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Abstract
This paper considers the case of generating a repulsive force that acts on a body in an inhomogeneous
gravitational �eld in the direction opposite to the force of gravitational attraction. This force differs from
the known reactive force in that shedding momentum is not required to generate it, that is, it is not
necessary, for example, to eject any mass. At the same time, a necessary condition for generating this
type of force is the presence of an inhomogeneous gravitational �eld. Being able to generate force in this
fashion is especially relevant for solving problems related to movement in empty space. In a sense, we
could dub this force "quasi antigravitational".

1. Introduction
The idea of generating a force that can be used to change the momentum of a body as it moves in empty
space has long been the subject of various fundamental and applied studies. These research results led
to development of various technical devices operating on the principle of generating a reactive force, that
is, the force that appears as a result of the body shedding some of its momentum. As a rule, a certain
mass of matter is ejected somehow, moving away from the body at a non-zero relative velocity. As a
result, the velocity of the body changes in accordance with the law of conservation of momentum.

A signi�cant disadvantage of such devices is the fact that, when moving in an empty space, generation
of a reactive force requires ejecting a certain mass, while this substance itself must be somehow stored
in advance in the device. Consequently, when, being obviously limited, the reserves of this substance run
out, the device will cease to generate a reactive force.

Some studies also consider cases of plausible technical devices operating on the principle of exploiting
electromagnetic radiation pressure. Two examples of these are the so-called VEM drive [1] and the solar
sail [2]. In the VEM drive, the source of electromagnetic radiation is a part of it, while in the solar sail, the
source of radiation is an external body. The disadvantage of such projects is that the force that can be
obtained by implementing them in practice is very small.

This paper aims to answer the following fundamental question: is it possible to generate a mechanical
repulsive force directed away from the centre of gravity in empty space without shedding momentum? In
other words, this should be neither a reactive force nor a force obtained in some way through
electromagnetic interaction with the environment. The question under consideration can be rephrased as
follows: is it possible in this case to use an external gravitational �eld to generate a repulsive force
directed away from a massive body representing the centre of attraction?

There exist studies substantiating this possibility via the properties of certain solutions to the three-body
problem (see, for example, [3]).

Theoretical investigations also show that generating additional space-time curvature via a certain
technique may in principle become a source of such a force. This is the principle behind the so-called
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WARP drives. At present, a fairly large number of works deal with similar ideas, for example, [4–14].
However, preliminary assessments of this force generation method indicate that the energy costs for
increasing the space-time curvature would be too large for this method to be feasible at the current level
of development of science and technology. This makes such projects a very distant applied research
prospect.

Another possible investigation direction is seeking the repulsive force within the framework of the general
theory of relativity. This force is commonly believed to arise as a consequence of the solutions to the
equations of the general theory of relativity [15–20].

There also exist papers that discuss the possibility of generating a repulsive force due to general relativity
postulating possible existence of negative mass (see [21–24]) or certain hypothetical properties of
vacuum [25].

It should be noted that these methods of generating a repulsive force without shedding material
momentum are in general at the initial stages of theoretical investigation. At the moment, their practical
implementation is out of the question.

The case presented in this paper provides a positive answer to the question stated above. We speci�cally
consider a method of generating a repulsive force without shedding momentum that can be readily
implemented at the current stage of technological development. The necessary condition for generating
this force turns out to be the inhomogeneity of the external gravitational �eld in which the body is
located. We consider a �eld created by a massive spherical body as an example. Such �elds are known to
exist around planets or stars.

2. Methods

2.1 Describing the motion of a small body in the
gravitational �eld of a larger body
Further reasoning requires describing the trajectory of a small body in the gravitational �eld of a massive
spherical body. This paper will use a nonrelativistic approximation to describe this type of motion. We
can con�dently state that the problem of determining the characteristics of the motion of a small body in
the gravitational �eld of a larger body is a classical one. As a rule, numerous textbooks on classical
mechanics provide example solutions describing the trajectory of a small body when moving in the
gravitational �eld of a massive body. Consequently, there exist various methods for deriving respective
motion trajectory equations. For example, a derivation can be found in [26].

Here we will consider a massive spherical body creating a centrosymmetric gravitational �eld in the
space surrounding it. This means that any other body located relatively close to the massive body is
affected by a force that is commonly called Newton’s force of gravitational attraction.
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Our further calculations will assume M to be the mass of the spherical body that creates the gravitational
�eld (we will call it the larger body), it being much greater than m, the mass of the small body in its
gravitational �eld, i.e., M ≫ m. We will consider the small body as a material point in comparison with
the larger body. This approximation makes it possible not to take into account the motion of the larger
body, but to consider only the small body moving relative to the larger one.

The type of trajectory for a small body moving relative to a larger one is determined by the magnitude of
the body velocity and its direction at a certain point in space where the motion takes place. Excluding
those cases when the small body falls on the surface of the larger body, the possible trajectories of the
small body are conic section curves: a circle, an ellipse, a parabola, a hyperbola. They are usually called
orbits.

It should also be taken into account that when a small body moves in the gravitational �eld of a larger
body, the laws of conservation of energy and angular momentum hold.

So, let r be the distance between the small body and the centre of the larger body at a point in time. Then
the magnitude of Newton’s gravitational attraction force FG between these bodies is determined by the
expression:

 

FG = G ∙
m∙ M

r2  , (1)

where the gravitational constant is G ≈ 6,67 ∙ 10 −11 m3/(kg s2).

In order to describe the trajectory of the small body, it is convenient to introduce a Cartesian coordinate
system (X, Y, Z), the origin of which (point O) is the centre of the larger body (Fig. 1). Assuming that the
motion is planar, let us restrict ourselves to the case when the velocity vector of the small body lies in the
plane (X, Y, 0). Then the trajectory of the small body will lie in the same plane. Therefore, in this case the
Z axis is not required in practice to describe the motion (Fig. 1 does not show the Z axis, but we may
assume that it is directed towards the observer, perpendicular to the �gure plane at point O). In the case
under consideration, the radius vector of the small body relative to the origin can be written in the
coordinate form:

 

→r = (x, y, 0). (2)

The length of the radius vector is the distance from the small body to the centre of the larger body:
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r = √x2 + y2. (2’)

If we introduce the angle φ between the Y axis and the radius vector of the small body (Fig. 1), then the
coordinates of the radius vector can be expressed as follows:

 

x = r ∙ sinϕ
y = r ∙ cosϕ .

(3)

The velocity vector of the body and the radius vector are linked by the equation:

 

→V =
d→r
dt .

(4)

The velocity vector for the small body can be written in the coordinate form:

 

→V = VX, VY, 0 ,. (4’)

therefore, the velocity magnitude of the small body relative to the larger body is determined by the
expression:

 

V = VX
2 + VY

2. (4’’)

We can determine the angular momentum vector of the small body relative to the centre O of the larger
body as a vector product:

{

( )

√
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→
PMO = →r × m ∙ →V

(5)

This vector 
→

PMO is perpendicular to the plane in which lie the radius vector →r  and the velocity vector 
→V

characterising the small body. Since the gravitational force 
→FG is a central force and the moment of a

central force relative to the point O is equal to zero, the angular momentum vector (5) does not change
over time. Therefore, the plane in which the trajectory of the small body lies does not change either, as it
was mentioned above.

The vector (5) can be represented in the coordinate form as follows:

→
PMO = m ∙ 0,0, x ∙ VY − y ∙ VX

Therefore, the statement that 
→

PMO = const for the small body mass m being constant is equivalent to
the equation:

 

x ∙ VY − y ∙ VX = const. (5’)

We can show that the equation of the small body motion (Newton’s second law) as affected by the force
(1):

 

m ∙ →a =
→
FG

(6)

leads to the law of conservation of mechanical energy:

 

m∙ V2

2 −
G∙ m∙ M

r = const. (7)

( )

( )
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Further calculations require introducing new variables (a polar coordinate system) (x, y) ⟼ (r, ϕ),
where r is the length of the radius vector (2’). In this case the velocity (4’’) is determined by this equation:

 

V = dr
dt

2
+ r2 ∙ dϕ

dt
2

,
(4’’)

and expression (5’) takes the form:

 

r2 ∙
dϕ
dt = const.

(5’’)

We will then introduce the following designation:

 

r2 ∙
dϕ
dt = L0.

(8)

Using the new variables, after cancelling out the small body mass m, the expression (7) will take the
following form, taking into account (8):

 

1
2

dr
dt

2
+ r2 ∙

dϕ
dt

2
−

G∙ M
r = const.

(9)

√ ( ) ( )

( )

( )

( ( ) ( ) )
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Since the distance along the desired motion trajectory depends on the angular variable r = r(ϕ), then

after substituting ρ =
1
r  the derivative 

dr
dt  is transformed as follows:

 
dr
dt = dr

dϕ ∙ dϕ
dt = − 1

ρ2
dρ
dϕ ∙ dϕ

dt . (10)

The expression (9), taking into account (8) and (10), leads to:

 

1
2 ∙

dρ
dϕ

2
∙ L0

2 + ρ2 ∙ L0
2 − G ∙ M ∙ ρ = const

(9’)

After differentiating (9’) with respect to the angular variable φ and cancelling 
dρ
dϕ , we obtain a second-

order ordinary differential equation:

 

d2ρ
dϕ2 ∙ L0

2 + ρ ∙ L0
2 = G ∙ M.

(11)

The solution to the equation (11) can be presented in general form:

 

ρ =
G∙ M
L0

2 + C ∙ cos ϕ − ϕ0 . (12)

( ( ) )

( )
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Taking into account the substitution ρ =
1
r  and the introduction of the notation p =

L0
2

G∙ M  and 

ϵ =
C ∙ L0

2

G∙ M , the equation for the small body motion trajectory follows from (12):

 

r = p
1+ϵ∙ cos ϕ −ϕ0

(13)

The parameters included in (13) usually mean the following: p is the focal parameter, ε is the orbital
eccentricity. The expression (13) is known to de�ne a second-order curve, which can be considered as a
conic section. The speci�c form taken by this curve is determined by the value of the parameter ε. In
particular, the value ε = 0 corresponds to a circular trajectory, while for 0 < ε < 1 the trajectory is elliptical.
At ε = 1 it is a parabola; for ε > 1 we have a hyperbola.

The values of the constants C and φ0 in (12) can be determined by substituting expression (13) into (8)
and (9) for speci�c values of the distance and velocity of the body. If we select φ0 = 0 in (13), then the
orbital curve will be symmetrical relative to the Y axis (Fig. 1). The distance from the small body to the
centre of the larger body will be minimal in this case, when φ = 0. Let this distance be denoted as r0. The
velocity of the small body at this point will be designated as V0.

As r0 is the minimum distance, then the extremum condition 
dr
dt = 0 must be satis�ed at φ = 0 and r = r0;

therefore, it follows from (4’’) that:

V0 = r0 ∙
dϕ
dt 0

where 
dϕ
dt 0

 is the angular velocity at φ = 0. Then the equation (8) assumes the form:

 

V0 ∙ r0 = L0. (14)

( )

( )
( )
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This expression may be interpreted as follows: at the point closest to the centre of the larger body, the

velocity vector 
→
V0 of the small body is perpendicular to the radius vector 

→
r0.

The equation (13) implies that for ε = 0 (that is, when the body moves in a circle), the velocity of the small

body is V0 =
G∙ M

r0
. To satisfy the inequality 0 < ε < 1 (meaning that the orbit is an ellipse), the

following double inequality must hold: 
G∙ M

r0
< V0 < 2

G∙ M
r0

. For ε = 1 (when the orbit is a

parabola), the velocity is V0 = 2
G∙ M

r0
. The body will move along a hyperbola, i.e., ε > 1, if 

V0 > 2
G∙ M

r0
.

2.2. Thought experiment
Consider the following thought experiment. Let the speed of the small body at the point closest to the
larger body, i.e., at the distance r0 from the centre of the larger body, be given as follows:

 

V0 = β ∙
G∙ M

r0
,

(15)

where β ≥ 1 is a constant coe�cient. Then, according to the reasoning above, this coe�cient determines
the type of the small body trajectory. For example, we may note that the trajectory is a circle for β = 1.

Taking into account (15), the expression for the focal parameter in (13) takes the form p = β2∙r0, and the
eccentricity can be derived from (13), if we take into account that φ0 was selected to be 0 and,
consequently, the following should hold true: r = r0 at φ = 0. Therefore, we arrive at the conclusion that ε = 

β2 – 1, and the expression (13) takes the form:

 

√
√ √

√
√

√
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r =
β2∙ r0

1+ β2−1 ∙ cos ( ϕ )
.

(16)

Let A be the point closest to the centre of the larger body. Then the Y axis passes through point A and the
centre of the larger body, that is, point O (Fig. 2). Suppose that at some point in time two identical small
bodies simultaneously begin to move from point A with certain initial velocities; the mass of each body is
equal to m. At the initial moment, let the velocity vectors of these bodies be perpendicular to the Y axis,
pointing in opposite directions, and let the vector lengths be the same, as given by the expression (15).
The motion trajectories for each body should be described by equations of the form (16). In what follows,
the parameters of motion related to the small body that moves to the left will be denoted by the subscript
L, while the parameters of the small body that moves to the right will be distinguished by the subscript R.

Accordingly, for the velocity vectors of both bodies at the point A, the following equation is true:

→
V0L = −

→
V0R

These small bodies, having started their movement from point A, will move along trajectories that are
symmetrical relative to the Y axis. They will travel the same distance over equal periods of time. As a
result, these two bodies will simultaneously reach certain points BR and BL that are located on their
trajectories symmetrically relative to the Y axis (Fig. 2). Taking these assumptions into account, we will
now consider the motion of one of the bodies in detail. Let us take the right-hand one, for example.

As the masses of the bodies are very small in comparison with the mass of the larger body, the force of
gravitational interaction between these two small bodies is negligible as compared to the forces of their
gravitational interaction with the larger body.

Having reached the point BR with coordinates rR, ϕ , for β > 1 the velocity vector of the right body 
→
VR

will no longer be perpendicular to the radius vector 
→
rR, and hence to the vector of the gravitational

attraction force 
→

FGBR (Fig. 3) (since in this case, the trajectory is not a circle). The expression for the
gravitational force acting on the right-hand small body at the point BR can be written in vector form in
terms of the radius vector of the small body as follows:

→
FGBR = − G ∙

m ∙ M
rR

3

→
rR

( )

( )
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This means that in order to �nd the projection of the body velocity vector 
→
VR onto the direction of the

force vector 
→

FGBR, it is su�cient to �nd the angle between the body velocity vector and the radius vector 
→
rR.

The angle θ between the radius vector 
→
rR and the velocity vector 

→
VR of the right-hand body at the point

BR can be derived using the dot product, the expression for which looks as follows in coordinate form:

 

cos(θ) =
xRVRX+yRVRY

VRrR
.

(17)

The coordinates of the right-hand body may be written in the form of the equations below stemming from
(3) and (13):

 

xR =
β2∙ r0∙ sin( ϕ )

1+ β2−1 ∙ cos ( ϕ )

yR =
β2∙ r0∙ cos ( ϕ )

1+ β2−1 ∙ cos ( ϕ )

 ,

(18)

while (4) and (18) allow us to derive the velocity vector coordinates:

 

{ ( )

( )
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VRX = β2 ∙ r0 ∙
dϕ
dt ∙

cos ( ϕ ) + β2−1 ∙ cos ( 2ϕ )

1+ β2−1 ∙ cos ( ϕ ) 2

VRY = − β2 ∙ r0 ∙
dϕ
dt ∙

sin( ϕ )

1+ β2−1 ∙ cos ( ϕ ) 2

.

(19)

Equations (2’) and (4’) enable us to �nd the values of respectively rR and VR in (17).

After substituting (18) and (19) into (17), we obtain the following expression:

 

cos(θ) =
sin( ϕ ) ∙ β2−1 ∙ cos ( 2ϕ )

1+2∙ β2−1 ∙ cos ( ϕ ) ∙ cos ( 2ϕ ) + β2−1 2∙ cos2( 2ϕ )
.

(20)

It should be noted that for β = 1, i.e., when the body moves in a circle (ε = 0), the equation (20) means that
cos(θ) = 0 for any angle φ. Consequently, in this case, the velocity vector of the body is perpendicular to
the vector of the force of gravitational attraction at each point of the trajectory, which is an obvious
statement. The function (20) of the angle φ is plotted in Fig. 4 for different values of the parameter β > 1.

Consider a small section of the orbit in the vicinity of the point A (Fig. 3), i.e., close to the angle φ = 0, for
the case when β > 1. It should be noted that it is possible to make estimates for the small value of the
angle φ ≪ 1 as follows:

 

cos(ϕ) ≈ 1 −
ϕ2

2
sin(ϕ) ≈ ϕ

.

(21)

In this case, taking into account (21), an approximate expression is obtained from the equation (20):

{ ( )
( ( ) )
( ( ) )

( )
√ ( ) ( )

{
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cos(θ) = ϕ ∙
β2−1

β2 .
(22)

Therefore, it follows from (22) that in the vicinity of the point A, i.e., when the angle φ is small, the
inequality cos (θ) > 0 must be true for β > 1, therefore θ < 90o. This means that the angle between the
velocity vector of the small body and the vector of the gravitational attraction force is greater than 90
degrees. Consequently, the component of the velocity vector of the small body that is parallel to the
gravitational attraction force vector will point in the opposite direction to the gravitational attraction force
vector in the vicinity of this point.

Suppose that at point ВR the right-hand small body bounces elastically from a certain wall, moving after
impact in the opposite direction along the same trajectory. Having reached point A, the body bounces
elastically from another wall and again moves along the same trajectory to point BR, where it bounces
back, etc. At point A, the velocity vector of the small body is perpendicular to the vector of the
gravitational attraction force. Therefore, the vector of the force acting on the wall at point A while the
small body bounces is also perpendicular to the vector of the gravitational attraction force.

However, as shown above, at point ВR this angle is no longer equal to 90 degrees. Therefore, the vector 
→

FBR representing the force acting on the wall during the elastic bounce of the small body at the current

point is no longer perpendicular to the vector of the gravitational attraction force 
→

FGBR at point ВR (Fig.

5). Consequently, the force vector 
→

FBR may be represented as a sum:

→
FBR =

→
F ⊥BR +

→
F ∥BR

in such a way that the vector 
→

F ⊥BR will be perpendicular to the vector of gravitational attraction 
→

FGBR,

while the vector 
→

F ∥BR will be parallel but directed opposite to 
→

FGBR. This statement makes it possible to

estimate the length of the projection 
→

F ∥BR:

 

F ∥BR = FBR ∙ cos(θ). (23)

( )



Page 15/27

The change introduced to the vector of the small body momentum 
→
Δp by the body bouncing from the

wall is equal to the impulse of the force (averaged over time) 
→

FBR
'
 acting on the small body upon impact

from the direction of the wall :

 

→
Δp =

→
FBR

'
∙ Δt.

(24)

According to Newton’s third law, our small body acts on the wall with a force of the same magnitude but
in the opposite direction:

 

→
FBR = −

→
FBR

'
.

(24’)

As projected onto the direction of motion during elastic impact, the change in the momentum of the small
body during elastic impact is equal to:

 

Δp = − 2mVR (25)

The law of conservation of energy (7) allows us to determine the small body velocity {V}_{R} at the
moment of impacting the wall at point BR:

 

\frac{m{{V}_{0}}^{2}}{2}-G\frac{mM}{{r}_{0}}=\frac{m{{V}_{R}}^{2}}{2}-G\frac{mM}{{r}_{B}}. (26)
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It follows from (16) that the following approximate expression is valid for the small angle φ:

 

{r}_{B}\approx \frac{{r}_{0}}{1-\left(1-\frac{1}{{{\beta }}^{2}}\right)\bullet \frac{{{\phi }}^{2}}{2}}. (27)

The equations (26) and (27) lead to:

 

{V}_{R}\approx {V}_{0}\bullet \sqrt{1-\left(1-\frac{1}{{{\beta }}^{2}}\right)\bullet \frac{{{\phi
}}^{2}}{{{\beta }}^{2}}}

(28)

or,

 

{V}_{R}\approx {V}_{0}\bullet \left(1-\frac{1}{2}\bullet \left(1-\frac{1}{{{\beta
}}^{2}}\right)\bullet \frac{{{\phi }}^{2}}{{{\beta }}^{2}}\right).

(28’)

The time interval ∆t in (24) may be estimated as the time between two successive impacts of the right-
hand small body against the wall at the point BR. The duration estimate for this time interval for a small
angle φ ≪ 1 takes the form of a double inequality:

 

\frac{2\bullet dl}{{V}_{0}}\le \varDelta t\le \frac{2\bullet dl}{{V}_{R}}, (29)

where the small magnitude of the path length from point A to point BR is determined by the approximate
expression
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dl\approx \sqrt{{\left(dr\right)}^{2}+{\left({r}_{0}\bullet {\phi }\right)}^{2}}. (30)

The change in the radius vector length dr = rB - r0 for a small angle φ ≪ 1 can be derived from (27):

 

dr\approx {r}_{0}\bullet \left(1-\frac{1}{{{\beta }}^{2}}\right)\bullet \frac{{{\phi }}^{2}}{2}. (31)

Therefore, expressions (29) and (30) let us obtain:

 

dl\approx {r}_{0}\bullet {\phi }\bullet \left(1+{\left(1-\frac{1}{{{\beta
}}^{2}}\right)}^{2}\frac{{{\phi }}^{2}}{8}\right).

(32)

Projecting the expression (24) onto the direction of motion upon impact while taking into account (24’),
(25) and (29), we obtain an estimate of the projection magnitude for the force from (24)

 

m{V}_{R}\frac{{V}_{R}}{dl}\le {F}_{BR}\le m{V}_{R}\frac{{V}_{0}}{dl}. (33)

Respectively, the inequality below follows from (33) for the average force projection value
(23): 

 

m{V}_{R}\frac{{V}_{R}}{dl}\text{c}\text{o}\text{s}\left({\theta }\right)\le {F}_{\parallel BR}\le
m{V}_{R}\frac{{V}_{0}}{dl}\text{c}\text{o}\text{s}\left({\theta }\right).

(34)

Taking into account (28) and (32), the limit of the expression (34) as φ → 0 leads to the
equation: 
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{F}_{\parallel BR}=\frac{m{{V}_{0}}^{2}}{{r}_{0}}\frac{\left({{\beta }}^{2}-1\right)}{{{\beta }}^{2}}. (35)

Since the positions of both points BR and BL tend to the position of point A as φ → 0, we may say that
both walls in the vicinity of point A will be subjected to the total average force generated by elastic
collisions of small bodies, the magnitude of whose component parallel to the gravitational attraction
force will be

{F}_{\parallel }={F}_{\parallel BL}+{F}_{\parallel BR}
that is,

 

{F}_{\parallel }=2\frac{m{{V}_{0}}^{2}}{{r}_{0}}\frac{\left({{\beta }}^{2}-1\right)}{{{\beta }}^{2}}. (36)

Since the value of expression (36) is positive for {\beta }>1, the vector of this force component points in
the opposite direction to the vector of the gravitational attraction force at point A.

It should also be noted that for φ → 0 the force vectors \overrightarrow{{F}_{\perp BR}} and
\overrightarrow{{F}_{\perp BL}} will be perpendicular to the vector of the gravitational attraction force at
point A. Since these vectors satisfy the relation

\overrightarrow{{F}_{\perp BR}}=-\overrightarrow{{F}_{\perp BL}}
then we may say that the total force that will act on both walls during impacts in the vicinity of point A in
the direction perpendicular to the vector of the gravitational attraction force is equal to zero:

\overrightarrow{{F}_{\perp }}=\overrightarrow{{F}_{\perp BR}}+\overrightarrow{{F}_{\perp
BL}}=\overrightarrow{0}
Therefore, the vector of the total force acting on the walls during elastic impacts in the vicinity of point A
turns out to be:

 

\overrightarrow{{F}_{BR}}+\overrightarrow{{F}_{BL}}=\overrightarrow{{F}_{\parallel }}. (36’)
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The direction of this vector will be opposite to the force of gravitational attraction. The magnitude of this
force is determined by expression (36).

Now we may assume that these three walls – the left-hand one (at point BL), the right-hand one (at point
BR) and the central one (at point A) – are connected to each other (Fig. 6). Small bodies move along
sections of trajectories (16) between the walls, striking them elastically. Considering the walls and bodies
as elements of a single system with a total mass of m0, since this system is located in the
inhomogeneous gravitational �eld of a massive spherical body M at a distance r0 from its centre, we �nd
that this system is subjected to a gravitational attraction force in the form (1):

 

{F}_{G0}=G\bullet \frac{{m}_{0}\bullet M}{{{r}_{0}}^{2}}, (37)

as well as to a repulsive force (36’), the vector of which lies in the direction opposite to the vector of the
gravitational attraction force \overrightarrow{{F}_{G0}} (37).

We should make the following comment. Suppose that the gravitational �eld is homogeneous: that is,
force vectors have the same directions and lengths at any point of this �eld. Let our small bodies likewise
commence moving from the starting point in directions perpendicular to the gravitational attraction force.
In this case, further movement of bodies will lead to the fact that the angles between their velocity vectors
and the vectors of the gravitational attraction force will be less than 90 degrees. Consequently, a repulsive
force cannot be created in this case.

If there is no gravitational �eld at all, then by virtue of the law of conservation of momentum, a repulsive
force cannot be created either, since the system will be closed and the forces of interaction between the
bodies in the system will be internal, and internal forces cannot change the momentum of a closed
system.

Therefore, the presence of an inhomogeneous gravitational �eld is a necessary condition for generating
the repulsive force described herein.

3. Discussion
The results of the thought experiment described above indicate that it is possible in principle to generate
a repulsive force without shedding momentum, with the force directed away from the gravitational centre.
The magnitude of this force is determined by the equation (36).

If we substitute (15) into (36), then the equation (36) can be written in the form:
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{F}_{\parallel }=\left({{\beta }}^{2}-1\right)\bullet G\frac{2\bullet mM}{{{r}_{0}}^{2}}. (38)

However, the expression:

 

{F}_{G}=G\frac{2\bullet mM}{{{r}_{0}}^{2}} (39)

determines the total force of gravitational attraction between both small bodies and the larger body.
Therefore, the expression (38) de�nes a force that is directly proportional to the force of gravitational
attraction (39) but pointing in the opposite direction. In this sense, we can say that the force (36) (or (38))
is quasi antigravitational.

We can also compare the magnitudes of the forces (36) and (37). The condition {F}_{\parallel }\ge
{F}_{G0} leads to the relation

 

{\beta }\ge \sqrt{1+\frac{{m}_{0}}{2\bullet m}}. (40)

The inequality (40) determines the range of values for the parameter β where the magnitude of the
repulsive force is greater than the force of gravitational attraction for the case when the system of mass
m0 is at a distance of r0 from the centre of attraction.

4. Conclusion
This paper is the �rst to present a case of generating a repulsive force from the gravitational attraction of
a massive body without shedding momentum.

An expression for the magnitude of this force is obtained.

It is shown that the magnitude of this force as a function of distance and body masses is identical to the
expression for the force of gravitational attraction with an additional constant.
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The paper also shows that the necessary condition for generating a repulsive force is the presence of an
inhomogeneous gravitational �eld.
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Figure 1

Describing the movement of the smaller body. The Z axis is not shown, but we may assume that it is
directed towards the observer, perpendicular to the �gure plane at point O.
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Figure 2

Motion trajectories of the left-hand (L) and right-hand (R) small bodies.
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Figure 3

See image above for �gure legend.
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Figure 4

Plots of function (20) of the angle φ for different values of the parameter β. The function is plotted along
the ordinate, the angle φ in degrees increases along the abscissa. The lower plot (dashed line)
corresponds to the value β = 1.1; then, respectively upwards, the plots represent the values β = 1.5; β = 2.0;
β = 3.0; β = 5.0; β = 20.0.

Figure 5
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Impact of the right-hand body against the wall at point BR. The wall is shown as a double stripe.

Figure 6

Forces acting on the system


