4/80 and
CD68 immunofluorescence staining in liver tissues of each group and quantified in (d, e). *P < 0.05. n = 6
for each group.
(b) Effect of SIRT1 overexpression or NR on expression of the pro-inflammatory factors
TNF-α and IL-1β in liver tissues and quantified in (f). *P < 0.05. n = 6 for each group.
(c) Western blotting
was performed to measure the expression of SIRT1 in liver tissues treated with SIRT1 overexpression or
NR in mice infected with F. nucleatum and quantified. Data shown are means ±SD of three separate
experiments. *P < 0.05, one-way ANOVA combined with Bonferroni's post hoc test, the error bars indicate
the SDs.
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Figure 7

F. nucleatum inhibited NAD+ via the salvage synthesis pathway of NAD+
(a) Western blots analysis of p-
AMPK in mice treated with LPS (100 μg/kg) and D-gal (400 mg/kg) or infected with F. nucleatum and
quantified.
(b) Western blots analysis of p-AMPK in L02 cells stimulated with TNF-α (100 ng/mL), D-Gal
(44 μg/mL) and infected by F. nucleatum with a time gradient and quantified.
(c, d) The cells were
transfected with NAMPT plasmid or treated with AICAR for 24 h and then stimulated with TNF-α (100
ng/mL), D-Gal (44 μg/mL) and infected by F. nucleatum for 24 h. Western blotting was performed to
measure the expression of SIRT1 and the NAD+ content of cells were measured in each group and
quantified.
(e) Representative images of the DHE staining in different groups and evaluated by
quantification of mean fluorescence intensity (f).
(g) immunofluorescence staining were performed to
measure levels of pro-inflammatory cytokines and quantified in (h).
Data shown are means ±SD of three
separate experiments. *P < 0.05, one-way ANOVA combined with Bonferroni's post hoc test, the error bars
indicate the SDs.


