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Abstract

Use of machine learning for automated annotation of heart structures from echocardiographic videos is
an active research area, but understanding of comparative, generalizable performance among models is
lacking. This study aimed to 1) assess the generalizability of five state-of-the-art machine learning-based
echocardiography segmentation models within a large clinical dataset, and 2) test the hypothesis that a
quality control (QC) method based on segmentation uncertainty can further improve segmentation
results. Five models were applied to 47,431 echocardiography studies that were independent from any
training samples. Chamber volume and mass from model segmentations were compared to clinically-
reported values. The median absolute errors (MAE) in left ventricular (LV) volumes and ejection fraction
exhibited by all five models were comparable to reported inter-observer errors (IOE). MAE for left atrial
volume and LV mass were similarly favorable to respective IOE for models trained for those tasks. A
single model consistently exhibited the lowest MAE in all five clinically-reported measures. We leveraged
the 10-fold cross-validation training scheme of this best-performing model to quantify segmentation
uncertainty for potential application as QC. We observed that filtering segmentations with high
uncertainty improved segmentation results, leading to decreased volume/mass estimation errors. The
addition of contour-convexity filters further improved QC efficiency. In conclusion, five previously
published echocardiography segmentation models generalized to a large, independent clinical dataset—
segmenting one or multiple cardiac structures with overall accuracy comparable to manual analyses—
with variable performance. Convexity-reinforced uncertainty QC efficiently improved segmentation
performance and may further facilitate the translation of such models.

Introduction

Structural segmentation is an important step for interpreting 2D echocardiography, which is highly time-
consuming and subject to significant inter- and intra-observer variability [1]-[6]. To overcome these
limitations, several computer-aided methodologies, such as active shape models [7]-[10], level-sets [9],
[10], and deep learning (DL)-based algorithms [11]-[14], have been developed to automatically segment
cardiac structures in echocardiography images, with models based on DL particularly gaining increasing
attention in recent years [15].

To date, most state-of-the-art DL models focus on segmentation of the left ventricular (LV) endocardium
[12], [15]-[18], with only a few segmenting other cardiac structures such as the LV epicardium or the left
atrium (LA), which could provide additional information for diagnosing and treating heart disease [19]. In
2018, Zhang et al. developed the first model that segments multiple chambers [20]. In 2019, Leclerc et al.
published the CAMUS dataset for which LV endo- and epicardium, and LA endocardium were manually
segmented [21]. This dataset greatly facilitated the development and improvement of multi-structural
echocardiography segmentation models [19], [22]-[26], such as those trained with adversarial [19] or
motion-segmentation co-learning strategy [25], [26]. The generalizability of these models to external,
independent datasets was only partially tested on either the small CAMUS dataset (450 patients) [19] or
the single-view EchoNet-Dynamic dataset with only LV endocardial contours [25]. Thus, the performance
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of these multi-structural segmentation models within a large, independent, clinically-acquired
echocardiography dataset remains unknown. Moreover, none of these models has been tested with
automated quality control (QC) methods.

QC, as an important consideration for translating these Al segmentation models into potential clinical
use, is mostly achieved by estimating aleatoric uncertainty which is described by the noise inherent in
observations [27]-[29]. Unlike epistemic uncertainty which can be eliminated by training on big data or
with data augmentation, aleatoric uncertainty can be formalized by a distribution over model outputs
[27]. Common uncertainty modeling approaches require multiple segmentation predictions for a single
input either through test-time augmentation [30] or by feeding into multiple models generated during
training [31], [32]. To estimate the uncertainties, the differences between final/averaged segmentation
and individual predictions are assessed at the pixel orimage level [28], [29]. Previous studies showed that
removing uncertain segmentations improved LV segmentation scores [28]. In addition to uncertainty,
convexity has been used as a shape prior in image segmentation to improve model regularization and
performance [33]. Its use as a quality score for segmentation, however, has not been tested yet.

Therefore, the main objective of the present study was to compare five state-of-the-art echocardiography
segmentation models on a large (>47k studies), independent clinical echocardiography dataset
comprising both apical two (a2c) and apical four (a4c) chamber views. Models were compared by their
accuracy to assess any of five standard clinical measures: LV end-diastolic volume (EDV), LV end-systolic
volume (ESV), LV ejection fraction (EF), LV wall mass (LVM), and maximal LA volume (LAV). Using the
most generalizable segmentation model, we then tested a new method for measuring segmentation
aleatoric uncertainty, i.e., using cross-validation (CV) model averaging, and evaluated the use of
segmentation uncertainty combined with convexity as a QC. By doing so, the present study provides
detailed evaluations for selection of segmentation models and paves the way for the development of an
echocardiographic analysis pipeline that can be used in production with automatic QC.

Data And Methods
Datasets

The Institutional Review Board at Geisinger approved this retrospective study with a waiver of consent, in
conjunction with institutional patient privacy policies. We randomly extracted 88,322 studies from the
Geisinger Xcelera database (Philips Medical Systems) in the Digital Imaging and Communications in
Medicine (DICOM) format which were collected between 1998 and 2020. Among the transthoracic
echocardiography (TTE) videos with DICOM view labels, we identified 50,593 studies (37,704 unique
patients) having both a2c and a4c videos longer than one heartbeat (online Fig. 1).

We extracted EDV, ESV, LVM, and LAV measures from the Xcelera database. While EDV, ESV, and LAV were
computed using the bi-plane method of disks (MOD-bp) at Geisinger clinic, LVM was calculated using M-
mode linear cube method. All these clinical values were estimated from a single or multiple heartbeat(s)
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selected by cardiologists based on image quality. We also extracted physician-reported EF
measurements, which were approximate values or ranges derived either qualitatively or through a 2D- or
3D-volume technique [34] and were not significantly different from MOD-bp EF derived from 2D
echocardiograms. After excluding the studies without pixel scale information or clinical volume/mass
measurements, we collected 47,431 studies from 35,826 unique patients containing 80,550 a2c and
85,975 a4c videos for segmentation and evaluation (online Fig. 1). The data characteristics are
summarized in Table 1. Disease prevalence was based on either custom phenotypes [35]-[37] or models
developed by the Electronic Medical Records and Genomics (eMERGE) Network [36], [38].

We also collected two publicly available 2D echocardiography datasets with manual segmentations,
CAMUS [21] and EchoNet-Dynamic [16]. CAMUS contained 900 a2c and 900 a4c images at ED and ES
from 450 unique patients [21]. EchoNet-Dynamic contained 10,025 a4c videos from 10,025 unique
patients [16].

Segmentation

We deployed and evaluated five state-of-the-art segmentation models, including Zhang et al., Ouyang et
al., Arafati et al., and Stough et al. 2D and 3D models (online Table S1), as follows:

A. Preprocessing

For all five models, after masking out the non-cone pixels, we reshaped the video frame dimensions with
preserved aspect ratio using cubic interpolation to the target sizes and normalized/standardized pixel
intensity per the model requirements (online Table S1). Since the Stough et al. 3D model required ED-ES
clips, we identified the ED and ES frames based on the areas of LV segmentation produced by the Stough
et al. 2D model using a peak-finding algorithm with a distance of 85% of cardiac cycle duration [16]. After
cutting the whole videos into ED-ES clips, we converted the length of each ED-ES clip to 10 frames using
trilinear interpolation. Although this preprocessing may be slightly different from the protocols described
in the original codes/manuscripts, pilot studies did not detect any significant difference in their
performance on Geisinger data.

B. Deployment

We fed preprocessed videos/clips into candidate models and obtained structural segmentations by
identifying the maximum Softmax score output by each model. Since Stough et al. proposed to use the
accumulative output from ten CV models which showed improved performance on CAMUS test data [24],
[25], we accumulated ten sets of Softmax probabilities and identified the maximum score to produce a
final prediction for both 2D and 3D models. To postprocess the segmentations generated by each model,
we kept the largest region and filled any holes smaller than 128 pixels for each segmented structure using
connected component analysis with scikit-image [21].

C. Evaluation
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We estimated volume and mass from predicted segmentations using Simpsons modified MOD [24], [39]
and computed the errors when compared to clinically reported measures. Within each study, we reported
the median volume/mass estimation from all qualifying segmentation results (aggregating across
multiple beats and videos). Specifically, after identifying ED and ES frames (see section Segmentation A)
[16], we used LV endocardial segmentations from a single a4c view (MOD-sp4 method) or from a2c and
a4c views (MOD-bp method) at ED and ES to estimate LV EDV, ESV, and EF. LAV was calculated similarly
[4]. To estimate LVM, we computed the MOD-bp volume of the LV wall at ED as the difference between
the epicardial and endocardial volumes and multiplied the value by myocardial density (1.05 g/ml) [6].

Segmentation QC

Adapted from state-of-the-art methods [29], we computed two image-level uncertainty measures using the
ten sets of outputs from the ten 2D Stough et al. models:

segmentation deviation Seg_dev = Mean(1 — DICE{S,5;}i=1.10)

segmentation variance Seg_CoV = Coefficient of Variance(DICE{S,S;}i=1_10)

S,i€{1..10}

where were predicted segmentation samples obtained by identifying the maximum

Softmax score output by each model for each pixel, and S was the mean predicted segmentation

obtained by averaging the Softmax scores from ten models and then taking the maximum value. DICE
prcg = 25N

was computed using the following equation [40]: 15il+15] Segmentations with uncertainty

larger than a threshold were excluded from downstream volume/mass estimation; this QC strategy was

denoted as uncertainty-based QC.

We used 80% of CAMUS data to define the uncertainty threshold. To increase the incidence of bad
segmentations, we augmented images 20 times by randomly rotating the image with the transducer as a
pivot point, adding Gaussian noise, and applying intensity windowing [24]. This led 1,439 training
images. We considered the predicted segmentation to be poor when the ground truth DICE (i.e., DICE
between prediction and ground truth segmentation) <0.85 [29]. Pareto front curve, also called the tradeoff
curve, which is usually used for optimizing bi-objective problems, was generated by plotting the
percentage of poor segmentations remained after QC against the percentage of segmentations dropped
by QC [29]. The ideal uncertainty threshold should remove the least number of samples (objective one)
while dropping the largest number of poor segmentations (objective two).

We also computed convexity of the segmentation contour using a boundary-based method [41].
Per;(R)

i
Specifically, the convexity score was calculated as Per1(S)" where Per, (R) was perimeter of the
minimal rectangle R surrounding the segmentation contour whose edges were parallel to the x and y

Pery(S)

axes, and was the sum of projections of the edges of segmentation contour Sonto the x and y
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axes [41]. As such, the convexity score ranged from (0, 1]; values approaching 1 represent oval or circular
shape with smooth boundaries [41]. For LV wall segmentation, the convexity score was defined as the
minimal value of LV endo- and epicardial convexity.

Convexity filters were added to reinforce the uncertainty-based QC by screening out segmentations that
met any of the following criteria: 1) convexity <0.6 (shapes with multiple fragments, substantial
indentations or protrusions according to the convexity rankings by Zunic and Rosin [41]); 2) Seg_dev
>0.15 (equivalent to mean DICE <0.85); or 3) Seg_dev > a threshold (i.e., 0.039 for LV endocardium, 0.057
for LV wall, and 0.055 for LA endocardium as learned from the Pareto front curves in Fig. 3) and
convexity <0.96 (around the 10th percentile observed for independent Geisinger and EchoNet-Dynamic
data). This method was denoted as convexity-reinforced uncertainty QC.

We tested segmentation QC with the learned cutoffs on the CAMUS test set, EchoNet-Dynamic data, and
Geisinger segmented studies. For the former two datasets, we compared changes in ground truth DICE
before and after QC; since Geisinger data do not have ground truth segmentation, we compared changes
in volume/mass estimation errors before and after QC.

Results
Segmentation

All five tested models showed median absolute errors (MAE) comparable with reported inter-observer
errors (IOE) in segmenting LV endocardium [2]; however, only the Stough et al. 2D and 3D models and the
Ouyang et al. model consistently produced errors lower than IOE for EDV, ESV, EF (Fig. 1). Among the
three models that were able to segment the LV epicardium and estimate LVM, only the 2D and 3D models
developed by Stough et al. were associated with MAE that were below the reported I0E [6], with the 2D
model outperforming the 3D model (Fig. 1). As for LAV, the MAE associated with three of the four models
that had the capability of segmenting LA endocardium (i.e., models developed by Stough et al. and
Zhang et al.) were within one SD of the reported IOE [5] (Fig. 1). The Stough et al. 2D model exhibited the
lowest LAV error (Fig. 1). Note that the IOE used in this study were the minimal relative errors that were
estimated in previous studies using the same Simpsons MOD-bp method as we did in our study (Table 2)

[2], [5], [6].

As shown in Bland-Altman density plots (Fig. 2), the Stough et al. 2D model exhibited consistently good
performance in segmenting LV wall and LA endocardium with zero mean bias in LVM and LAV
estimation. While EDV and ESV were underestimated especially at large volumes, the resultant LV EF
prediction was associated with zero mean bias. Overall, for all the five clinical measures, the bias values
clustered around zero.

Segmentation QC
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Pareto front curves show that the two uncertainty scores, i.e., Seg_dev and Seg_CoV, were able to
preferentially identify poor segmentations (Fig. 3). Seg_dev, however, exhibited higher efficiency with
steeper slopes, especially for LV endocardium segmentation. For demonstration purposes, we selected
the threshold closest in Euclidean distance to the origin point (0,0) for Seg_dev of each structure, i.e.,
0.039 for LV endocardium (LV), 0.057 for LV wall (Myo), and 0.055 for LA endocardium (LA) (Fig. 3).

By removing segmentations with Seg_dev > cutoffs selected above, the mean ground truth DICE was
improved for all three segmented structures (pre-QC vs post-QC: LV 0.945 vs 0.951, Myo 0.894 vs 0.903,
LA 0.931 vs 0.940), as evaluated on augmented CAMUS test images (Fig. 4A). Notably, most of the poor
segmentations with ground truth DICE <0.85 were removed by QC with Seg_dev. Specifically, QC removed
98.6%, 72.7%, and 84.3% of the poor segmentations, respectively, for LV endocardium, Myo, and LA
endocardium (data not shown). In terms of identifying good segmentations (ground truth DICE =0.85)
(Table 3), this uncertainty-based QC showed excellent precision on CAMUS test set with scores higher
than 0.90 or approaching 1.0. This method removed 15%, 32%, and 19% segmentations with ground truth
DICE =0.85 for LV endocardium, Myo, and LA endocardium, respectively, leading to slightly lower
sensitivity scores (Table 3). The F1 scores were around 0.90 for LV and LA endocardium and approached
0.80 for Myo (Table 3).

Using the same LV Seg_dev cutoff, similar improvement in mean ground truth DICE with fewer poor
segmentations was observed for LV endocardium in the independent EchoNet-Dynamic dataset (Fig. 4B).
The mean ground truth DICE increased from 0.893 (pre-QC) to 0.909 (QC with Seg_dev) after removing
68% of poor segmentations (data not shown). QC performance metrics for identifying good
segmentations were slightly lower compared to those observed for CAMUS test set (Table 3). We
observed some disassociation between segmentation ground truth DICE and uncertainty measures, i.e.,
some segmentations with DICE <0.85 exhibited low uncertainty measures (Fig. 5C and 5D) while some
segmentations with higher DICE exhibited high uncertainty values (Fig. 5A and 5B), especially for those
with part of myocardium outside the image field. In both instances, segmentation convexity scores
provided additional, independent insight (Fig. 5). Indeed, the addition of convexity to Seg_dev-based QC
greatly increased the sensitivity score while slightly compromising the precision score, increasing the F1
score to 0.92 from 0.86 (Table 3). The percentage of good segmentations removed by QC dropped from
20-3% (Table 3). With convexity, Seg_dev-based QC only removed 20% of poor segmentations (data not
shown).

We assessed the changes in absolute errors in volume and mass estimation before and after QC in
Geisinger data using both Seg_dev and convexity-reinforced Seg_dev (Tables 4 and 5). With Seg_dev
alone, the mean absolute errors for the reported clinical measures decreased by 3—15%, while the mean
absolute errors of the removed studies ranged from 17-34%. However, in each case, a large proportion of
studies (14-71%) were removed based on the specified QC thresholds. We again observed that many
segmentations with significant uncertainty had high convexity scores (Fig. 6). Thus, we again observed
that the use of QC with convexity-reinforced Seg_dev removed significantly less data compared to QC
with Seg_dev alone (<10%; Table 5). Although the overall decreases in absolute errors observed after QC
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with convexity-reinforced Seg_dev were lower (Table 4), the errors in the studies removed by this QC were
much larger (Table 5). With both QC strategies, LVM estimation exhibited the largest loss of studies which
was followed by EF estimation (Table 5).

Discussion

Overall, five published echocardiography segmentation models tested in the present study generalized
well to a large external clinically-acquired dataset of 2D echocardiograms on most segmentation tasks,
leading to volume and/or mass estimations with accuracy comparable to manual analyses [2], [4]-[6].
This clinically-acquired dataset involved a variety of cardiovascular disease conditions with a wide span
of EF values. The comparable errors in LV EDV, ESV, and EF exhibited by the five models suggest a good
adaptation to patients with different LV conditions. The striping pattern observed for EF Bland-Altman
density plot was likely due to the tendency for the physician-reported EF to take discrete values (e.g., 60%)
or ranges (e.g., 60—65% for which we used the mean value 62.5%) rather than naturally comprising a
continuous representation, as the segmentation result does. Although mostly within the reported I0E
range (i.e., 11 = 12%) [5], the LAV errors were higher than the mean IOE for all of the four multi-structural
segmentation models. This sub-optimal LA segmentation, as compared to LV segmentation, could be
partially attributable to the high boundary-to-area ratio of LA. Another contributing factor could be the
fact that LA was usually associated with more distortion/noise/motion, especially at the bottom region,
since it was farther from the transducer. Moreover, for videos without focusing on LA, part of LA might be
out of image.

The generalizable performance exhibited by four of these models (i.e., Stough et al., Ouyang et al., and
Arafati et al. models) could be partially attributable to the fact that they were trained either on a very large
dataset or with data augmentation [16], [19], [24], [25]. As for the Zhang et al. model, although it was
trained with some data augmentation [20], the relatively small original training data likely restricted its
generalizability, leading to modest performance as observed in the present study as well as on the
CAMUS dataset [19].

Besides training data, model structure and training strategy also likely contributed to the different
performance exhibited by the five models. While the Ouyang et al. model, which exhibited superior
accuracy in segmenting the LV blood pool, leveraged atrous convolutions [16], Stough et al. employed CV
model averaging with a simple U-net structure [24], [25]. In fact, models developed by Stough et al.,
especially the 2D frame-level model, stood out as superior in almost all segmentation tasks, suggesting
CV model averaging as a robust method to generalize the segmentation models. Stough et al. also used
appearance and shape co-learning strategies when training the 3D segmentation model [25]; the
additional objective to enforce temporal coherency between ED and ES phases, however, may
compromise the segmentation performance at individual ED and ES frames [25]. Moreover, the Stough et
al. 3D model required ED-ES clips, which were generated based on frame-level segmentations; any errors
at frame-level segmentation could propagate during 3D segmentation. All these factors could explain the
sub-optimal accuracy exhibited by the 3D model, as compared to the Stough et al. 2D model. Similarly,

Page 9/23



the balance between two objectives during adversarial training may compromise the segmentation task
of the Arafati et al. model [19], contributing to its sub-optimal performance on this large external clinical
dataset.

Additionally, the varied segmentation performance could partially arise from the training labels, i.e., the
manual segmentations generated by different cardiologists. For example, compared to the precise LV and
LA endocardial manual segmentations used to train the Arafati et al. model [19], the manual
segmentations of the CAMUS and EchoNet-Dynamic datasets were conservative, especially at the apex
and along the free wall of the LV [16], [21]. As a result, models trained on these two datasets, i.e., the
Stough et al. 2D and 3D models and the Ouyang et al. model, tended to generate conservative
segmentations, especially when the LV was enlarged with part of the myocardium outside the images,
leading to underestimated LV volumes at ED and ES. However, the majority of segmentations generated,
especially by the Stough et al. 2D model, clustered around zero bias for all five volume/mass estimations.
These results, taken together, support the Stough et al. 2D model as the most generalizable segmentation
model with great versatility, which could be leveraged for a production deployment in a clinical setting.

QC was achieved in this study by leveraging the 10-fold CV models trained by Stough et al. [24].
Segmentation uncertainty was easily obtained as a by-product when generating the final segmentation
through accumulating the outputs of ten CV models. Our Seg_dev-based QC method efficiently removed
the majority of poor segmentations for all three segmented structures, leading to slight increases in the
mean ground truth DICE. It was not surprising to detect such minor increases in DICE score, particularly
because the segmentation models already had superior performance before QC with less frequent failure
(i.e., fewer segmentations with ground truth DICE <0.85). Moreover, the performance of our Seg_dev-
based QC method on improving LV segmentation quality was comparable to the state-of-the-art results as
evaluated on CAMUS and EchoNet-Dynamic datasets [28]. Like the other uncertainty methods [28], this
method failed to flag some bad segmentations when all ten models performed consistently poorly.
Moreover, although some final segmentations accumulated over ten models looked acceptable, they were
dropped due to high uncertainty arising from the presence of low-contrast or invisible surrounding tissue
in the images. This problem was more evident for LV wall segmentation. Significantly, the addition of
convexity to Seg_dev-based QC greatly saved those segmentations with good convex shape and added
more confidence in filtering out bad segmentations. In fact, the superior precision and sensitivity scores
for picking up good segmentations from CAMUS and EchoNet-Dynamic datasets support our QC method,
especially the convexity-reinforced uncertainty strategy, as an effective approach once appropriate
cutoffs were set. This was further evidenced by the removal of large errors and the decreased absolute
errors in downstream volume/mass estimation as shown in Geisinger data. However, it should be noted
that there will always be a tradeoff between segmentation quality and number of studies excluded when
defining a cutoff, and this cutoff may need to be adjusted depending on the deployment scenario of
interest. The decision on QC cutoffs will be the prior step for the deployment of the Stough et al. 2D
model with QC in the clinical setting.
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One limitation related to our study was the lack of ground truth segmentation for the large Geisinger data.
This restricted our evaluation to the estimation of volume and mass which was downstream of
segmentation. The fact that the errors in volume/mass estimation were within human IOE lent sufficient
support for the use of our model-generated segmentations to derive key clinical measures. Another
limitation was the exclusion of a second external evaluation dataset which should be independent of any
of the five models. However, in our pilot studies, we evaluated the performance of all the five models on
CAMUS and part of EchoNet-Dynamic datasets using the same procedures described in this study (online
Table S2). Overall, the Stough et al. 2D and 3D models outperformed the others in these studies. Finally, it
is of great interest to evaluate a QC method on all the five models. But this will require either re-training
these models in a similar ten-fold CV scheme on non-Geisinger datasets, or easy accessibility to multiple
sets of model weights for each of the five models, which both are beyond the scope of the current study.
Although aleatoric uncertainty can be estimated using test-time augmentation, it is tricky to choose an
appropriate augmentation range.

In conclusion, all five state-of-the-art echocardiography segmentation models generalized well with good
performance on most tasks within a large clinically-acquired echocardiography dataset. Stough et al.
models, particularly the frame-level 2D model, exhibit the best performance in segmenting the three key
left heart structures with accuracy comparable to manual analyses. The deployment of the proposed
convexity-reinforced uncertainty QC method can improve the overall performance and enable real-time
detection and correction of poor segmentations. Thus, incorporation of the Stough et al. 2D model and
the proposed QC method into an echocardiographic analysis pipeline could potentially facilitate cardiac
research and clinical diagnosis by providing efficient and accurate cardiac measurements. Further
modifications to improve both segmentation models and post-segmentation analysis are possible and
may help improve performance for both clinical and research applications.
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Tables

Table 1 Characteristics of patients in Geisinger echocardiography cohort.
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Phenotypes

Measures
Age (years)
Sex (% Male)
BMI (kg/m?)
DBP (mmHg)
SBP (mmHg)
Heart Rate (bpm)
EDV (ml; bp)
ESV (ml; bp)
EF (%)*

LAV (ml; bp)
LVM (9)

Notes:

*Data are mean (standard deviation or SD) except for ‘Sex’.

Mean (SD)
68 (16)
52
31(8)
71 (12)
128 (20)
76 (15)
115 (53)
60 (43)
53 (13)
67 (30)
197 (71)

#Physician-reported EF values.

Atrial Fibrillation (Afib) History

Coronary Heart Disease

Diabetes Mellitus
Heart Failure

Hypertension

Prevalence (%)

32
37
33
31
76

Notes: prevalence was calculated based on 47,431
records for each phenotype (except Afib was based on

47,207 records).

Table 2 Reported inter-observer errors for five clinical metrics using 2D echocardiography.
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N

47,431
47,431
47,273

47,030
47,033
46,696
9,339
9,033
46,505

23,939
44,862



Reference

Jacobs et
al.[2]

Hoffmann
etal.[3]

Mor-Avi et
al.[6]

Mor-Avi et
al.[1]

Wu et al. [5]

Keller et
al.[4]

Method Statistic
MOD-bp  AD(2SD)

MOD-bp Individual
SD(95%Cl)

MOD-bp  AD(SD)

area- AD(SD)
length-bp

MOD-bp  AD(SD)

MOD-bp Individual SD

EDV

19

ESV

LVM

LAV

No. of
Subjects

10

63

21

92

25

21

MOD-bp: Simpson'’s bi-plane method of disks; area-length-bp: bi-plane area-length method;

AD: absolute difference between 2 observers in percent of their mean;

Individual SD: standard deviation of difference between 2 observers in percent of their mean;

AD = /2 x Individual SD.

Table 3 Performance of QC methods for identifying good segmentations with DICE =0.85.

CAMUS
test set

EchoNet-
Dynamic

Structure (No. of Good
Segmentations)

LV (7,055)
Myo (6,413)

LA (6,958)

LV (17,131)

Precision /

Sensitivity / F1

1.0/0.85/0.92

0.95/0.68/
0.79

0.99/0.81/
0.90

0.94/0.80/
0.86

0.88/0.97/
0.92
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Good Segmentations
Removed (%)

15
32

19

20

QC

Seg_dev

Seg_dev

Seg_dev +
convexity



Table 4 Summary of absolute errors in five clinical measures estimated before and after QC. Two QC

strategies were tested, i.e., QC with Seg_dev and QC with Seg_dev + convexity.

EDV
ESV
EF

LVM
LAV

Median Absolute Error (%)

Seg_dev + convexity Pre-QC

Mean Absolute Error (%)
Pre-QC Seg_dev

20.2 18.0 19.1
25.1 21.5 24.0
15.6 15.1 15.3
23.1 20.9 21.5
20.9 19.2 19.9

16.4
19.5
11.0
17.7
16.1

Seg_dev
15.5
17.6
10.2
16.4
15.0

Seg_dev + convexity
16.2
19.2
10.8
17.1
15.6

Table 5 Summary of absolute errors in five clinical measures for studies removed by QC. Two QC
strategies were compared, i.e., QC with Seg_dev and QC with Seg_dev + convexity.

Mean Absolute Error of

Removed Studies (%)

Seg_dev Seg_dev+

convexity
EDV 33 65
ESV 34 63
EF 17 22
LVM 24 38
LAV 29 36

Figures

Median Absolute Error of
Removed Studies (%)

Seg_dev  Seg_dev + convexity
23 40

24 37

12 16

18 26

22 27
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Studies Removed (%)

Seg_dev Seg_dev+

convexity
14 2
31 3
49 7
71 9
14 4
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Figure 1

Comparison of five state-of-the-art segmentation models on Geisinger data. Segmentations generated by
five models were used to estimate five clinical measures using Simpsons modified method of disk (MOD)
(bp: bi-plane; sp4: single-plane from apical four chamber view). The median absolute errors (in percent of
clinical values) were compared. Bars are median + 95% Cl. Orange dashed lines are the lowest inter-

observer errors (%) reported for each measure [2-4].
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Figure 2

Error distribution of Geisinger volume and mass estimation associated with the Stough et al. 2D
segmentation model. Bland-Altman density plots were generated for five clinical measures estimated
using Simpsons modified bi-plane method of disk and segmentations output by the Stough et al. 2D
model. White solid and dashed lines are mean bias and 95% CI. Orange dashed lines are 0 bias.
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Pareto front curves for segmentation quality control (QC) obtained from augmented CAMUS training set.
Percentage of poor segmentations with ground truth DICE <0.85 remained after QC was plotted,
respectively, for LV endocardium (LV), LV wall (Myo), and LA endocardium (LA) against percentage of
segmentations dropped by QC at different thresholds for two uncertainty measures. Blue dashed lines
mark the cutoffs that were closest to the origin point (0,0) for uncertainty measure Seg_dev.
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Figure 4

Box plots of ground truth DICE before and after segmentation quality control using Seg_dev. Distributions
of ground truth DICE for LV endocardium (LV), LV wall (Myo), and LA endocardium (LA) were plotted (left
panel: CAMUS test dataset; right panel: EchoNet-Dynamic dataset). Green triangles mark the mean DICE
scores.
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Ground Truth Prediction Overlaid

Figure 5

Examples of EchoNet-Dynamic segmentations with uncertainty and convexity measures. Representative
LV endocardial segmentations with disassociated measures of ground truth DICE and Seg_dev were
displayed. Ground truth was manual tracing; prediction was generated by the Stough et al. 2D model.
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Figure 6

Examples of Geisinger segmentations with uncertainty and convexity measures. Representative
segmentations with varying uncertainty and convexity were displayed for LV endocardium (LV), LV wall
(Myo), and LA endocardium (LA). For LV wall, the convexity was measured as the minimal value of
endocardial and epicardial convexity scores.
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