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Abstract
Dengue virus peptides are emerging as potential therapeutics for dengue infection. Due to the important role of
dengue peptides in curbing dengue infection, their identi�cation has proven crucial in terms of infection biology. To
calculate differences between amino acids and physiochemical attributes, statistical tests and F-scores were used
in this work. The random forest algorithm was used to predict dengue peptides using grouped amino acid
composition, transition and distribution. Here, we have used three descriptors; Amino acid content, Grouped Amino
acid composition and Composition, transition and distribution features (CTDC). We have created models and
compared with combined model. Using the grouped amino acid composition as input parameters for the random
forest algorithm, Our classi�er's overall accuracy increased to 88.80%, which was the greatest overall accuracy
found in this investigation. Our classi�er produced superior predicting outcomes when compared to previously
developed algorithms. In conclusion, we looked at the differences in amino acids and physiochemical properties
between dengue viral peptides, using the grouped amino acid composition to build a classi�er that predicts these
dengue virus inhibitory peptides.

Highlights
Amino acid content, grouped amino acid content, CTDC and combined random forest model was developed to
predict dengue virus inhibiting peptides.

Frequency of Glycine (G), Phenylalanine (F), and Tryptophan (W) was signi�cantly higher in dengue virus
inhibitory peptides.

Aromatic amino acids in non-inhibiting peptides were found to be less than 5%.

In non-inhibiting peptides, the distribution of solvent accessible residues was found to be less than in inhibiting
peptides.

The accuracy of the AAC RF and GAAC RF models has improved to 88% and 87%, respectively.

Introduction
Dengue virus (DENV) is the mosquito-borne �avivirus that frequently infects people in subtropical and tropic areas.
As per the reports of the World Health Organization, over 40% of the world’s population are at risk of dengue
infection [1]. Dengue virus infections cause severe illness, known as dengue haemorrhagic fever (DHF). It is majorly
characterized by vascular leakage, which further develops into life-threatening dengue shock syndrome (DSS) [2] . It
leads to high mortality of DHF/DSS. DENV NS1 is a 48-kDa glycoprotein that is highly conserved among all
�aviviruses [3]. NS1 is essential for viral replication and immune evasion [4][5]. The triggering hyperpermeability of
human endothelial cells in-vitro and systemic vascular leakage in-vivo is caused by the pathogenic effect of
secreted DENV non-structural protein 1 (NS1) [6]. The NS1 disrupts endothelial glycocalyx layer (EGL), inducing the
shedding of heparan sulfate glycoprotein and degradation of sialic acid. It has been shown that NS1 activates
cathepsin L which activates heparanase via enzymatic cleavage. This enzyme act on the breakdown of heparan
sulfate proteoglycans. Therefore, DENV patients have high heparan sulfate and sialic acid in their serum [7].

The use of peptides as therapeutic agents for DENV infection has previously been investigated. As competitive
inhibitors of virus entrance and replication, these peptides were engineered to disrupt active regions of viral proteins
or to imitate speci�c sections of viral proteins. Peptide inhibitors have been shown to target viral structural proteins
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C, prM, and E, as well as viral NS1, NS2B/NS3 protease, and NS5 methyltransferase during DENV infection. [8, 9, 10,
11, 12, 13, 14, 15, 16, 17, 18, 19].

Here, we have proposed a classi�cation algorithm to predict dengue virus inhibiting peptides using three main
descriptors namely; Amino Acid content, grouped amino acid content and CTDC. The binary dataset for developing
machine learning model were taken from literatures and dengue peptides-oriented databases. The Random Forest
(RF) machine learning algorithm was applied to predict top 5 models for each three descriptors. We compared each
model with the combined descriptor model. The descriptors contributing for high model accuracy were, Amino acid
content and grouped amino acid composition.

These models were used to predict the dengue virus inhibiting and non-inhibiting peptides. Comparing all developed
models, best results were obtained using AAC_RF and GAAC_RF model, this suggests that our classi�er is better at
predicting dengue viral peptides..

Materials And Methods

2.1. Dataset
In this study, Dengue virus inhibiting peptides were downloaded from the AVPdb, a database of antiviral peptides
that have been experimentally con�rmed against medically signi�cant viruses [20], which consisted of 89 dengue
virus inhibiting peptides. The 11 peptides were taken from a paper entitled "Peptides targeting dengue viral
nonstructural protein 1 inhibit dengue virus production". The negative dataset was taken from AVPdb Database [19].
All the peptide sequences were checked in Cluster Database at High Identity with Tolerance (CD-HIT) [21] in order to
generate a high-quality dataset for this research. Finally, we have categorized our both dataset into training and
testing with 7:3 ratio.

2.2 Descriptor selection
We selected three descriptors. 1- Amino acid content (AAC) which calculates amino acid frequency in peptide
sequence.2- Grouped Amino Acid Composition (GAAC), twenty amino acids are categorized into �ve classes
(aliphatic, aromatic, positive, negative, uncharge). It calculates the frequency of each class. 3- The composition,
transition and distribution (CTDC) features represent amino acid distribution patterns of a speci�c structural or
physiochemical property in a peptide sequence. We used iLearnplus Web [22] for descriptor selection and machine
learning model development.

2.3 Clustering and dimensionality reduction
The three descriptor’s data were used as input for clustering. K-means clustering was used with cluster size of 2.
The basic idea is to initialize cluster centers, move each point to its new nearest center and calculating the mean of
the member points to update the clustering centers and repeat the process until the convergence [23].

The Principal component analysis (PCA) is used to describe useful variants [24]. The data was used for principal
component analysis for dimensionality reduction. The main three principal components were retrieved. The
dimensionality reduction data was used as input for feature selection and normalization.

2.4 Feature selection and normalization
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F score is used for class discrimination. F-score can measure the discrimination between sets of real numbers [25].
For feature selection, F score value was used and 10 best features was found. The values of features were
transformed into three principal components. The features were normalized using Z Score. Nowadays, microarrays
data also being normalized using Z score [26].

2.5 Machine learning
A big part of machine learning is classi�cation — we want to know what class a new peptide is (Dengue inhibiting
peptide or non-inhibiting). We have considered random forest (RF) as it is more robust algorithm for classi�cation.
Here, uncorrelated models can produce ensemble predictions that are more accurate than any of the individual
predictions [27]. The normalized dataset (Training set: 102,3; Testing set: 14,3) was taken as input and loaded for
machine learning. The random forest algorithm was selected with the following parameters. Tree number: 1000,
Number of threads:2, Tree ranges from: 50, Tree ranges to: 500 and Tree steps: 50. The cross validation was set to
5.

2.6 Model validation in testing data
The AAC_RF, GAAC_RF, CTDC_RF and combined_model_RF were validated with testing data. The ROC and PRC
curve was ploted. The evaluation metrics was reported.

Results And Discussion

3.1 Dataset
As per the protocol of iLearnWeb Plus server, we annotated all sequences for classi�cation. The protocol for writing
sequence is given below.

>name|class|category

sequence

Here, we can give any name (alphanumeric with underscore). we had two class; 1 for dengue virus inhibiting
peptides, 0 for dengue virus non-inhibiting peptides. Totally, we collected 100 experimentally validated dengue virus
inhibiting peptides. Here, category means training and testing dataset. We split the sequences into training and
testing set in 7:3 ratio. Similarly, we had 16 negative datasets. This set also we split into 7:3 ratio. We saved these
datasets in the Supplementary �le (S1).

3.2 Descriptor generation and data distribution
We generated descriptors for all 116 peptides. The generated 20 descriptors under AAC are given in supplementary
table 1. This numeric value indicates frequency of Amino acid in peptides. In AAC, Tryptophan frequency
differentiates dengue virus inhibiting peptides from non-inhibiting peptides. In non-inhibiting peptides the
occurrence of tryptophan is almost 0. In various literatures, it has been shown that tryptophan is very important for
delivering antimicrobial activity [28, 29]. Similarly, Glycine, tryptophan and phenylalanine frequency in non-inhibiting
peptide is comparatively less than inhibiting peptides. (Table 1) and it is well supported by published article [30].
The generated 5 descriptors under GAAC are given in supplementary table 2. In GAAC, Aromatic amino acids in non-
inhibiting peptides were found to be less than 5%. It has been reported that aromatic amino acids plays a vital role
in viral defense [31]. The generated 39 descriptors under CTDC are given in supplementary table 3. In CTDC, the
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distribution of solvent accessible residues in non-inhibiting peptides was found to be less. The alpha helices and
beta sheets in dengue virus inhibiting peptides are equally distributed but in non-inhibiting peptides, the proportion
of beta sheets is more as compared to alpha helices.

Table 1
Frequent amino acid
residues in inhibiting

peptides
Feature Values

G 0.458

F 0.202

W 0.181

N 0.154

A 0.135

I 0.134

D 0.083

L 0.046

E 0.044

V 0.038

K 0.025

P 0.020

T 0.018

C 0.015

R 0.015

Q 0.013

H 0.011

Y 0.007

M 0.001

S 0.000

The alpha helical content in peptides determine its antiviral activity [32]. The data distribution for AAC, GAAC and
CTDC is given in Figure 1.

3.3 Machine learning model
The amino acid composition of a protein has been widely utilized for the prediction of peptide categories [33–43].
All descriptors under AAC, GAAC and CTDC was used for clustering (Figure 2) and dimensionality reduction (Figure
3). The top 10 features were selected and transformed into 3 three principal components. Further, principal
component values for each sequence were normalized. The normalized data for AAC, GAAC and CTDC is shown in
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Figure 4. The normalized data was used as input for model development using Random Forest (RF) algorithm. The
RF algorithm is widely used for better understanding and prediction of antiviral peptides [44]. All model (AAC_RF,
GAAC_RF, CTDC_RF and combined_RF) metrics was given in Table 2. The ROC and PRC curve for all models are
shown in Figure 5. In this table, only the best predictive results of our classi�er are illustrated boldly. The boxplot for
all models with 8 different evaluation parameters are shown in Figure 6. On looking into the eight parameters, AAC
and GAAC models were showing good prediction output. The correlation values between models are given in Figure
7. The highest correlation of 0.9978 was found between AAC_RF and CDTC_RF models.

Table 2
Model metrics for AAC, GAAC, CTDC and combined

Id Sensitivity Speci�city Precision Accuracy MCC F1 AUROC AUPRC

CTDC_RF_model 91.578 41.0 88.422 82.824 0.3357 0.8951 0.8431 0.961

GAAC_RF_model 92.63 61.0 92.35 87.064 0.5235 0.9226 0.8663 0.9683

AAC_RF_model 96.842 51.0 90.55 88.802 0.5388 0.9342 0.8487 0.9598

Combined_model 87.368 55.0 91.332 81.956 0.3915 0.886 0.8503 0.9647

The successful predictive performance obtained in our study clearly demonstrated that the combined descriptors
(AAC (20 descriptors), GAAC (5 descriptors) and CTDC (39 descriptors)) with Random Forest was quite suitable for
predicting these peptides inhibiting dengue virus but overall AAC and GAAC with random forest is the best choice for
model development and prediction. The model was evaluated on testing data. The ROC and PRC curve was plotted
in Figure 8. The evaluation metrics of all model is given in Table 3.

Table 3
Evaluation metrics of the three model on testing data

Id Sensitivity Speci�city Precision Accuracy MCC F1 AUROC AUPRC

Metrics
value_AAC_RL

97.89 95.24 98.94 97.41 0.9147 0.9841 0.9937 0.9986

Metrics value
GAAC_RL

97.89 95.24 98.94 97.41 0.9147 0.9841 0.9937 0.9986

Metrics value
CTDC_RL

94.74 95.24 98.9 94.83 0.842 0.967 0.990 0.997

Compared to a regular amino acid, the grouped amino acid composition, transition and distribution decreases
information redundancy, over�tting and simpli�es the protein complexity. To determine which amino acids and
biological features were most discriminative between dengue virus inhibiting and non-inhibiting peptides, we
analysed differences in amino acids and biological properties. We aimed to create a classi�er that could predict
dengue virus inhibitory peptides based on the composition, transition, and distribution of grouped amino acids. As a
result, these descriptors served as RF's input parameters.

Conclusion
There is currently no effective dengue virus (DENV) therapeutic. In this study, we presented the �rst evidence, to our
knowledge, for the relationship between dengue virus inhibiting and non-inhibiting peptides with amino acid use and
biological properties. We found that the frequency of Glycine (G), Phenylalanine (F), and Tryptophan (W) was
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signi�cantly higher in dengue virus inhibitory peptides. Similarly, aromatic amino acids in non-inhibiting peptides
were found to be less than 5%. The distribution of solvent accessible residues in non-inhibiting peptides was found
to be less as compared to inhibiting peptides. The alpha helices and beta sheets in dengue virus inhibiting peptides
are equally distributed but in non-inhibiting peptides, the proportion of beta sheets is more as compared to alpha
helices. An RF algorithm was applied on the three descriptors; AAC, GAAC and CTDC. It was used to predict dengue
virus inhibiting peptides. The successful predictive performance obtained in our study clearly demonstrated that
these descriptors combined with RF was quite suitable for predicting these two peptide categories. We also
developed combined model but the accuracy of this model was comparatively less. The AAC_RF and GAAC_RF
model has improved accuracy of 88% and 87% respectively. Based on these data, we believed that our classi�er,
which uses the scheme of grouped amino acid composition, transition and distribution, may facilitate dengue virus
inhibition peptide prediction.
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Figure 1

The alpha helical content in peptides determine its antiviral activity [32]. The data distribution for AAC, GAAC and
CTDC

Figure 2

The amino acid composition of a protein has been widely utilized for the prediction of peptide categories [33-43]. All
descriptors under AAC, GAAC and CTDC was used for clustering

Figure 3

The amino acid composition of a protein has been widely utilized for the prediction of peptide categories [33-43]. All
descriptors under AAC, GAAC and CTDC was used for dimensionality reduction

Figure 4
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The top 10 features were selected and transformed into 3 three principal components. Further, principal component
values for each sequence were normalized. The normalized data for AAC, GAAC and CTDC

Figure 5

The normalized data was used as input for model development using Random Forest (RF) algorithm. The RF
algorithm is widely used for better understanding and prediction of antiviral peptides [44]. All model (AAC_RF,
GAAC_RF, CTDC_RF and combined_RF) metrics was given in Table 2. The ROC and PRC curve for all models

Figure 6

In this table, only the best predictive results of our classi�er are illustrated boldly. The boxplot for all models with 8
different evaluation parameters

Figure 7

On looking into the eight parameters, AAC and GAAC models were showing good prediction output. The correlation
values between models
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Figure 8

The successful predictive performance obtained in our study clearly demonstrated that the combined descriptors
(AAC (20 descriptors), GAAC (5 descriptors) and CTDC (39 descriptors)) with Random Forest was quite suitable for
predicting these peptides inhibiting dengue virus but overall AAC and GAAC with random forest is the best choice for
model development and prediction. The model was evaluated on testing data. The ROC and PRC curve was plotted


