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 22 

Accurate microbial identification and abundance estimation are crucial for metagenomics 23 

analysis. Various methods for classifying metagenomic data and estimating taxonomic profiles, 24 

broadly referred to as metagenomic profilers, have been developed. Yet, benchmarking 25 

metagenomic profilers remains challenging because some tools are designed to report relative 26 

sequence abundance while others report relative taxonomic abundance. Here, we show how 27 

misleading conclusions can be drawn by neglecting this distinction between relative abundance 28 

types when benchmarking metagenomic profilers. Moreover, we show compelling evidence that 29 

interchanging sequence abundance and taxonomic abundance will influence both per-sample 30 

summary statistics and cross-sample comparisons. We suggest that the microbiome research 31 

community should pay attention to potentially misleading biological conclusions arising from this 32 

issue when benchmarking metagenomic profilers, by carefully considering the type of abundance 33 

data that was analyzed and interpreted, and clearly stating the strategy used for metagenomic 34 

profiling.  35 
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Identifying microbial species present in complex biological and environmental samples is one 36 

of the major challenges in microbiology1,2. By directly interrogating the community 37 

composition in an unbiased and culture-independent manner, metagenomic sequencing is 38 

transforming microbiology by enabling more rapid species detection and discovery2. This has 39 

a wide range of applications from surveying the bacteria in an environmental soil sample to 40 

determining the etiology of an infection from a patient’s blood or stool sample. Such 41 

applications drive the development of various computational methods to analyze genomic data 42 

generated by metagenomic sequencing to identify all of the species contained in the samples 43 

and estimate their relative abundances2,3.Those computational methods are broadly referred to 44 

as metagenomic profilers.  45 

Following a previous benchmarking study3, metagenomic profilers can be categorized 46 

based on their reference database type (Fig.1a): (1) DNA-to-DNA methods (e.g., Kraken4,5, 47 

Bracken6 and PathSeq7), which compare sequence reads with comprehensive metagenome 48 

databases; (2) DNA-to-Protein methods (e.g., Kaiju8 and Diamond9), which compare sequence 49 

reads with genomic databases of protein-coding sequences; or (3) DNA-to-Marker methods 50 

(e.g., MetaPhlAn10,11 and mOTU12,13), which only include specific gene families in their 51 

reference databases. Note that those metagenomic profilers all rely on reference databases. 52 

They should not be confused with de novo assembly-based methods that do not use any 53 

reference databases14,15. Those reference-free binning methods cannot taxonomically classify 54 

sequences14, 15 and are not directly comparable with the metagenomic profilers evaluated here. 55 

Many studies have benchmarked metagenomic profilers3,16-19, finding that the 56 

performance of different profilers varies considerably even on the same benchmark datasets. 57 

For example, in a recent benchmarking study3, the performance of 20 metagenomic profilers 58 

were evaluated based on two key metrics: the area under the precision-recall curve (AUPRC) 59 

for organism presence/absence, and the L2 distance between the observed and true relative 60 

abundance profiles. It was found that DNA-to-DNA methods were among the best-scoring 61 

methods, with typical average L2 distance < 0.1, while DNA-to-Marker methods had much 62 

higher L2 distance, indicating less favorable performance. 63 

Here we show that this apparently high performance variation largely arises because 64 

the methods report one of two fundamentally different types of relative abundances: sequence 65 

abundance or taxonomic abundance. For example, the raw output of DNA-to-DNA methods 66 

is the relative abundance of a given taxon calculated as the proportion of sequences assigned 67 

to it out of the total number of sequences, i.e., the sequence abundance. By contrast, DNA-to-68 
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Marker methods directly output the relative abundance of each microbial taxon calculated as 69 

the number of genomes of that taxon relative to the total number of genomes detected, i.e., the 70 

taxonomic abundance. For DNA-to-Protein methods, the output type is the relative sequence 71 

abundance of protein-coding sequences8,9. 72 

Unfortunately, the distinction between the two types of relative abundances has rarely 73 

been carefully considered in previous benchmarking studies. In this paper, we show that the 74 

two types of relative abundances are not related by any simple algebraic relation. Moreover, 75 

interchanging them leads to very misleading performance assessments of metagenomic 76 

profilers. These results imply that many benchmarking results presented in the literature require 77 

re-examination. Beyond examining the previous benchmarking results, we further point out the 78 

serious issues in microbiome data analysis based on sequence abundances, which are typically 79 

produced by DNA-to-DNA methods and have been applied in thousands of published 80 

microbiome studies (e.g., Kraken: 1,283 citations; Kraken2: 95 citations; Bracken: 139 81 

citations by November 2020, according to their official websites). We find that microbiome 82 

data analysis based on sequence abundance will underestimate (or overestimate) the relative 83 

abundances of microbes with smaller (or larger) genome sizes. This will fundamentally affect 84 

differential abundance analyses and other analytical methods that rely on accurate counts in 85 

their input contingency matrix. Without careful consideration, these issues could impede cross-86 

study comparisons of differentially abundant taxa identified from different methods. We think 87 

this point needs more attention from the entire microbiome research community. 88 

 89 

Results 90 

Illustration of the caveat in benchmarking metagenomic profilers. To illustrate the caveat 91 

of confusing sequence abundance and taxonomic abundance in benchmarking metagenomic 92 

profilers, we simulated a simple microbial community with only two genomes, where genome 93 

A (Bacillus pseudofirmus, GCF_000005825.2, size: 4.2MB) is twice the size of genome B 94 

(Lactobacillus salivarius, GCF_000008925.1, size: 2.1MB), corresponding to Fig.1b. In this 95 

simulated community, the sequence abundance ratio of genome A: genome B = 1:1, while the 96 

taxonomic abundance ratio of genome A: genome B = 1:2. DNA-to-DNA profilers Bracken, 97 

Kraken2 and PathSeq reported that this sample contains 49.9% (or 50.1% in Kraken2 and 50.6% 98 

in PathSeq) Bacillus pseudofirmus and 50.1% (or 49.9% in Kraken2 and 49.4% in PathSeq) 99 

Lactobacillus salivarius, respectively (Fig.1c). DNA-to-Markers profilers MetaPhlAn2 and 100 

mOTUs2 reported the relative abundance of Bacillus pseudofirmus as 33.8% (or 33.6%) and 101 
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Lactobacillus salivarius as 66.2% (or 66.4%, Fig.1c), respectively. This simple example 102 

clearly illustrates how the sequence abundance profile produced by DNA-to-DNA profilers 103 

does not represent the true taxonomic abundance of a microbiome sample.  104 

Note that for this simple synthetic community, DNA-to-Protein profilers Kaiju and 105 

Diamond reported the relative abundance of Bacillus pseudofirmus as 22.8% (or 7.0%) and 106 

Lactobacillus salivarius as 19.9% (or 8.0%), respectively (Fig.1c). Besides the false positives 107 

(57.3% in Kaiju and 85.0% in Diamond), the ratio between the relative abundances of the two 108 

species is roughly 1:1, indicating the methods are indeed reporting sequence abundance. 109 

However, these classifiers reported a large number of false positive species identified due to 110 

the conservation of protein sequence20. Going forward, we will focus on benchmarking the 111 

DNA-to-DNA and DNA-to-Markers methods.  112 

 113 

No simple algebraic relation between the two types of relative abundances. We emphasize 114 

that mathematically there is no simple algebraic relation between the two types of relative 115 

abundances, even in the ideal case (when all genomes/taxa are known). Denote 𝑅𝑖  as the 116 

number of metagenomic reads assigned to the genome of a microbial taxon 𝑖 with genome size 117 𝐿𝑖 and ploidy 𝑃𝑖 (i.e., the number of copies of the genome in one cell, however most methods 118 

did not consider the ploidy into the abundance estimation as the information is still lacking for 119 

many genomes). The number of microbial cells classified as taxon 𝑖 is then given by 𝐶𝑖 =120 𝑅𝑖/(𝐿𝑖𝑃𝑖). Let 𝑛 be the number of identified taxa in the sample. Then the sequence abundance 121 

of taxon 𝑖 is given by 122 𝑆𝑖 = 𝑅𝑖∑ 𝑅𝑖𝑛𝑖=1 ,                                                                         [1] 124 

and its taxonomic abundance is given by 123 𝑇𝑖 = 𝐶𝑖∑ 𝐶𝑖𝑛𝑖=1 = 𝑅𝑖/(𝐿𝑖𝑃𝑖)∑ 𝑅𝑖/(𝐿𝑖𝑃𝑖)𝑛𝑖=1 .                                                      [2] 125 

Eqs.[1-2] imply that as long as 𝐿𝑖 and 𝑃𝑖 vary across different taxa in a community, 𝑆𝑖 and 𝑇𝑖 126 

are not connected by any simple algebraic relation.  127 

The variation of genome size 𝐿𝑖  of different taxa can be very large. Indeed, in the 128 

recently updated microbial genome database (NCBI RefSeq, 2020 Nov 6th), the sizes of fully 129 

sequenced and assembled microbial genomes vary considerably (Fig.2a). For example, just 130 

within the bacteria kingdom, the genome size variation can be more than 100-fold, e.g., 131 

Candidatus Nasuia deltocephalinicola (GCF_000442605.1) with 112,091 bp vs. Sorangium 132 
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cellulosum (GCF_000418325.1) with 14,782,125 bp. Therefore, microbial genome sizes could 133 

vary radically within a single microbiome sample, including when viruses (which tend to have 134 

shorter genomes, Fig. 2a) are analyzed together with bacteria in shotgun metagenomics. 135 

Regrading ploidy 𝑃𝑖, although prokaryotes are usually thought to contain one copy of a 136 

circular chromosome, previous studies have demonstrated that many species of archaea and 137 

bacteria are polyploid and can contain more than ten copies of their chromosome21. In fact, 138 

extreme polyploidy has been observed in a large bacterium Epulopiscium, which contains tens 139 

of thousands of copies of its genome22. 140 

The variations in 𝐿𝑖  and 𝑃𝑖  drive the theoretical distinction between sequence 141 

abundance and taxonomic abundance. This point can be seen clearly from simulated microbial 142 

communities based on the NCBI RefSeq database. As shown in Fig.2b, where we investigate 143 

a complex microbial community consisting of all different kingdoms of microbes (fungi, 144 

bacteria and virus), 𝑆𝑖 tends to overestimate the abundances of species with larger genome sizes 145 

(e.g., fungi) and underestimate the abundances of species with smaller genome sizes (e.g., 146 

viruses). This is true even if we investigate a community consisting of microbes from the same 147 

kingdom (Fig.2c). Note that here, for the sake of simplicity, in our simulations we did not 148 

consider the variation of ploidy, but only focused on the variation of genome sizes. Hence, the 149 

demonstrated difference between sequence abundance and taxonomic abundance is 150 

conservative. 151 

In reality, unknown genomes/taxa will further complicate the relation between 𝑆𝑖 and 152 𝑇𝑖, and affect metagenomic profiler benchmarking on real data (because different profilers 153 

handle unknown genomes/taxa differently). Moreover, instead of converting 𝑆𝑖 to 𝑇𝑖 through 154 𝐿𝑖 and 𝑃𝑖 correction, DNA-to-Marker methods directly calculate 𝑇𝑖 as the ratio of sequence 155 

coverage of single-copy marker genes of each taxon to that of all taxa. This also affects the 156 

metagenomic profiler benchmarking. 157 

 158 

Benchmarking results depend on the abundance type. To further illustrate the problem of 159 

mixing sequence abundance and taxonomic abundance in benchmarking metagenomic 160 

profilers, we simulated metagenomic sequencing reads for 25 communities from distinct 161 

habitats (e.g., gut, oral, skin, vagina and building, five communities for each habitat, see 162 

Methods). To avoid database biases of different metagenomic profilers, the selection of 163 

genomes for simulated data was based on the intersection between MetaPhlAn2, mOTUs2 164 

reference database, and Kraken2 reference database (which was also used by Bracken). Then 165 
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we calculated the dissimilarity or distance between the ground truth abundance profiles and the 166 

estimated ones from different profilers, based on the following five measures: Bray-Curtis 167 

dissimilarity (BC), L1 distance, L2 distance, root Jensen-Shannon divergence (rJSD), and 168 

robust Aitchison distance (rAD)23 (Fig.3a,b). Note that the Aitchison distance (based on 169 

centered log-ratio transform) is a compositionally aware distance measure23. However, it 170 

suffers from the inflated zero counts in microbiome data because log-transform of zero counts 171 

is undefined unless arbitrary pseudocounts are added to each taxon. Here the calculation of 172 

rAD does not involve any pseudocounts, and it naturally avoids the issue of dealing with sparse 173 

zero counts using the classical Aitchison distance23. 174 

 We found that for BC, L1, L2 and rJSD, if the sequence abundance is used as the ground 175 

truth, Bracken and Kraken2 outperform MetaPhlAn2 and mOTUs2; while if the taxonomic 176 

abundance is used as the ground truth, MetaPhlAn2 and mOTUs2 outperform Bracken and 177 

Kraken2. Interestingly, with rAD as the evaluation metric, regardless of if sequence or 178 

taxonomic abundance profiles were taken as the ground truth, mOTUs2 and MetaPhlan2 179 

always outperform Bracken and Kraken. This could be due to the compositionally aware 180 

distance measure rAD weighing low-abundance taxa more than the other measures. To test this 181 

idea, we sought to rule out the bias introduced by false positives and calculated rAD based on 182 

taxonomic profilers where false positives have been removed (Methods). This is denoted as 183 

modified rAD in Fig.3. We found that, with the modified rAD as the evaluation metric, the 184 

benchmarking result is the same as that of using BC, L1, L2 and rJSD, or their modified 185 

versions (Fig.S1). We always found the same pattern: if the sequence abundance is used as the 186 

ground truth, Bracken and Kraken2 outperform MetaPhlAn2 and mOTUs2; while if the 187 

taxonomic abundance is used as the ground truth, MetaPhlAn2 and mOTUs2 outperform 188 

Bracken and Kraken2. This result strongly indicates that the benchmarking result of 189 

metagenomic profilers depends on the selected abundance type. 190 

 We emphasize that the above contradicting performance evaluations due to different 191 

abundance types cannot be detected by using the AUPRC metric, because the calculation of 192 

the Precision-Recall Curve only concerns the difference of presence/absence patterns in the 193 

ground truth and predicted abundance profiles. By definition, the ground truth sequence 194 

abundance and taxonomic abundance profiles of our simulated microbiome samples share 195 

exactly the same presence/absence pattern.      196 

 Moreover, we emphasize that even though the five distance/dissimilarity measures (BC, 197 

L1, L2, rJSD, and rAD) all showed the similar results in the performance evaluation (after the 198 
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removal of false positives), L2 was not designed for compositional data analysis. To investigate 199 

whether the discriminating power of these distance measures for the two sequence types 200 

persists with varied microbial diversity, we simulated a set of abundance tables (for both 201 

taxonomic abundance and sequence abundance) with different species counts ranging from 10 202 

to 500 (see Methods). We then calculated the distance or dissimilarity between the sequence 203 

abundance and taxonomic abundance profiles (Fig.4). We found that with an increasing 204 

number of species, L2 keeps decreasing while L1, BC, rJSD and rAD can still distinguish the 205 

two abundance types. This result suggests that L2 distance cannot discriminate the two types 206 

of relative abundances in microbiome samples of high species richness. This might be due to 207 

the fact that L2 distance is not appropriate for compositional data analysis.  208 

 209 

Impact of abundance type on the alpha diversity calculation. Interchanging sequence 210 

abundance and taxonomic abundance strongly influences per-sample summary statistics. To 211 

demonstrate this issue, we simulated 500 abundance profiles representing microbiota from 212 

distinct habitats (gut, oral, skin, vagina, and building, 100 profiles for each, see Methods) with 213 

known sequence abundance and taxonomic abundance profiles. We found that the Shannon 214 

and Simpson indices calculated from taxonomic abundances are significantly higher than those 215 

calculated from sequence abundances (p<0.001, Wilcoxon rank-sum test) regardless of the 216 

habitat (Fig.5). Moreover, when ranking the samples according to their alpha diversity 217 

measures calculated from sequence abundance and from taxonomic abundance, the orderings  218 

are not fully concordant with each other (Spearman correlation of the rank vectors is 0.929±219 

0.020 for Shannon index and 0.835±0.042 for Simpson index). These results suggest that alpha 220 

diversity calculations and comparisons can be strongly affected by the type of relative 221 

abundance used.  222 

 223 

Impact of abundance types on the beta diversity and ordination analyses. To check if 224 

mixing sequence abundance and taxonomic abundance will also influence between-sample 225 

attributes such as beta diversity and ordination analyses, we reanalyzed the 500 samples 226 

generated for Fig.5. In order to quantify the influence on beta diversity introduced by 227 

abundance type, Mantel test24, 25 was employed to compare the beta-diversity (in terms of BC, 228 

rJSD, L1, L2 and rAD) calculated from the taxonomic abundance and sequence abundance 229 

profiles of those samples (see Methods). Interestingly, regardless of the species richness in the 230 

habitats, the abundance type has some influence on the cross-sample comparisons based on the 231 
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BC, rJSD and L1 measures (Spearman coefficient r=0.944±0.006, 0.947±0.009, 0.944±0.006, 232 

respectively; p-value =1e-4 for all), but affects the L2 and rAD measures more strongly (r 233 

=0.844±0.026, 0.519±0.137, respectively; p-value=1e-4 for both). Moreover, we found that 234 

species richness of samples associates with the correlation coefficient in the rAD calculation. 235 

These results demonstrate the inconsistent relative relationships between samples that are 236 

introduced by different abundance types in beta diversity calculation. 237 

 We then performed ordination analyses using four different methods: Non-metric 238 

Multidimensional Scaling (NMDS)26, Principal Coordinates Analysis (PCoA)27, t-distributed 239 

stochastic neighbor embedding (t-SNE)28, and Uniform Manifold Approximation and 240 

Projection (UMAP)29. We found that, regardless of the distance/dissimilarity measures used 241 

(e.g. rJSD, BC and rAD), taxonomic abundance and sequence abundance profiles are 242 

drastically different in all the four ordination results (Fig.6, Figs.S2-S3). Procrustes analysis 243 

was then employed to analyze the congruence of two-dimensional shapes produced from 244 

superimposition of ordination analyses from two datasets30, 31. Indeed, Procrustes analysis 245 

revealed very low similarity between the ordination results calculated from sequence and 246 

taxonomic abundance (Fig.6, Figs.S2-S3, Monte Carlo p-value<0.05). These results indicate 247 

that both beta diversity (especially for L2 and rAD) and ordination analyses can be heavily 248 

affected by the relative abundance type used. 249 

 250 

Discussion 251 

Taken together, these analyses emphasize the importance of differentiating between relative 252 

sequence abundance and relative taxonomic abundance in metagenomic profiling. Ignoring this 253 

distinction can potentially underestimate the relative abundance of organisms with small 254 

genome sizes. Sequence abundances are typically produced by DNA-to-DNA or DNA-to-255 

Protein methods, which rely on microbial genomes or genes as the reference database, report 256 

relative sequence abundance, i.e. the fraction of sequence reads assigned to each entity in the 257 

database. By contrast, DNA-to-Marker methods output relative taxonomic abundance 258 

representing the fraction of each detected taxon. 259 

 Our results demonstrate that misleading performance assessment of metagenomic 260 

profilers and spurious alpha and beta diversity patterns can arise from interchanging sequence 261 

abundance with taxonomic abundance. For alpha diversity, Shannon index and Simpson index 262 

are not simply higher based on taxonomic abundance than that based on sequence abundance, 263 

the relative ranking of alpha diversity is not consisting in the two abundance types either. 264 
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Dramatic changes in the relative position between samples are also shown in the ordination 265 

analysis. Therefore, interchanging abundance types could have a deleterious effect on the 266 

interpretation of alpha and beta diversity analyses and meta-analyses. 267 

 The distinction between the two types of relative abundances was known to the field of 268 

microbiome research (at least to the developers of various metagenomic profilers), and has 269 

been conceptually considered in some benchmark studies (e.g., CAMI19). However, the 270 

consequences of ignoring this distinction for benchmarking metagenomic classifiers and per-271 

sample summary statistics have not been quantitatively studied or clearly illustrated so far. In 272 

particular, the vast majority of users of those metagenomic profilers should be clearly aware of 273 

the distinction between sequence abundance and taxonomic abundance, and of the 274 

consequences of ignoring this distinction in selecting metagenomics tools, data interpretation, 275 

and cross-study comparison of differentially abundant taxa identified by different tools.   276 

 In summary, we suggest that the microbiome research community should pay more 277 

attention to potentially misleading biological conclusions arising from this issue by carefully 278 

considering which type of abundance data was analyzed and interpreted, and, going forward, 279 

the strategy used for taxonomy assignment should be clearly represented. We also suggest that, 280 

in future development or evaluation of metagenomic profilers, both types of relative abundance 281 

should be strictly distinguished, and both should be reported. This would substantially improve 282 

the comparison of abundance estimations of metagenomic profilers and enhance the 283 

reproducibility and biological interpretation of microbiome studies. 284 

  285 
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Methods 286 

Simulation of microbiome profiles. In the simulation of microbiome profiles based on 287 

different species counts (from 10 to 500), the abundance was created randomly from a log-288 

normal distribution using “rlnorm” function in R language with parameters: meanlog = 0 and 289 

sdlog = 1, and 10 repeats were simulated for each species count. In the simulation of 290 

microbiome profiles for alpha diversity calculation, 100 profiles were simulated for each 291 

habitat, and species counts in different habitats were set up as: 10-50 (vaginal), 50-100 (skin), 292 

100-150 (gut), 150-200 (oral), 200-300 (building). The representative species in each specific 293 

habitat were selected based on the set of microbial species identified in the HMP32 and by Hsu 294 

et al.33. 295 

 296 

Simulation of sequencing reads. Firstly, the 25 microbiome profiles (five for each habitat) 297 

were simulated using the above method. Then the simulation of sequencing data is illustrated 298 

as the process in Fig.1a: Given a specified species composition (taxonomic abundance), their 299 

sequence abundance can be inferred accordingly (taxonomic abundance equals to sequence 300 

abundance divide by their genome length) and “Wgsim” (https://github.com/lh3/wgsim) was 301 

then used (with default parameters) to simulate the sequences. The selection of genomes for 302 

simulated data was based on the intersection between MetaPhlAn2 and mOTUs2 reference 303 

database and Bracken’s database to avoid database biases. 304 

Currently, there are many more DNA-to-DNA profilers (e.g., Bracken and Kraken2) 305 

than DNA-to-Marker profilers (e.g., MetaPhlAn2 and mOTU2). In this paper we focused on 306 

two DNA-to-DNA profilers for the following reasons. First, as representative DNA-to-DNA 307 

methods, Bracken and Kraken/Kraken2 demonstrated the best performance in previous 308 

benchmarking studies4, 6, 34, and have been cited in more than one thousand microbiome studies. 309 

Second, mOTU2 and MetaPhlAn2 do not support custom reference databases, and the 310 

reference database is a critical factor affecting profiler performance. As such we decided to use 311 

the intersection of organisms in mOTU2, MetaPhlaAn2, and Kraken2 reference databases as 312 

the source for our simulation data. Introducing more DNA-to-DNA profilers could further 313 

reduce the reference database size of the simulated data and affect the diversity of genome sizes 314 

(Fig.S4). 315 

 316 

Alpha and beta diversity calculation. Alpha diversity calculation e.g. Shannon and Simpson 317 

indices were performed in R language by the “Vegan 2.5-6” package. As for the beta diversity, 318 
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we employed "Vegan 2.5-6" for distance/dissimilarity calculation e.g. L1 (“Manhattan” in 319 

vegdist function), L2 (“Euclidean”) and BC (“Bray”), while rJSD and rAD were calculated by 320 

self-programmed script (see code availability). In the ordination analyses, R packages “ade4 321 

1.7-15”, “Rtsne 0.15”, “ape 5.4-1” and “umap 0.2.6.0” were used to conduct the NMDS, t-SNE, 322 

PCoA and UMAP analyses separately. Since the iterative algorithm of NMDS, t-SNE and 323 

UMAP find different solutions  depending  on  the  starting  point  of  the calculation (which is 324 

a randomly chosen configuration) we performed 101 repeats of NMDS, t-SNE, UMAP and 325 

their Procrustes test, the median result (sorting by the Mote-Caro test) was selected for 326 

presentation of similarity and p-value in Fig.6, Fig.S2 and Fig.S3. The ordination analyses 327 

based on the ground truth of the sequence abundance and taxonomic abundance for the 500 328 

profiles (from five habitats) were conducted separately before Procrustes analysis. 329 

 330 

Robust Aitchison distance calculation. We applied DEICODE 331 

(https://github.com/biocore/DEICODE) to calculate the robust Aitchison distance (rAD) to 332 

benchmark the performance of metagenomics profilers. DEICODE represents a form of 333 

Aitchison Distance that is robust to high levels of sparsity. It preprocesses the compositional 334 

data using the centered log-ratio (CLR) transform only on the non-zero values of the data 335 

(hence no pseudo counts are used). Then it performs dimensionality reduction through robust 336 

PCA based on the non-zero values of the data. The Euclidean distance of the robust CLR-337 

transformed abundance profiles (i.e., rAD) was finally employed to evaluate the performance 338 

of metagenomic profilers. To avoid the impact of false positives on the benchmarking results, 339 

we further filtered out false positives in all output taxonomic profiles (Kraken2: 340 

29.26%±12.13%; Bracken: 36.91%±12.11%; mOTUs2: 11.47%±4.62%; MPA2: 341 

11.29%±4.19%) and compared the performance of different profilers using rAD calculated 342 

from the true positives only. This is termed as the modified rAD in Fig.3. For other evaluation 343 

measures, the same procedure was performed and presented in Fig.S1. 344 

 345 

Mantel Test. Mantel test was used as a correlation test to determine the correlation between 346 

two beta diversity (BC, rJSD, L1, L2 and rAD) matrices based on sequence abundance and 347 

taxonomic abundance. In order to calculate the correlation, the matrix values of both matrices 348 

are ‘unfolded’ into long column vectors, which are then used to determine correlation. 349 

Permutations (n=9999) of one matrix are used to determine significance. Whether distances 350 

between samples in one matrix are correlated with the distances between samples in the other 351 
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matrix is revealed by the p-value. 352 

 353 

Procrustes analysis. 354 

Procrustes analysis (by R package “ade4 1.7-15”) typically takes as input two coordinate 355 

matrices with matched sample points, and transforms the second coordinate set by rotating, 356 

scaling, and translating it to maximize the similarity between corresponding sample points in 357 

the two shapes. It allows us to determine whether we would come to same conclusions on the 358 

beta diversity, regardless of which distance/dissimilarity measure was used to compare the 359 

samples. To assess the significance level of observed similarity between two matrices, 360 

empirical p-values are calculated using a Monte Carlo simulation. Basically, sample labels are 361 

shuffled in one of the coordinate matrices, and then the similarity between them is re-computed 362 

for 9999 times. Here, similarity is calculated as the sum of the squared residual deviations 363 

between sample points for each measurement. The proportion of similarity values that are equal 364 

to or lower than the observed similarity value is then the Monte Carlo or empirical p-value. 365 

 366 

Data availability 367 

All the simulated datasets can be downloaded here: 368 

https://figshare.com/projects/Challenges_in_Benchmarking_Metagenomic_Profilers/79916. 369 

 370 

Code availability 371 

R scripts used in this paper is available at https://github.com/shihuang047/re-benchmarking. 372 
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Figures 462 

Figure 1. Comparison of profiling results. a, Illustration of the reference databases and the default 463 

output abundance type for DNA-to-DNA, DNA-to-Protein and DNA-to-Marker profilers on a mixture 464 

of two species A (1 cell) and B (2 cells). b, A simulated microbial community with only two genomes: 465 

Bacillus pseudofirmus (genome size 4.2MB) and Lactobacillus salivarius (genome size 2.1MB). We 466 

merged one copy of Bacillus pseudofirmus genome (genome A) with two copies of Lactobacillus 467 

salivarius genome (genome B) sequences into one metagenome file. Then we sheared the merged 468 

metagenomic sequences into 150bp to simulate a typical metagenomic dataset. c, Profiling results 469 

(default output) of different profilers for the simulated microbial community shown in a. The bar plots 470 

show the estimated relative abundance of the two microbial members A and B using different 471 

metagenomics profilers. 472 

 473 

Figure 2. Correlation between sequence abundance and taxonomic abundance in synthetic 474 

profiles based on different kingdoms. a, Genome size distribution of microorganisms calculated from 475 

the microbial genome database (NCBI RefSeq 2020 Nov 6th) that includes 171,927 bacteria, 293 fungi, 476 

945 archaea, and 9,362 viruses. b, The scatter plot shows the correlation between taxonomic abundance 477 

(x axis) and sequence abundance (y axis) of 600 randomly selected species in a simulated profile which 478 

includes bacteria (species number=200), fungi (species number=200) and virus (species number=200). 479 

c, Each scatter plot shows the correlation between taxonomic abundance (x axis) and sequence 480 

abundance (y axis) of 200 randomly selected species in three simulated profiles which represent 481 

different kingdoms e.g. bacteria, fungi, and virus.  482 

 483 

Figure 3. Differential benchmarking results of four representative metagenomics profilers using 484 

two types of relative abundance as ground truth: a, sequence abundance and b, taxonomic 485 

abundance. The boxplots indicate the dissimilarities based on L1, L2, root Jensen-Shannon divergence 486 

(rJSD), Bray-Curtis (BC), and robust Aitchison distance (rAD) between the ground-truth profiles and 487 

the profiles predicted by different metagenomics profilers (Bracken, Kraken2, mOTUs2, and 488 

MetaPhlAn2) at the species level.  For each metagenomic profiler, we performed the dissimilarity 489 

calculations based on 25 simulated microbial communities from five representative environmental 490 

habitats (gut, oral, skin, vagina and building) separately. Note that for each profiler based on any 491 

evaluation metric, its performance variation across different synthetic communities is due to 492 

microbiome complexity difference (e.g. species composition and richness). The asterisks in the boxplots 493 

refer to the statistical significance: “*” refers to p-value <0.05, “**” refers to <0.01, “***” refers to < 494 

0.001. 495 

 496 

Figure 4. Dissimilarity between sequence abundance and taxonomic abundance with varied 497 
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species number measured by different distance measures. For each species number, we simulated 498 

10 repeats of profiles. The distance/dissimilarity was then measured by different measures: rAD (red), 499 

L1 (blue), L2 (purple), Bray-Curtis (yellow) and rJSD (green). rAD between these types of abundance 500 

profiles positively correlated with the species richness when < 200 microbial species presented in a 501 

community, yet saturated after the number of species reaching 200. L1, BC and rJSD can also reveal 502 

the difference between the two abundance types yet they were not affected by the species-level richness. 503 

L2 distance between the two abundance types dramatically dropped with the increase in the species-504 

level richness. In the complex community with the number of species over 200, L2 distance metric 505 

almost lost the discriminatory power of these two abundance profiles. 506 

 507 

Figure 5. Alpha diversity based on sequence abundance and taxonomic abundance. Alpha 508 

diversity (Shannon index and Simpson index) based on ground truth of simulated data from different 509 

habitats revealed the influence of abundance types. The index within sample between two abundance 510 

type were connected to illustrate the change trend of the indices, the asterisks representing significantly 511 

differences are based on paired Wilcoxon test, “***” refers to P < 0.001. 512 

 513 

Figure 6. Ordination analyses of simulated profiles based on rJSD. Scatter plots of NMDS, PCoA, 514 

t-SNE and UMAP illustrate the dissimilarities between the sequence abundance (red dots) and 515 

taxonomic abundance (blue dots), which are the ground truth of the simulated 100 gut profiles. Root 516 

Jensen-Shannon divergence (rJSD) was used to for the ordination analyses. The plots of the ordination 517 

analyses based on sequence abundance and taxonomic abundance were adjusted to overlap with each 518 

other first, then the similarity was calculated by the Monte-Carlo test. The two abundance types from 519 

the same profile were connected using grey lines to show the change of its position. 520 
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