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Abstract
One of the main issues in bone tissue engineering is to realize the response of the host to the engineered
scaffolds. In this paper, the in-vivo healing of critical-sized bony defects by cell-free and stem cell-seeded
3D printed PLA scaffolds was studied in rat calvaria bone. First, the scaffolds were 3D printed based on a
designed computer model and half of them were seeded by with bone marrow-derived mesenchymal
stem cells (BMSCs). The SEM images of the surfaces of PLA and PLA+Cell scaffolds were taken for
morphological analysis. All the scaffolds were implanted in the defect sites of rat calvaria bones and
histological analysis was conducted after 8 and 12 weeks. The results showed that both cell-free and
stem cell-seeded scaffolds exhibited superb healing compared with the empty defect controls. The
histological observation revealed the formation of both new bone and connective tissues in the healing
site after 8 and 12 weeks, postoperatively. The bone cells including osteoblasts and osteocytes with
lacuna were also observed. The higher filled area and the higher bone formation and bone maturation
were observed after 12 weeks and in particular for PLA+Cell scaffolds. Furthermore, the systemic toxicity
evaluation of the scaffolds using ALT and AST tests reject any toxicity for both cell-free and stem cell-
seeded scaffolds. It can be concluded that the 3D printed PLA scaffold with BMSCs seeding has well
osteogenic potential to be used for bone defect healing.

1.	Introduction
Bony defects in the craniomaxillofacial skeleton due to accidental or surgical trauma are a world wild
challenging health concern. Although autologous or allogeneic bone transplantation is a common
treatment for bone defects, these have some limitations, such as necrosis, infection, pain, and risk of
morbidity, therefore, other alternative methods are needed (Szpalski et al. 2010, Azi et al. 2016). Tissue
engineering and regenerative medicine try to use a combination of bioactive materials, growth factors,
and cell therapy to repair bone tissue (Bahraminasab 2020, Zhang et al. 2020). Due to the osteogenic
effect, treatment with cells, especially mesenchymal stem cells (MSCs) may be advantageous in treating
critical bone defects caused by severe trauma, osteoporosis, aging, and metabolic diseases like diabetes.
The recruitment and migration of MSCs from neighboring tissues to the injured area or defect might not
be adequate for differentiation into osteogenic precursor cells in severe bone defects (Watanabe et al.
2016). Therefore, MSCs can be applied more effectively embedded/seeded in/on the scaffold to
differentiate into osteo-progenitor cells at the defect site. It has been shown that the seeded MSCs on the
scaffold can migrate to the defect site, recruit the source of precursor cells, and finally increase the rate of
the scaffold degradation under in vivo conditions. The appropriate biodegradable scaffold assists the
migration, adhesion, and proliferation process of stem cells (Diomede et al. 2018, Han et al. 2020, Liu et
al. 2020, Oryan et al. 2020).

Choosing the suitable material is very important for the manufacture of scaffolds in bone generation, in
this aspect three basic characteristics of biomaterials which include bioactivity, biocompatibility, and
biodegradability must be considered in each assay (Ho-Shui-Ling et al. 2018). Poly lactic acid (PLA) is a
popular biodegradable polymer with a broad range of applications including medical implant devices,
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and scaffolds in tissue engineering. The broad use of PLA is due to a combination of favorable properties
including its unique biocompatibility, acceptable bioresorbability, generation of nontoxic byproducts
during the degradation in the body, and approved clinical trials by the US Food and Drug Administration
(FDA) (Persson et al. 2014). Furthermore, PLA can be easily printed into scaffolds with different
architectures/internal structures and external shapes (Gregor et al. 2017, Wurm et al. 2017, Buj-Corral et
al. 2018, Corcione et al. 2019). Therefore, in the current study, PLA was chosen to serve as a template for
the delivery of MSCs to the defect site in the rat calvaria. For comparison, the PLA cell-free scaffolds were
also implanted and the results were compared.  To the authors' knowledge, there is no study on
evaluation of the 3D printed PLA scaffold along with MSCs in an in-vivo study.  

2.	Materials And Methods
2.1. 3D printing of PLA scaffolds 

First, a 3D computer-aided design (CAD) model of the PLA scaffold was designed in ABAQUS software.
Subsequently, the "stl." File format of the model was imported to Simplify3D software to provide the g-
codes for manufacturing. Poly(lactic) acid filament (diameter of 1.75 mm) was used to build the
scaffolds with a conventional fused deposition modeling (FDM) printer. The PLA filament was heated
above the PLA melting temperature (nozzle temperature was 210ºC). The melted PLA was extruded
through a nozzle made up of stainless-steel on to a printing bed having temperature of 60ºC. The
scaffolds were printed in a layer-by-layer manner having a 7.6 mm diameter and a 1.6 mm height. The
strut thickness was 0.4 mm and the pore size was 800 μm. The fabricated PLA scaffolds were analyzed
using X-ray diffraction (XRD) technique (Bruker, D8-advance) and Attenuated Total Reflection-Furrier
Transform Infrared Spectroscopy (ATR-FTIR, Bruker’s Alpha FTIR Spectrometer, Germany). The XRD
analysis was conducted at 35 kV and 30 mA using Cu Kα radiation (λ=1.5405980 Å). The scanning angle
(2θ) was between 5°-80° at a step size of 0.06°. ATR-FTIR spectrum was obtained at the resolution of 2
cm-1 over the frequency range of 4000-600 cm−1.

2.2. BMSCs harvesting, culture and immunophenotype

The BMSCs harvesting and culture were done based on the previous study (Talebi et al. 2020). Briefly,
after sacrificing an adult female rat, the femur and tibia were immediately removed. To kill the rat, it was
first anesthetized by intraperitoneal injection of 80 mg/kg ketamine and 10 mg/kg xylazine, and it was
followed by cervical dislocation. The bone marrow was flushed by 10 ml of Dulbecco's Modified Eagle
Medium (DMEM, Gibco) with nutrient F12 Ham, supplemented with 10% fetal bovine serum
(FBS, Gibco) in two T25 tissue culture flasks, and incubated in the culture medium containing 10% FBS
and 1% penicillin/streptomycin at 37 °C, 95% humidity, and 5% CO2.  After 48 hours, the culture medium
was replaced. Adhesive cells were sub-cultured four times upon reaching 80–90% confluence. 

To analyze the expression of BMSCs surface markers, more than 1 × 105 cells were incubated in
fluorescently labeled monoclonal antibodies (BD Pharmingen) against CD29, CD34, CD44, CD45 and
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CD90 in a dark place. After 30 minutes of washing with PBS, the labeled cells were analyzed using flow
cytometry (BD FACS Calibur). Furthermore, optical microscopy images were taken at different passages
for morphology evaluation.

2.3. Sterilizing the PLA scaffolds

The 3D printed PLA scaffolds were first immersed in distilled water for 1 h. Then, they were washed and
ultrasonically cleaned with distilled water for 5 minutes. Afterward, the cleaned samples were sterilized
using ultra-violet (UV) light under a laminar flow bench; 10 min each side of the scaffolds. For the cell-free
group, each sterilized PLA scaffold was individually put in a sterile petri dish and transferred for surgery.
For the cell-seeded group, the sterilized PLA scaffolds were used to seed MSCs. After seeding (as
explained in the following section), each cell-seeded scaffold was individually put in a sterile petri dish
with a small amount of complete medium (500µL) and transferred for implantation.

2.4. BMSCs seeding and culturing on PLA scaffolds

Initially, the bottom of wells of a 24-well plate was evenly coated by 2% agarose (700 μL per well) having
no defects including bubbles or scratches in the coatings. After ⁓30 minutes, the sterilized PLA scaffolds
were placed on the agarose. For seeding, 230 µL of culture medium containing 106 BMSCs was added
evenly on both sides of the scaffolds; 115 µL on each side. After seeding of the cells on each side of the
scaffold, a time interval of about 20 minutes was considered for initial cell attachment. In the next step, 1
mL of additional culture medium was gently added to each well and the plate was placed in an incubator
at 37 °C, with 95% humidity and 5% CO2 for 24h. Finally, the seeded scaffolds were transferred for surgery
one-by-one.

2.5. Animals

Wistar female (n=24) adult rats, weighing 250 ± 20 g were used in this study. Animals were kept in a
controlled temperature (22 ± 2℃) place and a 12-h regular light/dark cycle (light on from 07:00 to 19:00),
housed 2 to 4 per cage with free access to food and water (Safakhah et al. 2017). The experimental
protocol was approved by the Ethical Review Board of Semnan University of Medical Sciences (Ethic
code: IR.SEMUMS.REC.1400.048). All experiments were conducted in agreement with the National
Institutes of Health Guide for the Care and Use of Laboratory Animals.

2.6. Implantation

The scaffold implantation was performed through a method which was described by Sadeghi et al.
(Sadeghi et al. 2016). After anesthetizing of the rats by intraperitoneal (IP) injection of a mixture
containing ketamine hydrochloride and xylazine hydrochloride with the volume ratio of 8:2 at 1mL/kg
(Bahraminasab et al. 2021), the head of the rat was completely fixed in a stereotaxic apparatus, and the
hair was shaved and the skull was disinfected using povidone iodine solution. To expose the full extent
of the calvaria, subperiosteal dissection was done bilaterally in a non-infectious manner and the
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subcutaneous muscles were completely pushed away. The skull was drilled to the size of the scaffold
using a surgical trephine bur. One calvaria through-and-through osteotomy was made in the dorsal
portion of the parietal bone midsagittal suture (Figure 1a) under irrigation with sterile normal saline. After
preparing the transplant conditions, the scaffold was placed into the whole and finally, the scalp was
sutured. The bone repair was analyzed after 8 and 12 weeks, postoperatively. The details of animal
groups are given in Table 1.

Table 1: Details of studied animal groups

Group
number

Group
name

Time
(week)

Number of implanted rats for each implantation time

1 defect 8 2 

12 2

2 PLA 8 5

12 5

3 PLA+Cell 8 5

12 5

2.7. Histological analysis 

The histological analysis was conducted after 8 and 12 weeks. First, the rats were sacrificed and then the
defect sites were judiciously dissected. These samples were fixed in neutral-buffered formalin (10%), and
decalcified in formic acid (10%), sequentially. The standard dehydration was then conducted on the
decalcified samples in serially increasing alcohol (ethanol) solutions.  The dehydrated samples were
embedded in paraffin and subsequently 5µm sections were provided. The prepared sections were stained
with hematoxylin and eosin (H&E). The analyzed area in histology is shown in Figure 1b. Some sections
were also stained by toluidine blue. A light microscope was employed to analyze the histology slides. The
percentages of the new bone area were measured from H&E images using ImageJ software. Furthermore,
immediately after harvesting the defect sites, photos were taken and the macroscopically filled area by
new bone was calculated in percent using ImageJ software. Figure 2, shows the whole procedure used in
this study.

2.8. Serum biochemistry and osteocalcin detection 

 To assess the systemic toxicity of the scaffolds, the level of liver and muscle enzymes was measured by
serum biochemistry. At the time of sacrifice (8 or 12 weeks postoperatively), about 5 mL of blood was
collected from the heart of each rat and centrifuged at 3000 rpm for 10 min to obtain blood serum.
 Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were analyzed using the
commercial kits (Paadco, Golestan Technology Park, Iran). Furthermore, the osteocalcin level (a bone
formation marker) was also measured in the serum, using a sandwich ELISA method (Rat
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Osteocalcin/Bone Gamma-Carboxyglutamic Acid Containing Protein (OT/BGLAP) EISA Kit; ZellBio,
Germany) according to the manufacturer instruction. 

2.9. Statistical analysis

Analysis of Variance (ANOVA) was done for statistical analyses using Minitab V17 software. The
confidence level was set to be 95% (α=0.05) in all analyses. Moreover, the post-hoc pairwise comparisons
were conducted using Tukey test.

3.	Results
3.1. Phase analysis and chemical bonds

Figure 3a shows a noisy background with no sharp and narrow diffraction peaks in PLA indicating its
amorphous nature. There is a large broad peak extending from 2θ of around 10◦ to <30◦. Two small
peaks also can be seen at 5◦<2θ<10◦ and 30◦<2θ<35◦. The obtained pattern corresponds to the
characteristic peak of PLA (Zhang et al. 2011, Burgos et al. 2013, Armentano et al. 2015, Lu et al. 2016).
The ATR-FTIR spectra of PLA scaffold is shown in Figure 3b. The characteristic bands at about 2994 cm-

1 and 2944 cm-1 are related to –CH stretching in –CH3 group. The peak appeared at 2922 cm-1 is

attributed to –CH bending vibration. Furthermore, some peaks were also observed at 756 and 867 cm-1 (–
CH bending vibration); 1043 cm-1 and 1182 cm-1 (C–O stretching vibration); 1082 cm-1 (stretching peaks
of C–O–C bonds) 1451 cm-1 and 1361 cm-1 (–CH bending in –CH3 group); and 1748 cm-1 (C=O
stretching vibration on ester group). The observed peaks correspond to PLA and agree well with data in
the previous studies (Yang et al. 2008, Revati et al. 2017, Ozaltin et al. 2020).

3.2. BMSCs morphology and immunophenotype

The morphology of the BMSCs was observed during culturing which was appeared to be normal;
adherent in spindle shape with fibroblastic morphology (Chen et al. 2014, Wang et al. 2017). Figure 4
shows the morphology of BMSCs during culture (passages 1 and 3).  The flow cytometry analysis was
illustrated that BMSCs isolated from rat bone marrow were positive for the cell surface markers CD29
(94.92%), CD44 (93.68%), and CD90 (95.84%), while were negative for CD34 (6.26%) and CD45 (4.40%)
(Figure 5). These results suggested that the cultured cells have similar morphological and
immunophenotypical characteristics to BMSCs.

3.3. Seeded BMSCs on scaffolds

Immediately, after cell seeding (live cells) as well as after fixation, the PLA scaffolds were observed under
an optical microscope. As it can be seen in Figure 6, a dense cell layer was seeded on the scaffolds.
Furthermore, SEM images were taken from the surface and cross- section of a PLA scaffold (Figures 7a
and 7b), and from the surface of the scaffold with fixed cells (Figures 7c-7f). In these figures, the scaffold
is shown by "S" and the cell layer is indicated by "C".
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3.4. Histology and histomorphometry analysis

Figures 8 and 9 show the histological H&E images taken 8 and 12 weeks after implantation, respectively.
In these figures, the scaffold is shown by the letter "S" (light beige color), the defect is identified by the
letter "D", and the bone is marked by the letter "B" (pink color).  The osteocytes are indicated in rectangles
and the new bone islands are pointed at by arrows. The scaffolds still remained at the defect site
meaning that the biodegradability of the PLA scaffold was slow. However, the new tissues including
connective, and neo-bone were formed around the scaffold struts in the pores. In the PLA groups more
connective tissues and collagen fibers, and smaller bone, particularly in the lamellar form were observed.
However, these were more obvious at week 8 rather than week 12. In the PLA+Cell groups, more blood
vessel formation and a small number of lymphocytes (yellow circle in Figure 8) were observed. A higher
degree of new bone formation, more lamellar bone and cartilaginous tissue were observed in the
PLA+Cell groups compared with cell-free PLA scaffolds. As it can be seen in Figures 8a and 9a, minimum
tissue formation was seen in the untreated defect group. 

Figure 10a shows the percentages of the bone area formed in the defect site around the scaffolds. The
mean values of bone area% for PLA and PLA+Cell were 30.0% and 41.2%, and 53.5% and 59.8% after 8
and 12 weeks, respectively. In addition, a higher new bone area was observed in the defect sites after 12
weeks in both groups. The ANOVA results revealed that implantation time was a significant factor on
bone area formed (P-value=0.000). Nevertheless, the scaffold type was not significant (P-value=0.081), at
the confidence level of 95%.  In Figure 10, the means that do not share a letter are significantly different
(results of Tukey test). Therefore, the new bone area formed around PLA scaffolds after 8 weeks was
significantly lower than PLA and PLA+Cell scaffolds after 12 weeks.  Meanwhile, the bone area% in the
defect site around PLA+Cell scaffolds after 8 weeks was significantly different from that after 12 weeks.
However, there were no statistically significant differences between PLA and PLA+Cell scaffolds after 8
weeks as well as after 12 weeks.  Figure 10b represents the filled area of the defect by new tissue in the
studied groups. The values in this figure were normalized to the defect size at the operation day. As it can
be seen the filled area increased in all groups at week 12 compared to week 8. Furthermore, the filled area
was highest for the PLA+Cell group 12 weeks, postoperatively. The results of ANOVA also indicated that
the scaffold is a significant factor in filled area% (P value=0.000). The Tukey pairwise comparisons
indicated that the areas of the defect filled by new tissue (both soft and hard tissues) were significantly
higher in PLA and PLA+Cell group compared with the untreated control group (defect without scaffold). It
should be pointed out that in the untreated group the filled area of the defects was mostly non-functional
soft tissue, while in the scaffold groups, as indicated by H&E staining, the filled area mainly had
cartilaginous and bone tissues. 

Toluidine blue, a cationic dye, stains the proteoglycans as well as glycosaminoglycans in the tissue
(Schmitz et al. 2010). Proteoglycans are one of the most abundant constituents of the non-collagenous
proteins in the bone matrix. These are characterized by the covalent bond of long-chain polysaccharides
(glycosaminoglycans) to core protein molecules (Robey 2002). Therefore, toluidine blue stains the tissue
where bone matrix and connective tissue are formed. Figures 11 and 12 show the toluidine blue staining
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of the tissues 8 and 12 weeks after implantation. As it can be seen in these figures, in the PLA+Cell
groups both new bone and connective tissue were clearly observed. These features were also seen in the
PLA group at week 12.  However, at week 8, the area of the colored tissue was very small as shown in
Figures 11a and 11b.

3.5. ALT, AST, and osteocalcin level 

The biochemical analyses (ALT and AST level) were performed to monitor the systemic influence and any
abnormal response possibly induced by the scaffolds. AST and ALT are sensibly sensitive indicators of
liver injury or damage from various types of diseases or conditions. The ALT and AST levels in rat serum
of different groups are shown in Figure 13. The continuous red line and dashed blue line in Figure 13
indicate these enzyme levels for normal female rats with neither skull defects nor scaffold implantation.
The AST levels in all groups of scaffolds did not exceed the dashed blue line meaning that the scaffolds
did not cause systemic toxic effects.  Similarly, the ALT levels did not surpass the normal level except for
the rats with PLA scaffold implantation after 8 weeks. However, after 12 weeks the ALT value decreased
below the reference line. Furthermore, there were no significant differences between groups in ALT and
AST levels.

The serum osteocalcin levels (Table 2) were higher at week 8 than week 12 in all groups. The highest
osteocalcin level was associated with PLA+Cell at week 8. The level of this osteoblastic marker was lower
at week 12 possibly due to the fact that after this time the defects were mostly filled by new bone. The
level of osteocalcin in the PLA+Cell group at week 12 was significantly different PLA+Cell and PLA at
week 8, and PLA at week 12. Nevertheless, the level of osteocalcin in the defect group was not change at
weeks 8 and 12. This is due to the fact that no bone matrix was formed at the defect site in this group. 

Table 2: Osteocalcin levels in rat serum of studied groups

group Time 

(weeks)

Osteocalcin

(ng/mL)

defect 8 2.196±0.147

12 2.136±0.059

PLA 8 2.092±0.056

12 2.031±0.022

PLA+Cell 8 2.417±0.084

12 1.792±0.050

4.	Discussion
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In present paper, the efficacy of 3D printed PLA scaffolds both as cell-free and cell-seeded construct was
assessed in the repair of a critical-sized defect in rat calvaria. Our findings suggest that both scaffolds
provide efficient templates for new bone growth and repair without producing any toxic effects.  The ALT
and AST levels in blood serum are indicative of the systemic influence of the implanted scaffolds on liver
function (Masuzaki et al. 2010, Lai et al. 2019, Shuai et al. 2020). In the results obtained here, the levels
of these two enzymes laid below the normal levels. PLA is a synthetic polymer that is widely used in
tissue engineering applications and its high biocompatibility has been reported frequently (Llorens et al.
2015, Da Silva et al. 2018, Mazur et al. 2020, Zimina et al. 2020). Our findings also rejected any toxicity or
abnormality caused by neither scaffold material nor the manufacturing approach.

The osteocalcin concentration was measured in blood serum.  Osteocalcin is produced only by mature
osteoblasts and plays a role in bone mineralization (Ayukawa et al. 2010). It is mainly deposited into the
bone extra cellular matrix (ECM) and only a small quantity of its newly formed reaches the
circulation (Zhang et al. 2004, Tarafder et al. 2013). The highest osteocalcin level in PLA+Cell at week 8
might indicate the higher mineralization in this group (as confirmed by the result shown in Figure 10a).
The level of this osteoblastic marker at week 12 was lower in all groups and it may be due to the fact that
after this time the defects were mostly filled by new bone. In one study conducted by Zhang and
Zhang (Zhang et al. 2004), the osteocalcin expression by MG63 exposed to microporous chitosan
scaffolds reinforced by calcium phosphate was assessed. The authors obtained lower osteocalcin
concentration at day 11 compared with that of day 7. Their result on reduction of osteocalcin level by
time in in agreement with our findings. Another point is that the level of this osteoblastic marker in the
defect group was not change at different time points. This is due to the fact that no bone matrix was
formed at the defect site in this group.

Both PLA and PLA+Cell scaffolds showed to induce tissue regeneration at the defect site. The connective
and bone tissues along with collagen fibers and blood vessels were formed around the scaffold struts.
However, the histological analysis revealed that the PLA+Cell scaffolds caused better bone formation and
repair. The presence of BMSCs on the scaffold appeared to help in the bone regeneration process. MSCs
are known as self-renewing, multipotent cells, which exist in different body tissues and are considered as
reparative cell reservoirs. These cells differentiate in response to signaling at the site of injury (Gordon et
al. 2006, Marei et al. 2016). Furthermore, MSCs can contribute to the maintenance of stem cell niche and
tissue homeostasis (Hsu et al. 2012). Moreover, they have low immunogenicity and show effective
immune-suppressive qualities. Nevertheless, the MSCs recruitment and migration from adjacent tissues
to the defect site is not probably adequate for differentiation into osteogenic precursor cells in severe
bone defects (Watanabe et al. 2016), such as the critical-sized defect (7.6 mm) in the present study.
Therefore, scaffolds can be employed to have a more effective migration of the MSCs differentiating into
osteo-progenitor cells at the defect area. The promising results of our histological analysis suggest that
the PLA scaffold provided an appropriate environment for the viability of the BMSCs. This can be
attributed to the scaffold structural characteristics including proper biomaterial composition, porosity
percentage, and pore sizes (Qazi et al. 2019, Teixeira et al. 2019, Oryan et al. 2020, Tytgat et al. 2020).
These properties along with mechanical stability, stiffness, biodegradation, and non-toxicity are required
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for the successful performance of an implanted scaffold (Bahraminasab et al. 2018, Bahraminasab et al.
2019). PLA has this combination of properties which results in an acceptable function in-vivo. The only
drawback of PLA is its hydrophobicity and reduced cell adhesion (Armentano et al. 2010). Therefore,
some studies focused on PLA modification using bioceramics or surface treatments (Wang et al. 2016,
Tatullo et al. 2019). It would be interesting to study the in-vivo performance of the treated PLA and its
composites along with BMSCs to find out about the synergistic and antagonistic effects. Another issue
that can be considered in future studies is the used of growth factors that can provide the proper
signaling and help in stem cell differentiation (Tollemar et al. 2016).

5.	Conclusions
The results from this study showed the two scaffolds can encourage effective healing of a critical-sized
defect in rat calvaria compared to the untreated controls (empty defects without scaffolds). The 3D
printed porous PLA scaffold was a suitable framework for BMSCs seeding as they could differentiate to
bone cells and contribute to the healing. According to the results obtained here, the osteogenesis of the
3D printed PLA scaffold were enhanced after loading it with the BMSCs. Therefore, the scaffold has the
potential for future bone tissue engineering applications.
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Figures

Figure 1

(a) drilled whole and 3D printed scaffold, and (b) analyzed area in histology
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Figure 2

The general steps used in this study
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Figure 3

(a) XRD, and (b) ATR-FTIR spectra of 3D printed PLA scaffold
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Figure 4

The morphology of BMSCs during culture
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Figure 5

Flow cytometry analysis of BMSCs immunophenotype
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Figure 6

Cell layer on the scaffold; (a and b) live cells, and (c and d) fixed cells. The magnifications were 40× and
100× for (a and c) and (b and d), respectively. The scaffold is shown by "S".
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Figure 7

SEM images of (a) PLA scaffold, (b) scaffold cross-section, and (c-f) fixed cell layer on the scaffold. The
scaffold and cell layer are shown by "S" and "C", respectively.
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Figure 8

H&E images obtained 8 weeks postoperatively in different groups; (a) defect without scaffold, (b-d) PLA
scaffold, and (e-g) PLA+Cell scaffold. The scaffold, bone, connective tissues, and defect site are shown
by "S", "B", "C", and "D", respectively. The new bone islands are indicated by black arrows and osteocytes
are identified in rectangles. The magnifications are ×40, ×200, and ×400 in (a, b and e), (c and f), and (d
and g), respectively.
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Figure 9

H&E images obtained 12 weeks postoperatively in different groups; (a) defect without scaffold, (b-d) PLA
scaffold, and (e-g) PLA+Cell scaffold. The scaffold, bone, connective tissues, and defect site are shown
by "S", "B", "C", and "D", respectively. The magnifications are ×40, ×200, and ×400 in (a, b and e), (c and f),
and (d and g), correspondingly.
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Figure 10

Comparison of (a) bone area%, and (b) filled area% in different groups (the means that do not share a
letter are significantly different)
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Figure 11

Toluidine blue staining obtained 8 weeks postoperatively in (a and b) PLA group, and (c and d) PLA+Cell
group (×400).
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Figure 12

Toluidine blue staining obtained 12 weeks postoperatively in (a and b) PLA group, and (c and d) PLA+Cell
group (×400).
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Figure 13

ALT and AST level in rat serum 8 and 12 weeks postoperatively in different groups


