1. McIntyre, J. A. et al. Intra-articular mesenchymal stem cell therapy for the human joint: a systematic review. Am. J. Sports Med. 46, 3550–3563 (2018).
2. Koyama, N. et al. Pluripotency of mesenchymal cells derived from synovial fluid in patients with temporomandibular joint disorder. Life Sci. 89,741–747 (2011).
3. Mohanraj, B. et al. Chondrocyte and mesenchymal stem cell derived engineered cartilage exhibits differential sensitivity to pro-inflammatory cytokines. J. Orthop. Res. 36, 2901–2910 (2018).
4. Pattappa, G. et al. Physioxia has a beneficial effect on cartilage matrix production in interleukin-1 beta-inhibited mesenchymal stem cell chondrogenesis. Cells. 8 (2019).
5. Sorenson, A. et al. Expression of interleukin-1 and temporomandibular disorder: contemporary review of the literature. Cranio. 36, 268–272 (2018).
6. Liu, W. et al. IL-1β impedes the chondrogenic differentiation of synovial fluid mesenchymal stem cells in the human temporomandibular joint. Int. J. Mol. Med. 39, 317–326 (2017).
7. Kunisch, E. et al. Pro-inflammatory IL-1beta and/or TNF-alpha up-regulate matrix metalloproteases-1 and -3 mRNA in chondrocyte subpopulations potentially pathogenic in osteoarthritis: in situ hybridization studies on a single cell level. Int. J. Rheum. Dis. 19, 557–566 (2016).
8. Kim, L. & Kim, J. Y. Chondroprotective effect of curcumin and lecithin complex in human chondrocytes stimulated by IL-1β via an anti-inflammatory mechanism. Food Sci. Biotechnol. 28, 547–553 (2019).
9. Abbasifard, M., Kamiab, Z., Bagheri-Hosseinabadi, Z. & Sadeghi, I. The role and function of long non-coding RNAs in osteoarthritis. Exp. Mol. Pathol. 114, 104407 (2020).
10. Sun, H., et al. Emerging roles of long noncoding RNA in chondrogenesis, osteogenesis, and osteoarthritis. Am. J. Transl. Res. 11, 16–30 (2019).
11. Jiang, S.D., Lu, J., Deng, Z.H., Li, Y.S. & Lei, G.H. Long noncoding RNAs in osteoarthritis. Joint Bone Spine. 84, 553–556 (2017).
12. Jiang, H., et al. LncRNA SNHG5 promotes chondrocyte proliferation and inhibits apoptosis in osteoarthritis by regulating miR-10a-5p/H3F3B axis. Connect. Tissue Res. 1–10 (2020).
13. Zhang, Y., Dong, Q. & Sun, X. Positive feedback loop LINC00511/miR-150-5p/SP1 modulates chondrocyte apoptosis and proliferation in osteoarthritis. DNA Cell Biol. 39, 1506–1512 (2020).
14. Zhang, C. et al. Upregulation of lncRNA HOTAIR contributes to IL-1β-induced MMP overexpression and chondrocytes apoptosis in temporomandibular joint osteoarthritis. Gene. 586, 248–253 (2016).
15. Li, Y., Li, Z., Li, C., Zeng, Y. & Liu, Y. Long noncoding RNA TM1P3 is involved in osteoarthritis by mediating chondrocyte extracellular matrix degradation. J. Cell. Biochem. 120, 12702–12712 (2019).
16. Liu, C. & Ren, S. LncRNA MALAT1/MiR-145 Adjusts IL-1β-induced chondrocytes viability and cartilage matrix degradation by regulating ADAMTS5 in human osteoarthritis. Yonsei Med. J. 60, 1081–1092 (2019).
17. Yang, Q., et al. A LINC00341-mediated regulatory pathway supports chondrocyte survival and may prevent osteoarthritis progression. J. Cell. Biochem. 120, 10812–10820 (2019).
18. Bi, X., et al. LncRNA PICSAR promotes cell proliferation, migration and invasion of fibroblast-like synoviocytes by sponging miRNA-4701-5p in rheumatoid arthritis. EBioMedicine. 50, 408–420 (2019).
19. Li, G., et al. Tanshinone IIA promotes the apoptosis of fibroblast-like synoviocytes in rheumatoid arthritis by up-regulating lncRNA GAS5. Biosci. Rep. 38, BSR20180626 (2018).
20. Zhang, C.W., et al. Long non-coding RNA PVT1 knockdown suppresses fibroblast-like synoviocyte inflammation and induces apoptosis in rheumatoid arthritis through demethylation of sirt6. J. Biol. Eng. 13, 60 (2019).
21. Zhu, Y., Li, R. & Wen, L.M. Long non-coding RNA XIST regulates chondrogenic differentiation of synovium-derived mesenchymal stem cells from temporomandibular joint via miR-27b-3p/ADAMTS-5 axis. Cytokine. 137, 155352 (2020).
22. Jia, J. et al. Knockdown of long non‑coding RNA AK094629 attenuates the interleukin‑1β induced expression of interleukin‑6 in synovium‑derived mesenchymal stem cells from the temporomandibular joint. Mol. Med. Rep. 22, 1195–1204 (2020).
23. Sun, Y. P. et al. Synovium fragment-derived cells exhibit characteristics similar to those of dissociated multipotent cells in synovial fluid of the temporomandibular joint. PLoS One 9, e101896 (2014).
24. Zhang, H., Meltzer, P., & Davis, S. RCircos: an R package for Circos 2D track plots. BMC Bioinformatics. 14, 244 (2013).
25. Alexa, A., Rahnenführer, J., & Lengauer, T. Improved scoring of functional groups from gene expression data by decorrelating GO graph structure. Bioinformatics. 22, 1600–1607 (2006).
26. M. Kanehisa, S. Goto, KEGG: kyoto encyclopedia of genes and genomes. Nucleic acids research 28, 27-30 (2000)
27. P. Shannon et al., Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome research 13, 2498-2504 (2003).
28. G. D. Bader, C. W. Hogue, An automated method for finding molecular complexes in large protein interaction networks. BMC bioinformatics 4, 2 (2003).
29. Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 9, 559 (2008).
30. Tong, W., et al. In vivo identification and induction of articular cartilage stem cells by inhibiting NF-κB signaling in osteoarthritis. Stem Cells. 33, 3125–3137 (2015).
31. Wu, X., et al. Interleukin-6 from subchondral bone mesenchymal stem cells contributes to the pathological phenotypes of experimental osteoarthritis. Am. J. Transl. Res. 10, 1143–1154 (2018).
32. Haqqi, H.T.M. Immunopathogenesis of osteoarthritis. Clin. Immunol. 146, 185–196 (2013).
33. Harrell, C.R., et al. The role of interleukin 1 receptor antagonist in mesenchymal stem cell-based tissue repair and regeneration. Biofactors. 46, 263–275 (2020).
34. Ansboro, S., Roelofs, A.J. & De Bari, C. Mesenchymal stem cells for the management of rheumatoid arthritis: immune modulation, repair or both? Curr. Opin Rheumatol. 29, 201–207 (2017).
35. Lee, K., et al. Mesenchymal stem cells ameliorate experimental arthritis via expression of interleukin-1 receptor antagonist. PLoS One. 13, e0193086 (2018).
36. Kou, X., Xu, X. & Chen, C. The Fas/Fap-1/Cav-1 complex regulates IL-1RA secretion in mesenchymal stem cells to accelerate wound healing. Sci. Transl. Med. 10, eaai8524 (2018).
37. Liu, B., et al. A cytoplasmic NF-kappaB interacting long noncoding RNA blocks IkappaB phosphorylation and suppresses breast cancer metastasis. Cancer Cell, 27, 370-381 (2015)
38. Sun, J. et al. Suberoylanilide hydroxamic acid attenuates interleukin-1β-induced interleukin-6 upregulation by inhibiting the microtubule affinity-regulating kinase 4/nuclear factor-κB pathway in synovium-derived mesenchymal stem cells from the temporomandibular joint. Inflammation. 43, 1246–1258 (2020).
39. He, X., et al. MSC-derived exosome promotes m2 polarization and enhances cutaneous wound healing. Stem Cells Int. 2019, 7132708 (2019).
40. Liu, W., et al. Melatonin-stimulated MSC-derived exosomes improve diabetic wound healing through regulating macrophage M1 and M2 polarization by targeting the PTEN/AKT pathway. Stem Cell Res Ther. 11, 259 (2020).
41. Song, Y., et al. Exosomal mir-146a contributes to the enhanced therapeutic efficacy of interleukin-1β-primed mesenchymal stem cells against sepsis. Stem cells. 35, 1208-1221 (2017).