1. Wójcik R, Milewski S, Małaczewska J, Tański Z, Brzostowski H, Siwicki AK. Defence mechanisms of the offspring of ewes fed a diet supplemented with yeast (Saccharomyces cerevisiae) during pregnancy and lactation. Centr Eur J Immunol. 2008;33:197–201.
2. Milewski S, Sobiech P, Bednarek D, Wójcik R, Małaczewska J, Zaleska B, Siwicki AK. Effect of oligosaccharides supplementation on the meat performance traits and selected indicators of humoral immunity in lambs. Bull Vet Inst Pulawy. 2010;54:175–9.
3. Wójcik R. Effect of brewer's yeast (Saccharomyces cerevisiae) extract on selected parameters of humoral and cellular immunity in lambs. Bull Vet Inst Pulawy. 2010;54:181–7.
4. Ząbek K, Milewski S, Wójcik R, Siwicki AK. Effect of β-1,3/1,6-D-glucan in diet on productivity and humoral and cellular defense mechanisms in sheep. Acta Vet Brno. 2013;82:141–6.
5. Wójcik R. The effect of Leiber Beta-S on the selected parameters of immunity in calves. Acta Vet Brno. 2014;83:113–8.
6. Godden S. Colostrum management for dairy calves. Vet Clin North Am Food Anim Pract. 2008;24:19–39.
7. Lora I, Gottardo F, Contiero B, Dall Ava B, Bonfanti L, Stefani A, Barberio A. Association between passive immunity and health status of dairy calves under 30 days of age. Prev Vet Med. 2018;152:12–5.
8. Cooke RF. Effects on animal health and immune function. Vet Clin North Am Food Anim Pract. 2019;35:331–41.
9. McGuirk SM. Disease management of dairy calves and heifers. Vet Clin North Am Food Anim Pract. 2008;24:139–53.
10. Mee JF. Newborn dairy calf management. Vet Clin North Am Food Anim Pract. 2008;24:1–17.
11. Uetake K. Newborn calf welfare: a review focusing on mortality rates. Anim Sci J. 2013;84:101–5.
12. Reiten M, Rousing T, Thomsen PT, Otten ND, Forkman B, Houe H, Sørensen JT, Kirchner MK. Mortality, diarrhea and respiratory disease in Danish dairy heifer calves: Effect of production system and season. Prev Vet Med. 2018;155:21–6.
13. Windeyer MC, Leslie KE, Godden SM, Hodgins DC, Lissemore KD, LeBlanc SJ. Factors associated with morbidity, mortality, and growth of dairy heifer calves up to 3 months of age. Prev Vet Med. 2014;113:231–40.
14. Svensson C, Hultgren J, Oltenacu PA. Morbidity in 3-7-mont-old dairy calves in south-western Sweden, and risk factors for diarrhea and respiratory disease. Prev Vet Med. 2006;74:162–79.
15. Roberts GL. Fusobacterial infections: an underestimated threat. Br J Biomed Sci. 2000;57:156–62.
16. Garcia M, Shin JH, Schlaefli A, Greco LF, Maunsell FP, Thatcher WW, Santos JE, Staples CR. Increasing intake of essential fatty acids from milk replacer benefits performance, immune responses, and health of preweaned Holstein calves. J Dairy Sci. 2015;98:458–77.
17. Hernández-Castellano LE, Özçelik R, Hernandez LL, Bruckmaier RM. Short communication: Supplementation of colostrum and milk with 5-hydroxy-l-tryptophan affects immune factors but not growth performance in newborn calves. J Dairy Sci. 2018;101:794–800.
18. Flaga J, Korytkowski Ł, Górka P, Kowalski ZM. The effect of docosahexaenoic acid-rich algae supplementation in milk replacer on performance and selected immune system functions in calves. J Dairy Sci. 2019;102:8862–73.
19. Nissen SL, Abumrad NN. Nutritional role of the leucine metabolite β-hydroxy-β-methylbutyrate (HMB). J Nutr Biochem. 1997;8:1–12.
20. Van Koevering M, Nissen S. Oxidation of leucine and alpha-ketoisocaproate to beta-hydroxy-beta methylbutyrate in vivo. Am J Physiol. 1992;262:E27–31.
21. Vukovich MD, Slater G, Macchi MB, Turner MJ, Fallon K, Boston T, Rathmacher J. Beta-hydroxy-beta-methylbutyrate (HMB) kinetics and the influence of glucose ingestion in humans. J Nutr Biochem. 2001;12:631–9.
22. Gatnau R, Zimmerman DR, Nissen SL, Wannemuehler M, Ewan RC. Effects of excess dietary leucine and leucine catabolites on growth and immune responses in weanling pigs. J Anim Sci. 1995;73:159–65.
23. Peterson AL, Qureshi MA, Ferket PR, Fuller JC Jr. Enhancement of cellular and humoral immunity in young broilers by the dietary supplementation of beta-hydroxy-beta-methylbutyrate. Immunopharmacol Immunotoxicol. 1999;21:307–30.
24. Krakowski L, Krzyżanowski J, Wrona Z, Kostro K, Siwicki AK. The influence of nonspecific immunostimulation of pregnant sows on the immunological value of colostrums. Vet Immunol Immunopath. 2002;87:89–95.
25. Puchajda-Skowrońska H, Siwicki AK, Wójcik R, Pudyszak K. Effects of 3-hydroxy-3-methylbutyrate (HMB) on selected performance indices and non-specific defence mechanisms in geese. Med Weter. 2006;62:89–92.
26. Siwicki AK, Fuller JC Jr, Nissen S, Morand M, Pozet F, Vincent F, Kazuń B. Effect of HMB (β-hydroxy-β-methylbutyrate) on in vitro proliferative responses of sheatfish (Silurus glanis) and catfish (Ictalurus melas) lymphocytes stimulated by mitogens. Acta Vet Brno. 2004;73:119–22.
27. Siwicki AK, Zakęś Z, Fuller JC Jr, Nissen S, Kazuń K, Głąbski E. The influence of β-hydroxy-β-methylbutyrate (HMB) on cell-mediated immunity in tench Tinca tinca (L.): in vitro and in vivo study. Aquacult Int. 2006;14:153–61.
28. Flummer C, Theil PK. Effect of β-hydroxy β-methyl butyrate supplementation of sows in late gestation and lactation on sow production of colostrum and milk and piglet performance. J Anim Sci. 2012;90:372–4.
29. Wójcik R, Małaczewska J, Siwicki AK, Miciński J, Zwierzchowski G. The effect of β-hydroxy-β-methylbutyrate (HMB) on the proliferative response of blood lymphocytes and the phagocytic activity of blood monocytes and granulocytes in calves. Pol J Vet Sci. 2013;16:567–9.
30. Wójcik R, Małaczewska J, Siwicki AK, Miciński J, Zwierzchowski G. The effect of β-hydroxy-β-methylbutyrate (HMB) on selected parameters of humoral immunity in calves. Pol J Vet Sci. 2014;17:357–9.
31. Ząbek K, Wójcik R, Milewski S, Małaczewska J, Tański Z, Siwicki AK. Effect of β-hydroxy-β-methylbutyrate acid on meat performance traits and selected indicators of humoral immunity in goats. Jpn J Vet Res. 2016;64:247–56.
32. Guilhem A, Malcus C, Clarivet B, Plauchu H, Dupuis-Girod S. Immunological abnormalities associated with hereditary haemorrhagic telangiectasia. J Intern Med. 2013;274:351–62.
33. Abbas AK, Lichtman AH, Pillai S. Innate immunity. In: Abbas AK, Lichtman AH, Pillai S, editors. Basic Immunology. Functions and Disorders of the Immune System. Philadelphia: Elsevier Inc; 2014. pp. 25–52.
34. Donovan GA, Dohoo IR, Montgomery DM, Bennett FL. Associations between passive immunity and morbidity and mortality in dairy heifers in Florida, USA. Prev Vet Med. 1998;34:31–46.
35. Stefaniak T, Jawor P. The most important causes of failure of passive transfer in calves kept in dairy farms. Folia Univ Agric Stetin Zootechnica. 2006;250:45–50.
36. Ostaszewski P, Kozlowska E, Siwicki AK, Krzyzanowski J, Fuller JC Jr, Nissen S. The immunomodulating activity of dietary ß-hydroxy-ß-methylbutyrate (HMB) in weanling pigs. J Anim Sci. 1998;76(Suppl.1):136.
37. Peterson A, Qureshi M, Ferket P, Fuller J Jr. In vitro exposure with β-hydroxy-β-methylbutyrate enhances chicken macrophage growth and function. Vet Immunol Immunopathol. 1999;67:67–78.
38. Siwicki AK, Fuller JC Jr, Nissen S, Ostaszewski P, Studnicka M. In vitro effects of beta-hydroxy-beta-methylbutyrate (HMB) on cell-mediated immunity in fish. Vet Immunol Immunopathol. 2000;76:191–7.
39. Siwicki AK, Morand M, Fuller JC Jr, Nissen S, Goryczko K, Ostaszewski P, Kazuń K, Głombski E. Influence of feeding the leucine metabolite β-hydroxy-β-methylbutyrate (HMB) on the non-specific cellular and humoral defence mechanisms of rainbow trout (Oncorhynchus mykiss). J Appl Ichthyol. 2003;19:44–8.
40. Ostaszewski P, Kostiuk S, Balasinska B, Jank M, Papet I, Glomot F. The leucine metabolite 3-hydroxy-3-methylbutyrate (HMB) modifies protein turnover in muscles of laboratory rats and domestic chickens in vitro. J Anim Physiol Anim Nutr. 2000;84:1–8.
41. Slater G, Jenkins D, Logan P, Lee H, Vukovich M, Rathmacher JA, Hahn AG. Beta-hydroxy-beta-methylbutyrate (HMB) supplementation does not affect changes in strength or body composition during resistance training in trained men. Int J Sport Nutr Exerc Metab. 2001;11:384–96.
42. Ransone J, Neighbors K, Lefavi R, Chromiak J. The effect of beta-hydroxy beta-methylbutyrate on muscular strength and body composition in collegiate football players. J Strength Cond Res. 2003;17:34–9.
43. Thomson JS, Watson PE, Rowlands DS. Effects of nine weeks of beta-hydroxy-beta-methylbutyrate supplementation on strength and body composition in resistance trained men. J Strength Cond Res. 2009;23:827–35.
44. Wilkinson DJ, Hossain T, Hill DS, Phillips BE, Crossland H, Williams J, Loughna P, Churchward-Venne TA, Breen L, Phillips SM, Etheridge T, Rathmacher JA, Smith K, Szewczyk NJ, Atherton PJ. Effects of leucine and its metabolite beta-hydroxy-beta-methylbutyrate on human skeletal muscle protein metabolism. J Physiol. 2013;591:2911–23.
45. Wójcik R, Małaczewska J, Kaczorek-Łukowska E. The applicability of the Migratest® kit for evaluating the chemotactic activity of peripheral blood neutrophils in goats on the example of animals supplemented with β-hydroxy-β-methylbutyrate (HMB). Pol J Vet Sci 2019;22: doi.org/10.5601/jelem.2019.24.4.1529.
46. Wójcik R, Ząbek K, Małaczewska J, Milewski S, Kaczorek-Łukowska E. The effects of β-hydroxy-β-methylbutyrate (HMB) on chemotaxis, phagocytosis, and oxidative burst of peripheral blood granulocytes and monocytes in goats. Animals. 2019;9:1031.
47. Siwicki AK, Głąbski E, Kazuń K, Kazuń B, Lepa A, Majewicz-Zbikowska M. Effect of dietary administration of the β-hydroxy-β-methylbutyrate on the innate immunity and protection against motile Aeromonas septicaemia in fish. Centr Eur J Immunol. 2011;36:135–38.
48. Gonzalez AM, Fragala MS, Jajtner AR, Townsend JR, Wells AJ, Beyer KS, Boone CH, Pruna GJ, Mangine GT, Bohner JD, Fukuda DH, Stout JR, Hoffman JR. Effects of β-hydroxy-β-methylbutyrate free acid and cold water immersion on expression of CR3 and MIP-1β following resistance exercise. Am J Physiol Regul Integr Comp Physiol. 2014;306:R483-9.
49. Józefowski S, Yang Z, Marcinkiewicz J, Kobzik L. Scavenger receptors and β-glucan receptors participate in the recognition of yeasts by murine macrophages. Inflamm Res. 2012;61:113–26.
50. Peiser L, De Winther MP, Makepeace K, Hollinshead M, Coull P, Plested J, Kodama T, Moxon ER, Gordon S. The class A macrophage scavenger receptor is a major pattern recognition receptor for Neisseria meningitidis which is independent of lipopolysaccharide and not required for secretory responses. Infect Immun. 2002;70:5346–54.
51. Mukhopadhyay S, Peiser L, Gordon S. Activation of murine macrophages by Neisseria meningitidis and IFN-gamma in vitro: distinct roles of class A scavenger and Toll-like pattern recognition receptors in selective modulation of surface phenotype. J Leukoc Biol. 2004;76:577–84.
52. Mukhopadhyay S, Chen Y, Sankala M, Peiser L, Pikkarainen T, Kraal G, Tryggvason K, Gordon S. MARCO, an innate activation marker of macrophages, is a class A scavenger receptor for Neisseria meningitidis. Eur J Immunol. 2006;36:940–9.
53. Townsend JR, Fragala MS, Jajtner AR, Gonzalez AM, Wells AJ, Mangine GT, Robinson EH 4th, McCormack WP, Beyer KS, Pruna GJ, Boone CH, Scanlon TM, Bohner JD, Stout JR, Hoffman JR. β-Hydroxy-β-methylbutyrate (HMB)-free acid attenuates circulating TNF-α and TNFR1 expression post resistance exercise. J Appl Physiol. 2013;115:1173–82.
54. Miyake S, Ogo A, Kubota H, Teramoto F, Hirai T. β-Hydroxy-β-methylbutyrate suppresses NF-ĸB activation and IL-6 production in TE-1 cancer cells. In Vivo. 2019;33:353–8.
55. Hoffman JR, Gepner Y, Stout JR, Hoffman MW, Ben-Dov D, Funk S, Daimont I, Jajtner AR, Townsend JR, Church DD. β-Hydroxy-β-methylbutyrate attenuates cytokine response during sustained military training. Nutr Res. 2016;36:553–63.