1. Tien HN, Luan VH, Hoa LT, Khoa NT, Hahn SH, Chung JS, et al. One-pot synthesis of a reduced graphene oxide-zinc oxide sphere composite and its use as a visible light photocatalyst. Chem Eng J. 2013 Aug 1;229:126–33.
2. Liu R, Li N, Li D, Xia G, Zhu Y, Yu S, et al. Template-free synthesis of SnO2 hollow microspheres as anode material for lithium-ion battery. Mater Lett [Internet]. 2012;73:1–3. Available from: http://dx.doi.org/10.1016/j.matlet.2011.12.035
3. Hua Z, Tian C, Huang D, Yuan W, Zhang C, Tian X, et al. Power-law response of metal oxide semiconductor gas sensors to oxygen in presence of reducing gases. Sensors Actuators, B Chem. 2018 Aug 15;267:510–8.
4. Wang D, Chu X, Gong M. Gas-sensing properties of sensors based on single-crystalline SnO2 nanorods prepared by a simple molten-salt method. Sensors Actuators, B Chem. 2006 Sep 12;117(1):183–7.
5. Li Y, Guo M, Zhang M, Wang X. Hydrothermal synthesis and characterization of TiO2 nanorod arrays on glass substrates. Mater Res Bull. 2009;44(6):1232–7.
6. Song YY, Schmuki P. Modulated TiO2 nanotube stacks and their use in interference sensors. Electrochem commun [Internet]. 2010;12(4):579–82. Available from: http://dx.doi.org/10.1016/j.elecom.2010.02.004
7. Tao Y, Fu M, Zhao A, He D, Wang Y. The effect of seed layer on morphology of ZnO nanorod arrays grown by hydrothermal method. J Alloys Compd. 2010;489(1):99–102.
8. Feng L, Liu A, Liu M, Ma Y, Wei J, Man B. Synthesis, characterization and optical properties of flower-like ZnO nanorods by non-catalytic thermal evaporation. J Alloys Compd. 2010;492(1–2):427–32.
9. Shi S, Liu Y, Chen Y, Zhang J, Wang Y, Wang T. Ultrahigh ethanol response of SnO2 nanorods at low working temperature arising from La2O3 loading. Sensors Actuators, B Chem. 2009;140(2):426–31.
10. Xu J, Wang D, Qin L, Yu W, Pan Q. SnO2 nanorods and hollow spheres: Controlled synthesis and gas sensing properties. Sensors Actuators, B Chem. 2009 Apr 2;137(2):490–5.
11. Zhang H, Zeng W, Li Y, Miao B, Chen W. Synthesis of SnO2 flower-like architectures by varying the hydrothermal reaction time. J Mater Sci Mater Electron. 2014;25(9):3674–9.
12. Diebold U. The surface science of titanium dioxide. Surf Sci Rep [Internet].2002;48(1):53–229. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0167572902001000
13. Vuong DD, Sakai G, Shimanoe K, Yamazoe N. Hydrogen sulfide gas sensing properties of thin films derived from SnO2 sols different in grain size. Sensors Actuators, B Chem. 2005;105(2):437–42.
14. Szuber J, Uljanow J, Karczewska-Buczek T, Jakubik W, Waczyński K, Kwoka M, et al. On the correlation between morphology and gas sensing properties of RGTO SnO2 thin films. Thin Solid Films. 2005;490(1):54–8.
15. DEMAZEAU GWEST AR (Author of introductory parts); EJ (Author of introductory parts). Solvothermal processes: a route to the stabilization of new materials. Journal of material chemistry. 1999.
16. Supothina S, Rattanakam R, Vichaphund S, Thavorniti P. Effect of synthesis condition on morphology and yield of hydrothermally grown SnO2 nanorod clusters. J Eur Ceram Soc [Internet]. 2011 Nov [cited 2021 Mar 26];31(14):2453–8. Available from: https://www.sciencedirect.com/science/article/pii/S0955221911000781
17. Talebian N, Jafarinezhad F. Morphology-controlled synthesis of SnO2 nanostructures using hydrothermal method and their photocatalytic applications. Ceram Int. 2013 Sep;39(7):8311–7.
18. Inderan V,Lim S, Teng S,Bastien, Samuel B, Nadi L, Hooi L.Synthesis and characterisations of SnO2 nanorods via low temperature hydrothermal method.Superlattices and Microstructures, 2015;88;396-402.
19. Wang L, Wang S, Wang Y, Zhang H, Kang Y, Huang W. Synthesis of hierarchical SnO2 nanostructures assembled with nanosheets and their improved gas sensing properties. Sensors Actuators, B Chem [Internet]. 2013;188:85–93. Available from: http://dx.doi.org/10.1016/j.snb.2013.06.076
20. Yang R, Gu Y, Li Y, Zheng J, Li X. Self-assembled 3-D flower-shaped SnO2 nanostructures with improved electrochemical performance for lithium storage. Acta Mater [Internet]. 2010;58(3):866–74. Available from: http://dx.doi.org/10.1016/j.actamat.2009.10.001
21. S. Cao, W. Zeng, H. Zhang, Y. Li, Hydrothermal synthesis of SnO2 nanocubes and nanospheres and their gas sensing properties, J. Mater. Sci. Mater. Electron. 26 (2015) 2871e2878.
22. B. Mehrabi Matin, Y. Mortazavi, A.A. Khodadadi, A. Abbasi, A. Anaraki Firooz, Alkaline-and template-free hydrothermal synthesis of stable SnO2 nanoparticles and nanorods for CO and ethanol gas sensing, Sens. Actuators B Chem. 151 (2010) 140e145.
23. Vuong D.D et.al. Synthesis of SnO2 microspheres, nanorods and nano-flower via simple hydrothermal route. Physica E.2011;44(2011) 345-349.