[1] A. Varki, R.D. Cummings, J.D. Esko, P. Stanley, G.W. Hart, M. Aebi, A.G. Darvill, T. Kinoshita, N.H. Packer, J.H. Prestegard, R.L. Schnaar, P.H. Seeberger (Eds.), Essentials of Glycobiology, Cold Spring Harbor Laboratory Press 2015-2017, Cold Spring Harbor (NY), ISBN: 9781621821328.
[2] P.D. Yurchenco, P.H. Atkinson, Equilibration of fucosyl glycoprotein pools in HeLa cells, Biochemistry 16(5) (1977) 944-53, doi:10.1021/bi00624a021.
[3] P.D. Yurchenco, P.H. Atkinson, Fucosyl-glycoprotein and precursor polls in HeLa cells, Biochemistry 14(14) (1975) 3107-14, doi:10.1021/bi00685a011.
[4] K. Moriwaki, E. Miyoshi, Fucosylation and gastrointestinal cancer, World journal of hepatology 2(4) (2010) 151-61, doi:10.4254/wjh.v2.i4.151.
[5] T.J. Wiese, J.A. Dunlap, M.A. Yorek, L-fucose is accumulated via a specific transport system in eukaryotic cells, The Journal of biological chemistry 269(36) (1994) 22705-11, doi:10.1016/S0021-9258(17)31703-9.
[6] I. Pastuszak, C. Ketchum, G. Hermanson, E.J. Sjoberg, R. Drake, A.D. Elbein, GDP-L-fucose pyrophosphorylase. Purification, cDNA cloning, and properties of the enzyme, The Journal of biological chemistry 273(46) (1998) 30165-74, doi:10.1074/jbc.273.46.30165.
[7] J.M. Capasso, C.B. Hirschberg, Mechanisms of glycosylation and sulfation in the Golgi apparatus: evidence for nucleotide sugar/nucleoside monophosphate and nucleotide sulfate/nucleoside monophosphate antiports in the Golgi apparatus membrane, Proceedings of the National Academy of Sciences of the United States of America 81(22) (1984) 7051-5, doi:10.1073/pnas.81.22.7051.
[8] N.J. Kuhn, A. White, The role of nucleoside diphosphatase in a uridine nucleotide cycle associated with lactose synthesis in rat mammary-gland Golgi apparatus, The Biochemical journal 168(3) (1977) 423-33, doi:10.1042/bj1680423.
[9] T. Lübke, T. Marquardt, A. Etzioni, E. Hartmann, K. von Figura, C. Körner, Complementation cloning identifies CDG-IIc, a new type of congenital disorders of glycosylation, as a GDP-fucose transporter deficiency, Nature genetics 28(1) (2001) 73-6, doi:10.1038/ng0501-73.
[10] K. Lühn, M.K. Wild, M. Eckhardt, R. Gerardy-Schahn, D. Vestweber, The gene defective in leukocyte adhesion deficiency II encodes a putative GDP-fucose transporter, Nature genetics 28(1) (2001) 69-72, doi:10.1038/ng0501-69.
[11] H.O. Ishikawa, T. Ayukawa, M. Nakayama, S. Higashi, S. Kamiyama, S. Nishihara, K. Aoki, N. Ishida, Y. Sanai, K. Matsuno, Two pathways for importing GDP-fucose into the endoplasmic reticulum lumen function redundantly in the O-fucosylation of Notch in Drosophila, The Journal of biological chemistry 285(6) (2010) 4122-4129, doi:10.1074/jbc.M109.016964.
[12] L. Lu, X. Hou, S. Shi, C. Körner, P. Stanley, Slc35c2 promotes Notch1 fucosylation and is required for optimal Notch signaling in mammalian cells, The Journal of biological chemistry 285(46) (2010) 36245-54, doi:10.1074/jbc.M110.126003.
[13] B. Ma, J.L. Simala-Grant, D.E. Taylor, Fucosylation in prokaryotes and eukaryotes, Glycobiology 16(12) (2006) 158r-184r, doi:10.1093/glycob/cwl040.
[14] Y. Gazit, A. Mory, A. Etzioni, M. Frydman, O. Scheuerman, R. Gershoni-Baruch, B.Z. Garty, Leukocyte adhesion deficiency type II: long-term follow-up and review of the literature, Journal of clinical immunology 30(2) (2010) 308-13, doi:10.1007/s10875-009-9354-0.
[15] A. Etzioni, M. Frydman, S. Pollack, I. Avidor, M.L. Phillips, J.C. Paulson, R. Gershoni-Baruch, Brief report: recurrent severe infections caused by a novel leukocyte adhesion deficiency, The New England journal of medicine 327(25) (1992) 1789-92, doi:10.1056/NEJM199212173272505.
[16] A. Dauber, A. Ercan, J. Lee, P. James, P.P. Jacobs, D.J. Ashline, S.R. Wang, T. Miller, J.N. Hirschhorn, P.A. Nigrovic, R. Sackstein, Congenital disorder of fucosylation type 2c (LADII) presenting with short stature and developmental delay with minimal adhesion defect, Human molecular genetics 23(11) (2014) 2880-7, doi:10.1093/hmg/ddu001.
[17] A. Hüllen, K. Falkenstein, C. Weigel, H. Huidekoper, N. Naumann-Bartsch, J. Spenger, R.G. Feichtinger, J. Schaefers, S. Frenz, D. Kotlarz, T. Momen, R. Khoshnevisan, K.M. Riedhammer, R. Santer, T. Herget, A. Rennings, D.J. Lefeber, J.A. Mayr, C. Thiel, S.B. Wortmann, CONGENITAL DISORDERS OF GLYCOSYLATION WITH DEFECTIVE FUCOSYLATION, Journal of inherited metabolic disease 44(6) (2021) 1441-1452, doi:10.1002/jimd.12426.
[18] Y. Helmus, J. Denecke, S. Yakubenia, P. Robinson, K. Lühn, D.L. Watson, P.J. McGrogan, D. Vestweber, T. Marquardt, M.K. Wild, Leukocyte adhesion deficiency II patients with a dual defect of the GDP-fucose transporter, Blood 107(10) (2006) 3959-66, doi:10.1182/blood-2005-08-3334.
[19] E. van de Vijver, A. Maddalena, Ö. Sanal, S.M. Holland, G. Uzel, M. Madkaikar, M. de Boer, K. van Leeuwen, M.Y. Köker, N. Parvaneh, A. Fischer, S.K. Law, N. Klein, F.I. Tezcan, E. Unal, T. Patiroglu, B.H. Belohradsky, K. Schwartz, R. Somech, T.W. Kuijpers, D. Roos, Hematologically important mutations: leukocyte adhesion deficiency (first update), Blood cells, molecules & diseases 48(1) (2012) 53-61, doi:10.1016/j.bcmd.2011.10.004.
[20] A. Hidalgo, S. Ma, A.J. Peired, L.A. Weiss, C. Cunningham-Rundles, P.S. Frenette, Insights into leukocyte adhesion deficiency type 2 from a novel mutation in the GDP-fucose transporter gene, Blood 101(5) (2003) 1705-12, doi:10.1182/blood-2002-09-2840.
[21] D. Cagdas, M. Yilmaz, N. Kandemir, I. Tezcan, A. Etzioni, Ö. Sanal, A novel mutation in leukocyte adhesion deficiency type II/CDGIIc, Journal of clinical immunology 34(8) (2014) 1009-14, doi:10.1007/s10875-014-0091-7.
[22] N. Cooper, Y.T. Li, A. Möller, N. Schulz-Weidner, U.J. Sachs, F. Wagner, H. Hackstein, S. Wienzek-Lischka, M. Grüneberg, M.K. Wild, G. Bein, T. Marquardt, Incidental diagnosis of leukocyte adhesion deficiency type II following ABO typing, Clinical immunology 221 (2020) 108599, doi:10.1016/j.clim.2020.108599.
[23] K.M. Knapp, R. Luu, M. Baerenfaenger, F. Zijlstra, H. Wessels, D. Jenkins, D.J. Lefeber, K. Neas, L.S. Bicknell, Biallelic variants in SLC35C1 as a cause of isolated short stature with intellectual disability, Journal of human genetics 65(9) (2020) 743-750, doi:10.1038/s10038-020-0764-4.
[24] A. Karsan, C.J. Cornejo, R.K. Winn, B.R. Schwartz, W. Way, N. Lannir, R. Gershoni-Baruch, A. Etzioni, H.D. Ochs, J.M. Harlan, Leukocyte Adhesion Deficiency Type II is a generalized defect of de novo GDP-fucose biosynthesis. Endothelial cell fucosylation is not required for neutrophil rolling on human nonlymphoid endothelium, The Journal of clinical investigation 101(11) (1998) 2438-45, doi: 10.1172/JCI905.
[25] T. Marquardt, K. Lühn, G. Srikrishna, H.H. Freeze, E. Harms, D. Vestweber, Correction of leukocyte adhesion deficiency type II with oral fucose, Blood 94(12) (1999) 3976-85, doi: 10.1182/blood.V94.12.3976.
[26] L. Sturla, R. Rampal, R.S. Haltiwanger, F. Fruscione, A. Etzioni, M. Tonetti, Differential terminal fucosylation of N-linked glycans versus protein O-fucosylation in leukocyte adhesion deficiency type II (CDG IIc), The Journal of biological chemistry 278(29) (2003) 26727-33, doi: 10.1074/jbc.M304068200.
[27] C.C. Hellbusch, M. Sperandio, D. Frommhold, S. Yakubenia, M.K. Wild, D. Popovici, D. Vestweber, H.J. Gröne, K. von Figura, T. Lübke, C. Körner, Golgi GDP-fucose transporter-deficient mice mimic congenital disorder of glycosylation IIc/leukocyte adhesion deficiency II, The Journal of biological chemistry 282(14) (2007) 10762-72, doi:10.1074/jbc.M700314200.
[28] ]M. Olczak, B. Szulc, Modified secreted alkaline phosphatase as an improved reporter protein for N-glycosylation analysis, PLoS ONE 16(5) (2021) e0251805, doi:10.1371/journal.pone.0251805.
[29] M. R. Kudelka, A. Antonopoulos, Y. Wang, D. M. Duong, X. Song, N. T. Seyfried, A. Dell, S. M. Haslam, R. D. Cummings, T. Ju, Cellular O-Glycome Reporter/Amplification to explore O-glycans of living cells, Nature methods 13(1) (2016) 81–86, doi:10.1038/nmeth.3675.
[30] J. Räbinä, M. Mäki, E. M. Savilahti, N. Järvinen, L. Penttilä, R. Renkonen, Analysis of nucleotide sugars from cell lysates by ion-pair solid-phase extraction and reversed-phase high-performance liquid chromatography, Glycoconjugate journal 18(10) (2001) 799–805, doi:10.1023/a:1021107602535.
[31] W. van Tol, Discovery of the sugar supply pathways for the O-mannosylation of dystroglycan. On the road for treating muscular dystrophy-dystroglycanopathy (doctoral dissertation), Radboud University Nijmegen, the Netherlands (2020), https://repository.ubn.ru.nl/handle/2066/213932.
[32] K. Moriwaki, K. Noda, T. Nakagawa, M. Asahi, H. Yoshihara, N. Taniguchi, N. Hayashi, E. Miyoshi, A high expression of GDP-fucose transporter in hepatocellular carcinoma is a key factor for increases in fucosylation, Glycobiology 17(12) (2007) 1311-1320, doi:10.1093/glycob/cwm094.
[33] P. Sosicka, B.G. Ng, L.E. Pepi, A. Shajahan, M. Wong, D.A. Scott, K. Matsumoto, Z. Xia, C.B. Lebrilla, R.S. Haltiwanger, P. Azadi, H.H. Freeze, Metabolic heritage mapping: heterogenous pools of cytoplasmic nucleotide sugars are selectively utilized by various glycosyltransferases, bioRxiv (2021) 2021.11.03.467160, doi:10.1101/2021.11.03.467160
[34] S. H. Park, I. Pastuszak, R. Drake, A. D. Elbein, Purification to apparent homogeneity and properties of pig kidney L-fucose kinase, The Journal of biological chemistry 273(10) (1998) 5685–5691, doi:10.1074/jbc.273.10.5685.
[35] S. W. Coates, T. Jr Gurney, L. W. Sommers, M. Yeh, C. B. Hirschberg, Subcellular localization of sugar nucleotide synthetases, The Journal of biological chemistry 255(19) (1980) 9225–9229, doi: 10.1016/S0021-9258(19)70550-X.
[36] V. Pareek, Z. Sha, J. He, N. S. Wingreen, S. J. Benkovic, Metabolic channeling: predictions, deductions, and evidence, Molecular cell 81(18) (2021) 3775–3785, doi:10.1016/j.molcel.2021.08.030
[37] F. X. Sullivan, R. Kumar, R. Kriz, M. Stahl, G. Y. Xu, J. Rouse, X. J. Chang, A. Boodhoo, B. Potvin, D. A. Cumming, Molecular cloning of human GDP-mannose 4,6-dehydratase and reconstitution of GDP-fucose biosynthesis in vitro, The Journal of Biological Chemistry 273(14) (1998) 8193-8202, doi:10.1074/jbc.273.14.8193.
[38] R. H. Kornfeld, V. Ginsburg, Control of synthesis of guanosine 5'-diphosphate D-mannose and guanosine 5'-diphosphate L-fucose in bacteria, Biochimica et biophysica acta 117(1) (1966) 79–87, doi:10.1016/0304-4165(66)90154-1.
[39] Y. Zhang, Y. Wang, C. Wang, C. Rautengarten, E. Duan, J. Zhu, X. Zhu, J. Lei, C. Peng, Y. Wang, X. Teng, Y. Tian, X. Liu, J. L. Heazlewood, A. Wu, J. Wan, BRITTLE PLANT1 is required for normal cell wall composition and mechanical strength in rice, Journal of integrative plant biology 63(5) (2021) 865–877, doi:10.1111/jipb.13050.
[40] D. Maszczak-Seneczko, T. Olczak, L. Wunderlich, M. Olczak, Comparative analysis of involvement of UGT1 and UGT2 splice variants of UDP-galactose transporter in glycosylation of macromolecules in MDCK and CHO cell lines, Glycoconjugate journal 28 (2011) 481–492, doi: 10.1007/s10719-011-9348-z.
[41] B. Bazan, M. Wiktor, D. Maszczak-Seneczko, T. Olczak, B. Kaczmarek, M. Olczak, Lysine at position 329 within a C-terminal dilysine motif is crucial for the ER localization of human SLC35B4, PLoS ONE, 13 (2018) e0207521, doi:10.1371/journal.pone.0207521.
[42] B. Szulc, P. Sosicka, D. Maszczak-Seneczko, E. Skurska, A. Shauchuk, T. Olczak, H. H. Freeze, M. Olczak, Biosynthesis of GlcNAc-rich N- and O-glycans in the Golgi apparatus does not require the nucleotide sugar transporter SLC35A3, The Journal of biological chemistry 295 (2020) 16445–16463, doi:10.1074/jbc.RA119.012362.
[43] S.C. Taylor, K. Nadeau, M. Abbasi, C. Lachance, M. Nguyen, J. Fenrich The Ultimate qPCR Experiment: Producing Publication Quality, Reproducible Data the First Time, Trends in biotechnology 37 (2019) 761-774, doi:10.1016/j.tibtech.2018.12.002.
[44] K. Nakajima, S. Kitazume, T. Angata, R. Fujinawa, K. Ohtsubo, E. Miyoshi, N. Taniguchi, Simultaneous determination of nucleotide sugars with ion-pair reversed-phase HPLC, Glycobiology, 20(7) (2010) 865–871, doi:10.1093/glycob/cwq044.