The series solutions to the problem of spatial axisymmetric consolidation are deduced under non-homogeneous boundary conditions. Firstly, differentiable step function is introduced to construct the homogeneous operation function. Secondly, the operation function is used to superimpose the non-homogeneous boundaries to obtain homogeneous boundaries, non-homogeneous fundamental equation and new initial condition. Finally, the method of variables separation is used to construct the eigenfunction, and due to the mathematical justification of complete orthogonality of the eigenfunction, the series expansions of the fundamental equation and initial condition are carried out to obtain solutions for the seepage and consolidation in saturated clay with a borehole boundary. The correctness of the theoretical solutions are verified by the strict mathematical and mechanics derivation and the law of space-time variation in seepage flow.