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Abstract
Aim: The study evaluated the effects of supplementation with three different probiotic strains B. lactis
(LACT GBTM), L. rhamnosus (RHAM GBTM) and L. reuteri (REUT GBTM) on brain-intestinal
immunomodulation in an animal model of LPS-induced inflammation.

Methods: 50 mice Balb/C were distributed into five groups: Control; lipopolysaccharide (LPS); LPS + B.
lactis (LACT GBTM); LPS + L. rhamnosus (RHAM GBTM); LPS + L. reuteri (REUT GBTM). The animals were
supplemented with their respective probiotic microorganisms daily, for 30 days, at a concentration of
1x109 CFU/animal/day. After 30 days of supplementation, animals received the inflammatory insult by
LPS (15mg/kg). Behavioral tests, oxidative stress and inflammation were performed, as well as gut and
brain histology.

Results: In the behavioral test, LPS+ B. lactis group was less anxious than the other groups. Serum
interleukin IL-1β and IL-6 levels increased in all groups that received the LPS insult and there was a
reduction in inflammation in the supplemented groups when compared to the LPS group in brain and gut.
A reduction in myeloperoxidase activity and oxidative stress in groups supplemented with probiotics.
Intestine histological analysis, damage to tissue integrity in the LPS group and preservation of integrity in
the supplemented animals. In the brain, infiltrates of perivascular inflammatory cells can be seen in the
LPS group.

Conclusion: The three probiotic studies showed efficient immunomodulating activity and ensured
integrity of the intestinal barrier function, even after the severe insult by LPS. These results show the
important role of probiotics in the gut-brain axis.

Introduction
The supplementation of probiotics has attracted the population's interest in health promotion and disease
prevention. Probiotics are live microorganisms that provide health benefits to the host [1]. The main
advantages of probiotic ingestion reported in systematic reviews are related to several different
conditions. Those include prevention and treatment of necrotizing enterocolitis [2]; decreased incidence
of diarrhea associated with antibiotic use [3] ; decreased duration of infectious and inflammatory
diseases [4]; regulation of intestinal transit [5]; relief of irritable bowel syndrome symptoms [6] ; decrease
in the incidence of upper respiratory tract diseases [7], reduction in allergy symptoms, serum cholesterol
concentration, stmulation and modulation of the immune system and modulation of gene expression [8].

Probiotics have been widely studied and characterized as modulators of humoral, cellular, and
nonspecific immunity [9, 10], such as decreased proinflammatory cytokines [11]. In addition, several
studies have reported that probiotics also produce antioxidants and reduce lipid peroxidation [12].

On the other hand, the gut microbiota has the function of producing metabolites that can have positive
effects on the host, including anti-inflammatory and antioxidant activity, regulating the intestinal barrier
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function, in addition to participating in the development and maintenance of the immune and sensory
functions of the gut [13]. The literature reports a series of evidence that the intestinal microbiota
communicates with the central nervous system (CNS) through the gut-brain axis, possibly through neural,
endocrine and immune pathways [14], where interactions change gut-brain are associated with intestinal
inflammation, chronic abdominal pain syndromes and eating disorders [15], and their modulation is
associated with stress response and behavior [16].

Thus, the present study evaluated the effects of supplementation of three different probiotic
microorganisms B. lactis, L. rhamnosus, and L. reuteri on intestinal health, anti-inflammatory activity,
antioxidant, and anxiety in an animal model of LPS-induced inflammation.

Materials And Methods

Animals
The experimental procedures involving animals were performed in accordance with the Brazilian law of
animal welfare and with the approval of our institutional ethics committee (protocol number: 22/2021.
Adult male mice (Balb/C), 60 days old, weighing between 20-30g were used. The mice were kept in light-
dark cycles of ± 12 hours (7:00 am to 7:00 pm) at a temperature between 18 and 22 ° C, relative humidity
between 55 and 65%. The animals had free access to water and food.

Probiotic strains
The probiotic microorganisms used in this study were supplied by the company Gabbia Biotechnology: B.
lactis (LACT GBTM), L. rhamnosus (RHAM GBTM) and L. reuteri (REUT GBTM).

Experimental design
The animals were divided into five groups, each group consisting of 10 animals:

1. Group Control
2. Group LPS
3. Group LPS + B. lactis (LACT GBTM)
4. Group LPS + L. rhamnosus (RHAM GBTM)
5. Group LPS + L. reuteri (REUT GBTM)

After the acclimation period, treatment started. Treated groups were supplemented, via gavage, once a
day with their respective probiotics for 30 days, at a concentration of 1x109 CFU/animal/day.

After 30 days of supplementation, the animals received an inflammatory insult by LPS at a dose of
15mg/kg. On the 32nd day, a behavioral test was performed, and then animals were euthanized to collect
serum, whole brain, and intestine samples for subsequent analyses.

Behavior test- Elevated plus maze
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The elevated plus-maze test was performed to assess anxiety-like behavior [17]. The equipment consists
of two open arms (50x10 cm) and two closed arms (50 x 10 x 40 cm) arranged perpendicularly forming a
central platform (5 x 5 cm). The experiments were conducted in a dark room with a red light positioned 50
cm high from the central platform. The animals were placed on the central platform and had 5 minutes to
explore the device. The parameters evaluated were: length of stay in the closed and open arms and the
total number of entries into both.

Cytokines levels
The concentrations of IL-1β, IL-6 and IL-10 were determined in serum, brain, and intestine using the
enzyme immunoassay technique (ELISA) in a microplate reader using a commercial kit (R&D System -
USA). Results were expressed as pg/ml.

Myeloperoxidase Activity
Myeloperoxidase activity is indicative of tissue neutrophil infiltration. Tissue was homogenized (50
mg/ml) in 0.5% hexadecyltrimethylammonium bromide and centrifuged. The suspension was sonicated
and an aliquot of the supernatant was mixed with 1.6 mM TMB and 1 mM H2O2 solution. MPO activity

was measured spectrophotometrically at 650 nm at 37oC. Results were expressed as mU/mg protein [18].

Nitrite/nitrate
The nitrite/nitrate concentration is indicative of the amount of nitric oxide (NO) present in the samples.
Concentration was measured by the Griess reaction, reading at absorbance of 550 nm using a microplate
reader. Results were expressed as nmol/mg protein [19].

Lipid Oxidative Damage (TBARS)
TBARS is a technique that assesses lipid damage through the reaction to thiobarbituric acid. Briefly, the
samples were mixed with 1 ml of 10% trichloroacetic acid for deproteinization and then incubated with 1
ml of 0.67% TBA. Afterwards, samples were heated in a boiling water bath for 30 min. Equivalents to
malondialdehyde (MDA) were determined by absorbance at 532 nm, using 1,1,3,3-tetramethoxypropane
as external standard. Results were expressed as MDA equivalents (nmol/mg protein) [20].

Histology for evaluation of gut inflammation
Immediately after death, samples of the brain and terminal ileum were removed. The samples were
washed with saline solution and immediately immersed in 4% paraformaldehyde and remained for 48
hours; after this period the tissues were removed, placed in different concentrations of 70%, 80% and 90%
ethanol and embedded in paraffin. Longitudinal sections (5 µm) of colon and brain tissue were cut and
stained with hematoxylin and eosin (HE). Digital micrographs were taken with an inverted Nikon
microscope. Inflammatory alterations in the tissue were evaluated independently by a researcher and a
pathologist blinded to information on treatment. Semiquantitative scoring was performed according to
Erben et al. (2014) [21].

Statistical analysis
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Variables are presented as mean ± standard deviation and compared using one-way analysis of variance
(ANOVA) followed by Tukey's test when F is significant. All tests were performed using SPSS version 21
and/or GraphPad Prism 7.0. In all analyses, a p-value < 0.05 was adopted as a level for statistical
significance.

Results
Elevated plus-maze test was performed in order to assess anxiety-like behavior in animals. As expected
LPS induced an anxiety-like behaviour (Figure 1). The animals supplemented with B. lactis had more
entries in the open arms when compared to the LPS group (Figure 1).

In order to assess the profile of inflammation and the potential immunomodulation of probiotic
microorganisms, the quantification of cytokines in serum, brain and gut was performed. The results are
shown in figure 2. In serum, interleukin IL-1β and IL-6 levels increased in the LPS group, and were not
affected by any probiotic. There were no statistically significant differences in serum IL-10 levels. In the
brain the levels of interleukin IL-1β were lower in the groups supplemented with L. reuteri and B. lactis,
after an inflammatory insult. IL-6 interleukin levels were reduced in all supplemented groups. In the gut,
the levels of interleukin IL-1β and IL-6 were reduced in all groups supplemented after inflammation. In the
LPS group there is a reduction in IL-10 levels, and the L. reuteri group IL-10 levels were similar to the
control group.

As a more general marker of tissue inflammation, myeloperoxidase activity was measured in gut and
brain (Figure 3). There was a statistically significant reduction in myeloperoxidase activity in the groups
supplemented with probiotics only in the brain.

Oxidative stress was also measured in gut and brain using nitrite/nitrate concentration and TBARS
technique. In both, there was a statistically significant reduction in nitrite/nitrate concentration in all
supplemented groups. In the gut, there was a statistically significant reduction in lipid peroxidation in all
supplemented groups. In the brain, this reduction was verified only in the group supplemented with L.
Reuteri. (Figure 4).

Finally, histological analysis of the gut and brain were performed (Figure 5). Semiquantitative scoring
was performed in the gut. The effect of LPS on tissue integrity was verified as well as inflammatory
infiltrate. In supplemented animals, the villi remain intact, as well as the absence of inflammatory
infiltrate. In addition, the B. lactis group had a higher number of goblet cells per villi, indicating greater
efficiency in mucus production (p<0.005). In the brain tissue there is an increase in the number of
perivascular inflammatory cell infiltrates in the LPS group (only qualitative analysis). This condition was
not verified in the groups supplemented with probiotic microorganisms.

Discussion
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Our study shows the bidirectional relationship between the intestine-brain axis and the role of different
probiotic strains in the presence of inflammatory insult, improving anxiety-like behavior, reducing
inflammation, oxidative stress and tissue damage.

Bidirectional communication between brain and gut has long been recognized. There is a growing body
of evidence documenting the ability of prebiotics, probiotics, synbiotics and other diets to normalize
dysbiosis associated with psychological disorders [22, 23]. Numerous works focus on the impact of the
microbiota on behaviors such as anxiety or depression [24, 25, 26]. Anxiety and depressive episodes are
associated with dysregulation of the HPA axis [27]. Evidence from experiments carried out in animals
with altered intestinal microbiota, whether GF mice or conventionally animals treated with antibiotics
and/or probiotics or infected, all indicate that rodent behavioral responses are impacted when the
bacterial status of the gut is manipulated [28, 29, 30].

Probiotics play a key role in the balance of the gut flora, restoring the composition of the microbiota [31].
Our results indicate immunomodulatory activity by probiotics, since they were able to reduce the
inflammatory response through the reduction of different proinflammatory players (See Graphical
abstract). LPS produced by Gram negatives bacteria enters in the circulation through intestinal
permeability, activating the immune response and TLR4/NF-kB signaling pathway [32].

This result contributes to the gut-brain axis relationship. Some studies suggest that an improvement in
the symptoms associated to psychiatric and neurological disorders, as well as the oxidative stress,
inflammatory biomarkers and metabolic state in general, through the probiotic effects on CNS
bidirectional circuits are mediated by the gut-microbiota-brain axis [33, 34]. Different probiotics have been
investigated for psychiatric and neurological disorders; however, Bifidobacterium and Lactobacillus have
been shown to be more effective [35]. Literature evidence shows that increased inflammation is
associated with anxiety-like behavior [28–30, 36–38]. In general, the mechanisms underlying the effects
of the microbiota on the CNS are multifactorial (immunologic, endocrine and neural), but these effects
are believed to principally occur via the generation of bacterial metabolites [39]. The mechanisms of
action of probiotics involve colonization of intestinal microbial; competitive exclusion of pathogens and
bacteriocin production; modulation of enzymatic activities and production of volatile fatty acids. In
addition, probiotics increase mucin production and cell adhesion in the gut [40]. Thus, probiotic
metabolites are able to interact with the brain-gut axis and play a role in behavior [40].

The decrease in oxidative stress in animals supplemented with probiotics indicates immunomodulatory
and antioxidant activity provided by probiotic supplementation. Thus, probiotics provide health benefits,
mainly by maintaining intestinal integrity. This assertion can be supported by the results obtained in this
study, the reduction of inflammation and oxidative stress, the preservation of intestinal villi, the better
behavioral response as well as the reduction of brain inflammation confirm the interaction between the
gut-brain bidirectional axis, demonstrating how the maintenance of intestinal integrity provided by
probiotic microorganisms prevented inflammation in brain tissue, ensuring greater health and
homeostasis.
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Conclusion
The probiotic microorganisms B. lactis (LACT GBTM), L. rhamnosus (RHAM GBTM) and L. reuteri (REUT
GBTM) showed efficient immunomodulatory activity, verified through the anti-inflammatory and
antioxidant activity. In addition, probiotic supplementation was able to guarantee the integrity and the
intestinal barrier function, even after the severe insult by LPS, where the modulation of the inflammatory
process was verified, avoiding systemic inflammation. Finally, supplementation with the probiotic B.
lactis (LACT GBTM) had an effect on the behavior of the animals, being able to reduce anxiety related to
the bidirectional interaction of the intestine-brain axis.
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Figure 1

Behavioral elevated plus maze test in mice supplemented with probiotics that received an inflammatory
insult by LPS. (A) Number of entries in open arms; (B) Time in open arms [seconds]. mean±SD. ANOVA
test. * different of control group; # difference of LPS group. n=10. p<0.05.
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Figure 2

Cytokines levels IL-1, IL-6 and IL-10 in serum (A, B, C), brain (D, E, F) and gut (G, H, I) in mice supplemented
with probiotics that received an inflammatory insult by LPS. mean±SD. ANOVA test. * different of control
group; # difference of LPS group. n=6-8. p<0.05.

Figure 3

Myeloperoxidase activity in gut (A) and brain (B) in mice supplemented with probiotics that received an
inflammatory insult by LPS. mean±SD. ANOVA test. * different of control group; # difference of LPS
group. n=6-8. p<0.05.
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Figure 4

Nitrite/nitrate concentrations (A, B) and lipid peroxidation (C, B) in gut and brain of mice supplemented
with probiotics that received an inflammatory insult by LPS.mean±SD. ANOVA test. * different of control
group; # difference of LPS group. n=6-8. p<0.05.
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Figure 5

Representative histological images of gut and brain from mice supplemented with probiotics that
received an inflammatory insult by LPS. (A) Gut architecture score; (B) Inflammatory cell infiltrade score
in gut.
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