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Abstract
Objective

This study aimed to develop a function for mapping the cancer-specific instrument (FACT–G) to a preference-based measure
(EQ-5D-3L) utility index for HRQoL, in which the utility scores were generated using the Chinese value set.

Method

The data are based on a cross-sectional survey of 243 patients in China with different cancer types. Cancer patients who
completed the EQ-5D-3 L and the FACT-G questionnaire, and patient demographics and clinical characteristics were included in
this study. Regression models were used to predict the EQ-5D-3L utility index values based on four subscale scores of the
FACT-G using the ordinary least squares (OLS) model, generalized linear models (GLM), censored least absolute deviations
(CLAD), Tobit model, and two-part model (TPM) regression approaches. The performance and predictive power of each model
were also evaluated using r2 and adj- r2, mean absolute error (MAE) and root mean squared error (RMSE).

Results

The introduction of the square term and the interaction term improves the accuracy of the model. The social well-being
subscale of the FACT-G was not associated with the EQ-5D-3L utility index, whereas, the physical, emotional, functional well-
being, and FACT-G total scores were derived when mapping the FACT-G to the EQ-5D-3L utility index. For the FACT-G, the OLS
model was the best at predicting mean EQ-5D-3L values among all the regression models and has 70% explanatory power for
the observed EQ-5D-3L variation. Nevertheless, the OLS model overpredicted utilities for poorer health states
and underestimated utilities for those with better health. The result of the OLS model, GLM, and CLAD models were similar to
the MAE, MSE, and RMSE.

Conclusion

The algorithm based on Chinese population development for mapping the FACT-G into the EQ-5D-3L utility index can be
realized. We also recommend that OLS models be used to assess the economic evaluation of patients' health-related quality of
life when the population is in moderate to good health for further cost-utility analysis in China.

Introduction
Cancer is considered the leading cause of human death. With the rapid growth and aging of the population, the incidence and
mortality rates of cancer are rapidly growing worldwide, according to the GLOBOCAN 2018 estimates [1]. Cancer has also
caused serious public health problems and represents a significant economic burden in China. However, with the continuous
improvement of medicine and technology, the survival rate of cancer patients has improved markedly. Although early screening
and treatment, as well as advanced medical technologies, can significantly improve the survival rate of cancer patients, these
can place a huge socio-psychological and economic burden on patients. Therefore, it is very important to know the cancer
patient’s health-related quality of life (HRQoL), which has become increasingly popular in health economic evaluations and has
recently gained significant attention in cancer studies [2, 3].

HRQoL refers to the state of physical, mental, and social well-being of an individual, and an accurate impact analysis of
cancer-specificity on HRQoL is expected to contribute to the health economic evaluation [4, 5]. Quality-adjusted life years
(QALYs) are also used to measure the health utility score in the health economic evaluation for the HRQoL in the cost-utility
analyses. Estimating QALYs requires a preference-based HRQoL instrument that measures the respondents’ health status.
Meanwhile, QALYs is measured on a utility index, in which 1 indicates full health and, 0 indicates death. It also allows for less
than 0 (negative), which represents a state of health worse than death [6, 7]. The three-level EuroQol-5-dimension questionnaire
(EQ-5D-3L) is a standardized instrument used to measure preference-based HRQoL, and general health conditions and directly
assess health utility in cost-utility analyses [8]. Previous studies have shown that preference scores do not change significantly
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with demographic characteristics, and results are similar when repeated measures of preferences are used in different
populations in different countries [9, 10]. In the past, most researchers employed the United Kingdom algorithm set to estimate
health utility values. Today, however, most countries have been established country-specific value sets because a utility value
algorithm based on a specific population does not apply to others. Liu et al. successfully developed Chinese population-
specific EQ-5D-3L health states using the time trade-off (TTO) method in 2014 [11]. Thus, we used the value set based on the
Chinese general population algorithm for this study.

However, preference-based instruments are not always available in clinical trials because many dimensions may not be
relevant or sensitive to therapeutic effects. Disease-specific instruments are mostly used to measure the HRQoL rather than
generic preference-based measures as they can provide more specific details about the patients’ assessment of a particular
disease but it does not calculate the health utility scores and QALYs directly. Moreover, it provides only ordinal-level
measurement scales, thus limiting their usefulness in health economic analysis [12]. The Functional Assessment of Cancer
Therapy-General (FACT-G) is one of the most widely used cancer-specific HRQoL instruments as well as a non-preference-
based measure for cancer patients [13]. The FACT-G is used in clinical trials to assess the quality of life (QoL), with higher
values representing a better QoL, and its reliability and validity have been proven [14]. However, it does not estimate the health
utility index in economic evaluations for HRQoL, unlike the preference-based instrument. The lack of health utility values limits
the development of health economics research. One solution is to use the development of a mapping algorithm that maps
scores from the HRQoL data collected by non-preference-based instruments to general preference-based instruments [15]. A
mapping function allows health utility values to be predicted when the straightforward health utility data are not available with
non-preference-based measures. Growing literature studies have suggested that a mapping function from disease-specific
instruments to generic preference-based measures using regression models in health economic evaluation is available [4, 15-
17].

Mapping algorithms were developed using the data from different instruments to compare predicted and observed values. The
function is not only developed for mapping multiple disease-specific to cancer-specific HRQoL (including lung, breast, prostate,
colorectal, melanoma cancer [16, 18-21]) but also applied to other areas, such as HIV [22], cystic fibrosis [4], and genital warts
[5]. Furthermore, there are a few studies mapping from FACT-G to EQ-5D-3L that have been developed and evaluated using
regression model analysis in health economic research because most studies use responses from patients with single cancer-
specific for HRQoL. A study from Canada performed a mapping function to both the EQ-5D-3L and SF-6D health utility indices
from the FACT-G [23]. Meanwhile, a study was conducted to evaluate the validity of both FACT-G and preference-based
instruments (including the EQ-5D-3L, SF-6D, HUI-2, and HUI-3) in assessing cancer severity levels in Canadian patient data [24].
Another mapping from the FACT-G to the EQ-5D-3L health utility index in Singapore shows that a single equation can be
applied to different versions of the FACT–G [25]. However, no studies are available to convert the FACT-G to EQ-5D-3L with
mapping algorithms in Chinese population due to the inconsistency between utility value sets of different countries [26].
Therefore, it is necessary to develop a health utility value mapping from FACT-G to EQ-5D-3L for Chinese patients. Some
studies have shown that mapping can improve the accuracy of models with socio-demographic and clinical factors among the
instruments, thus affecting health utility in cost-utility analysis [10]. These studies also compare different regression methods
with more accurate models [16].

The objective of the present study was to develop a mapping algorithm to estimate EQ-5D-3L utility values from the FACT-G in
economic evaluation analysis for the Chinese population, using five regression models to account for ceiling effects and
anticipate any violations of normality and homoscedasticity and to better estimate the patients’ health status and provide
recommendations for future mapping studies.

Methods And Materials
Study design and data collection

The Cancer Screening Program in Urban China, a major public health service project supported by the central government of
China beginning in August 2012, was designed to screening programs for lung, breast, colorectal, liver, stomach, and
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esophageal cancers [27]. Meanwhile, a multicenter cross-sectional study was conducted in 12 provinces between September
2013 and December 2014, with appropriate screening interventions targeted at specific types of cancer [28]. The study protocol
was approved by the Institutional Review Board of the Cancer Hospital of the Chinese Academy of Medical Sciences (Approval
No. 15-071/998). All participants gave their [written] informed consent. The EQ-5D-3L is referred to as EQ-5D in the rest of the
article.

This study involved 243 subjects according to the following criteria: 40-74 years old; ability to provide written informed
consent; diagnosed with lung, breast, stomach, esophagus, colorectal, and liver cancer; completed both the EQ-5D and FACT-G
scales and subscales. Exclusion criteria included: the refusal to sign the consent form, non-cancer-related subjects, missing or
duplicate responses on the questionnaire, and being unable to understand the questions, or record their evaluations. The
questionnaire survey was conducted through a face-to-face interview between the investigator and the followed-up subjects.

For information regarding age, sex, marital status, level of education, family population, employment, family financial pressure,
and significant life events, patients were required to complete a health and demographic questionnaire. Simultaneously, the
questionnaires were also completed face-to-face with the community doctors, who were trained by research assistants. Scales
that needed to be completed by patients included the EQ-5D and, FACT-G.

HRQoL Instruments

EQ-5D Scale

The EQ-5D scale is a generic preference-based instrument that provides a simple and universal health measurement method
for clinical and economic evaluation. It consists of a two-part questionnaire. The EQ-5D descriptive system consists of five
dimensions (i.e., mobility, self-care, usual activities, pain/discomfort, and anxiety/depression), each with three levels of health,
indicating no problems, some or moderate problems, and extreme problems [29]. The EQ-5D index scores were calculated
using an algorithm based on societal preferences from the general population-based valuation. We calculated the EQ-5D
health states using the TTO method developed by Gordon G. Liu et al., who developed a utility algorithm based on a TTO
survey of 1147 Chinese respondents [11]. The EQ-5D utility index ranges from -0.149 to 1, where 1 indicates full health, 0
indicates a state equivalent to death, and a negative value implies that the respondent’s health state is worse than death [30].
Nevertheless, no negative values were observed in this study. At present, the state of health is calculated using a 20-centimeter
visual analog scale (VAS) that ranges from 0 to 100. The worst imaginable health state was scored as 0 and the best
imaginable health state was scored as 100 [14].

FACT-G Scale

Participants also completed the FACT-QoL questionnaire using a version specific to their tumor type. FACT-G is scored by
summing the individual scale scores, with higher scores indicating better QoL. The FACT-G produces four subscale scores that
reflect the patient’s QoL: physical wellbeing (PWB) (7 items), social/family well-being (SFWB) (7 items), emotional well-being
(EWB) (6 items), and functional well-being (FWB) (7 items) [31]. The scales for different disease-specific types are different.
However, the cancer-specific HRQoL uses instruments, including 27-item FACT-G and several items of cancer-additional
concerns scale, that contained a breast cancer subscale, a lung cancer subscale, an esophageal cancer subscale, a colorectal
cancer subscale, a gastric cancer subscale, and a hepatocellular carcinoma subscale. All items were rated on a 5-point Likert
scale, with higher scores indicating better HRQoL.

Statistical analyses

Five functions mapping from the FACT-G to the EQ-5D (i.e., the ordinary least squares [OLS] model, generalized linear model
[GLM], Tobit model, the censored least absolute deviations [CLAD], and the two-part model [TPM])were included in this study.
Most of the previous studies suggested that, the OLS model may not be appropriate when preference-based scores are highly
skewed [23]. The ceiling effect may also invalidate the normality assumption of OLS [32]. The GLM with Gamma family and
identity link predicts EQ-5D utility, which relaxes the assumption of the OLS that allows the skewed distribution of utility values.
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The Tobit model is an alternative model that accounts for the ceiling effect, thus limiting predictions within a credible range.
However, it is sensitive to normal distribution and heteroscedasticity. The CLAD model assumes that the median is more
resistant than the mean to ceiling effects and is a possible solution to the heteroscedasticity problem as well, which minimizes
the sum of absolute differences between observed and predicted values [22, 32]. The TPM is specifically designed to deal with
limited dependent variables, which divide the data into two parts to predict responders in perfect health and those who are, not.
The TPM with logistic regression is used to predict the probability of EQ-5D utility at the ceiling in the first part, a truncated OLS
to predict EQ-5D index for those individuals whose EQ-5D utility is below the ceiling in the second part and combined they
obtain the overall utility value [19, 22].

Five model specifications were used to develop the mapping functions. The OLS model, GLM, Tobit model, CLAD model, and
TPM were performed in five different models. We increased the squared terms and the interaction terms to improve the model
accuracy for this study, as suggested in the literature [4]. Model 1 uses the FACT-G overall scores to regress the EQ-5D utility
indices, Model 2 uses all domain scores on the FACT-G, Model 3 includes only statistically significant domains, Model 4
includes Model 3 and squared terms of statistically significant domains from Model 2, and Model 5 includes Model4 and
statistically significant domains from Model 2.

We calculated the goodness of fit of each model to assess how well the responses to the FACT-G predicted EQ-5D utility. Model
goodness of fit was measured using mean absolute error (MAE), mean square error (MSE), root mean square error (RMSE),
mean absolute percentage error (MAPE), Akaike information criteria (AIC), and Bayes information criteria (BIC) to examine the
differences between mean observed and predicted EQ-5D utility, in which lower values indicate better model performance. The
coefficient of determination, R2, and adjusted R2 also estimated how well the model explained the values in OLS. However, it is
not available for other regression models. Instead, we computed the square of the correlation coefficient (r) between the
observed and predicted values of each model, with r2 being equivalent to R2 in OLS [26]. To penalize the complexity of the

model, we defined the adjusted r2 as follows: adjusted r2 where n represents the sample size and p is the
number of parameters in the model. Predictive ability was evaluated by a paired t-test to compare the differences in the
distributions between the observed and mapped EQ-5D utility scores. The different EQ-5D utility scores from different models
with demographic and clinical features were examined by non-parametric analysis. Moreover, we selected the lowest
MAE/RMSE and the highest r2 and adjusted r2 as the best performing models. The EQ-5D observed values and predicted utility
values were compared in patients with different demographic and clinical characteristics in the different models.

All statistical analyses were performed in STATA version14.1 and all hypothetical tests were two-tailed, and p-value < 0.05 was
considered statistically significant in this study.

Results
A total of 243 cancer patients were included in this analysis. Demographic and clinical features are summarized in Table 1.
The average age of participants was 56.34 years (SD = 8.36 years) and the majority were female (71.6%). Among all age
groups, the 55-59 years age group (19.3%) comprising the largest proportion of participants. Most of the cancer patients were
married (80.7%) and had completed secondary education or less (72.9%). Most (55.1%) did not place financial stress on the
family because of the illness, and the majority (94.7%) reported no significant life events. Of all the patients, 46 (18.9%)
patients underwent surgical treatment, 122 (50.2%) patients received heteropathy, and 75 (30.9%) patients received other
therapies. There were no statistically significant differences (p < 0.05) in the demographic and clinical characteristics of the
patients except for family financial pressure and the significant life events, which were examined by the Wilcoxon test and the
Kruskal-Wallis H test from the EQ-5D, as appropriate.

Table 1 Patient characteristics at baseline (N = 243)
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Characteristics of the sample N (%) p

Age: mean (SD) 56.34(8.36)  

Gender    

Male 57(28.4) 0.799

Female 137(71.6)  

Age, years    

<44 23(9.5) 0.674

45–49 36(14.8)  

50–54 46(18.9)  

55–59 47(19.3)  

60–64 40(16.5)  

65–69 35(14.4)  

>70 16(6.6)  

Marital status    

Never married or cohabit 28(11.5) 0.092

Married 196(80.7)  

Widowed/divorced 19(7.8)  

Level of Education    

Primary or below 21(8.6) 0.327

Secondary 177(72.9)  

Postsecondary 45(18.5)  

Complication    

Yes 9(3.7) 0.763

No 234(96.3)  

Medical insurance    

Urban employees 110(45.3) 0.772

Urban residents 89(36.3)  

New rural cooperative scheme 35(14.4)  

Other 9(3.7)  

Occupation    

In employed 72(29.6) 0.567

Self-employed entrepreneurs 93(38.3)  

Unemployed/Retired 78(32.1）  

Family financial pressure    

Almost no effect 134（55.1） <0.001
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Barely acceptable 46（18.9）  

under pressure 37（15.2）  

under great pressure 26（10.7）  

Significant life events    

Yes 13（5.3） 0.008

No 230（94.7）  

Tumor site    

Lung 28(11.5)  

Breast 41(16.9) 0.798

Colorectal 26(10.7)  

Esophageal 25(10.3)  

Stomach 42(17.3)  

Hepatobiliary 81(33.3)  

House income, CNY    

<40,000 66(27.2) 0.592

40,000-79,999 112(46.1)  

>80,000 65(26.7)  

Treatment protocols    

Surgical treatment 46(18.9) 0.546

heteropathy 122(50.2)  

others 75(30.9) 　

p, Wilcoxon rank-sum tests for two categories or Kruskal-Wallis test for more than two categories.

The distributions of the EQ-5D utility index and the FACT-G total and subscale scores are described in Table 2. The mean
values of EQ-5D and FACT-G utility scores were 0.935 and 82.7, respectively. The value of EQ-5D ranged from 0.364 to 1.000,
and the median was 1.000, with 62.7% of the subjects having the highest score. All FACT-G scores reached their ceiling levels
but the FACT-G total score was negligible, with notable values for the PWB (27.2%), EWB (6.2%), SFWB (7.8%), FWB (5.8%), and
FACT-G total (0.8%). Cronbach’s α of all scales exceeded the threshold value (α ≥ 0.7), which was considered satisfactory.
Likewise, all the scales exceeded the threshold for good reliability (α ≥ 0.8), except for the SFWB subscale (α = 0.683). Both the
EQ-5D and FACT-G utility scores were negatively skewed.
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Table 2 Descriptive Statistics for the FACT Scales and EQ-5D Scales scores

Scores N Mean SD Median Min Max Celling effect (%) Cronbach’s α

EQ-5D 243 0.935 0.099 1.000 0.364 1.000 62.7 0.880

Physical 243 24.5 4.2 26 4 28 27.2 0.865

Emotional 243 19.7 5.9 20 1 28 6.2 0.886

Social 243 19.8 3.1 21 10 24 7.8 0.683

Functional 243 18.7 6.3 20 0 28 5.8 0.934

FACT-G 243 82.7 14.8 86 42 108 0.8 0.921

Spearman’s rank correlation coefficients between the EQ-5D and FACT-G (including the total and four subscales) are shown in
Table 3. Most of the scores showed moderate and high correlations. The correlation coefficient between the EQ-5D utility index
and FACT-G total scores was 0.5382. The correlation coefficient between SFWB and other scores showed negligible
correlations except for the FACT-G total, EWB, and FWB scores. All correlations are significant at the 0.05 level after Bonferroni
correction. 

Table 3 Convergent validity of EQ-5D-3L and FACT-G using Spearman’s rank correlation

Dimension EQ-5D index FACT-G PWB SFWB EWB FWB EQ-5VAS

EQ-5D index 1            

FACT-G 0.5382* 1          

PWB 0.7307* 0.6305* 1        

SFWB 0.1295 0.7480* 0.0698 1      

EWB 0.5331* 0.7195* 0.5948* 0.3028* 1    

FWB 0.3889* 0.8935* 0.3861* 0.6325* 0.5129* 1  

EQ-5D VAS 0.5104* 0.3896* 0.4500* 0.0898 0.3847* 0.3391* 1

All correlations are significant at 0.05 level after Bonferroni corrections:* p<0.05.

Tables 4 and 5 present the results of the regression analyses using the Chinese value set. Model 2 performed better than Model
1 within each domain concerning the FACT-G scores. Although Model 3 was relatively consistent with Model 2, Model 3
included only statistically significant domains; hence, Model 3 was more concise. Model 5 performed better than Models 1 to 4
using a different regression method. Although the model with squared terms and interaction terms performed better, effectively
improving the accuracy of models and performance in Models 4 and 5, some of these terms were not significant and the
coefficient estimates were small. The results of r2, adjusted r2, MAE, MSE, and MAPE of the OLS, CLAD, and GLM models were
similar. The OLS model generally had the largest adjusted r2 (0.2867 to 0.6085), and the TPM had the smallest adjusted r2

(0.5129 to 5444). Among the five models, Model 5 had the largest adjusted r2 using different regression methods compared to
the others, which significantly improved the fitting degree of the model. The OLS model also had the smallest AIC and BIC
values, ranging from (-649.1294 and, -614.1988) to (-511.148 and, -504.162), respectively. The CLAD model (0.0423-0.0469)
had the lowest MAE compared to the other models. In terms of the accuracy of prediction in MAE, the CLAD model performed
better than the other models. The best performing algorithms were identified for each scale according to the lowest
MAE/RMSE scores, namely Models 5 for FACT-G in the CLAD model.

Table 4 Regression of EQ-5D utility index upon FACT–G scores
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Variable OLS 　  

Model1 Model2 Model3 Model4 Model5 　  

FACT-G Total 0.004*            

PWB   0.015* 0.015* 0.038* 0.014    

SFWB   -0.001          

EWB   0.004 0.004 0.006 0.005    

FWB   0.001 0.001 0.001 0.013*    

PWB^2       -0.001* -0.001*    

EWB^2       -0.0002 -0.001*    

FWB^2       0.0001 0.0001    

PWB*EWB         0.002*    

PWB*FWB         -0.0004    

EWB*FWB         -0.000    

Constant 0.636* 0.477* 0.475* 0.232 0.410*    

R-squared 0.2896 0.5545 0.5544 0.5767 0.6230    

Adj R-squared 0.2867 0.5470 0.5489 0.5660 0.6085    

Root MSE 0.0842 0.0671 0.0670 0.0657 0.0624    

AIC -511.148 -618.5225 -620.5041 -626.9642 -649.1294    

BIC -504.162 -601.0572 -606.5318 -602.5127 -614.1988    

MAE 0.0614 0.0482 0.0482 0.0488 0.0448    

MSE 0.0070 0.0044 0.0044 0.0042 0.0037    

MAPE 0.0737 0.0570 0.0570 0.0569 0.0522 　  

Table 4 Regression of EQ-5D utility index upon FACT–G score (Continued)  

 

Variable GLM    

Model1 Model2 Model3 Model4 Model5    

FACT-G Total 0.004*            

PWB   0.017* 0.017* 0.049* 0.022*    

SFWB   0.000          

EWB   0.001 0.001 -0.007 0.003    

FWB   0.001 0.001 0.001 0.013*    

PWB^2       -0.001* -0.001*    

EWB^2       0.000 -0.001    

FWB^2       0.000 0.000    

PWB*EWB         0.002*    
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PWB*FWB         -0.001*    

EWB*FWB         -0.000    

Constant 0.632* 0.467* 0.470* 0.238 0.345*    

R-squared 0.2896 0.5506 0.5508 0.5703 0.6176    

Adj R-squared 0.2867 0.5430 0.5451 0.5593 0.6028    

Root MSE 0.2726 0.2406 0.2401 0.2439 0.2336    

AIC 456.669 461.7348 459.735 465.5624 471.3904    

BIC 463.6551 479.2001 473.7073 490.0138 506.321    

MAE 0.0614 0.0482 0.0481 0.0499 0.0453    

MSE 0.0070 0.0045 0.0044 0.0043 0.0038    

MAPE 0.0736 0.0567 0.0566 0.0578 0.0523    

                           

* p <0.05
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Table 5 Regression of EQ-5D utility index upon FACT–G scores

 

Variable Tobit Clad TPM

Model 3 Model 4 Model 5 Model 3 Model 4 Model 5 Model 3 Model 4 Model 5

FACT-G                  

PWB 0.022* 0.015 -0.036 0.01354* 0.0583* 0.0193* 0.010* 0.055* 0.048*

SFWB                  

EWB 0.012* -0.020 -0.011 0.00271* 0.04653* 0.0231* -0.003 -0.000 0.001

FWB 0.003 -0.001 0.006 0.00039* -0.00076* 0.0236* 0.002 -0.000 0.012

PWB^2   0.000 -0.000   -0.0011* -0.0009*   -0.001* -0.001*

EWB^2   0.001 -0.002   -0.0011* -0.0017*   -0.000 -0.000

FWB^2   0.000 0.000   0.00003* 0.00007*   0.000 0.000

PWB*EWB   0.004*     0.0023*     0.001

PWB*FWB   -0.000     -0.0005     -0.001

EWB*FWB   -0.000     -0.0006     -0.000

Constant 0.192* 0.549 1.008* 0.5587* -0.3047 0.1512 0.625* 0.222 0.197

r2 0.5450 0.5264 0.5616 0.5528 0.5484 0.5690 0.5189 0.5501 0.5904

Adj r2 0.5393 0.5144 0.5447 0.5472 0.5369 0.5524 0.5129 0.5176 0.5444

Root
MSE

0.3606 0.3687 0.3659 0.0700 0.06924 0.0708 0.1079 0.0605 0.0588

AIC 31.5941 35.6972 22.0049 NA NA NA -218.219 -242.7056 -245.1569

BIC 49.0594 63.6417 60.4286 NA NA NA -208.1297 -225.2069 -220.1588

MAE 0.1159 0.1201 0.1181 0.0469 0.0441 0.0423 0.0952 0.1114 0.1109

MSE 0.0172 0.0187 0.0184 0.0048 0.0047 0.0048 0.0115 0.0159 0.0158

MAPE 0.1279 0.1320 0.1284 0.0574 0.0529 0.0506 0.1021 0.1167 0.1160

* p <0.05

The distribution of the observed and predicted utility values were summarized in Table 6. The observed mean EQ-5D utility
value was 0.9353, and the median, 90th percentile, and maximum performed the boundary values on account of the ceiling
effect of 63.7%. The OLS model is the same as the observed values, and the GLM and CLAD models tended to be much closer
to the observed values. However, the Tobit model and TPM had a poor prediction of the means and medians when compared
to the predictions obtained. Based on the five regression models, the predicted values exhibited a smaller standard deviation
and a larger maximum, except for the Tobit model and TPM, which overestimated and underestimated full health, respectively.
As expected, all the models had surpassed the upper bound observed value of 1, except for the TPM. We also used the
Wilcoxon matched-pairs signed-ranks test to examine the distribution between the predicted and observed values in each
regression model, which showed statistical significance except for OLS 4, OLS 5, and GLM 3 ( all p <0.05). 
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Table 6 Descriptive summary of EQ-5D utility indices derived from observed and predicted regression models

Model Mean SD Min P10 Median P90 Max

Observed 0.9353 0.0997 0.3640 0.7830 1.0000 1.0000 1.0000

OLS3 0.9353 0.0742 0.6390 0.8254 0.9619 1.0001 1.0148

OLS4 0.9353 0.0757 0.5173 0.8390 0.9651 0.9909 1.0086

OLS5 0.9353 0.0787 0.4726 0.8268 0.9627 0.9983 1.0046

GLM3 0.9355 0.0779 0.5990 0.8209 0.9651 1.0015 1.0125

GLM4 0.9355 0.0772 0.4407 0.8489 0.9630 0.9890 1.0087

GLM5 0.9354 0.0798 0.4055 0.8308 0.9640 0.9971 1.0006

Tobit3 1.0323 0.1309 0.5893 0.8265 1.0772 1.1548 1.1903

Tobit4 1.0355 0.1350 0.6154 0.8269 1.0794 1.1709 1.2265

Tobit5 1.0340 0.1409 0.4798 0.8167 1.0682 1.1876 1.2310

CLAD3 0.9510 0.0674 0.6796 0.8507 0.9753 1.0101 1.0225

CLAD4 0.9593 0.0831 0.4307 0.8677 0.9953 1.0003 1.0024

CLAD5 0.9494 0.0837 0.6070 0.8322 0.9872 1.0055 1.0484

TPM3 0.8591 0.0441 0.6612 0.7971 0.8735 0.8972 0.9519

TPM4 0.8408 0.0440 0.4638 0.8137 0.8472 0.8736 0.9558

TPM5 0.8407 0.0439 0.4689 0.8176 0.8465 0.8687 0.9471

 

Table 7 presents the predicted mean observed and predicted EQ-5D utility values with the statistically significant demographic
and clinical characteristic features in the best models from the different regression algorithms. Compared with TPM 3 and
Tobit 3, the estimated health utilities from OLS 5, GLM 5, and CLAD 5 were closer to the observed values from the EQ-5D. We
also found that all models tended to overpredict the higher top and bottom end of the EQ-5D utility: because a few responders
in the FACT-G data set reported severe problems. In addition, the CLAD model predictive performance was more accurate than
other models under the influence of heteroscedasticity and various misspecification confounding factors.
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Table 7 Summary of observed EQ-5D values of different model performance statistics for the Best-performing FACT-G
models

Model validation N Observed Values Predicted value

OLS5 GLM5 Tobit3 Clad5 TPM3

Family financial pressure              

Almost no effect 134 0.9481 0.9522 0.9499 1.0657 0.9642 0.8674

Barely acceptable 46 0.9618 0.9485 0.9485 1.0547 0.9628 0.8674

Under pressure 37 0.9054 0.8986 0.9094 0.9644 0.9270 0.8387

Under great pressure 26 0.8652 0.8776 0.8750 0.9166 0.8806 0.8231

ANOVA   F=17.087 F=33.733 F=23.586 F=43.945 F=22.96 F=31.188

P   P<0.001 P<0.001 P<0.001 P<0.001 P<0.001 P<0.001

Significant life events              

No 230 0.9393 0.9380 0.9381 1.0377 0.9518 0.8599

Yes 13 0.8658 0.8877 0.8879 0.9367 0.9057 0.8302

ANOVA   F=6.850 F=5.708 F=4.956 F=7.518 F=3.780 F=7.874

P   P=0.009 P=0.018 P=0.027 P=0.007 P=0.048 P=0.018

Discussion
Several mapping studies have been developed to predict generic preference-based scores from non-preference-based scores in
cost-utility analyses. We developed an algorithm that maps the EQ-5D health utility index of the general cancer population
from the FACT-G based on the data collected from a cross-sectional study in China. The current study suggested that the
consistency between the predicted and observed EQ-5D utility scores was feasible among five models algorithms. Meanwhile,
it also confirmed that the FACT-G no-preference-based scores can estimate EQ-5D health utility scores by using a mapping
function. Our findings suggest that the OLS model, GLM, and CLAD model are better for predicting EQ-5D utilities compared to
the Tobit model and TPM in terms of goodness of fit and model performance.

In this study, the coefficients of PWB, EWB, and FWB were significant in most models for all the regression algorithms, whereas,
the coefficient of SFWB was not significant in most models. Hence, the SFWB score of the FACT-G was not included in the
regression model. We found that the SFWB was not statistically significant and showed weak correlations with the EQ-5D
utility index compared to other FACT-G and EQ-VAS subscale. Previous research showed that mapping studies tended to
confirm the predictive ability of health utility more easily when exploring the correlation between the EQ-5D and FACT-G scales
[3, 32, 33]. Furthermore, the SFWB was also not statistically associated with the EQ-5D utility index due to the lack of social-
related functions [23]. Some of the previous study also showed that the correlation coefficients of SFWB were negative in
regression models, with mapping studies of FACT-P [8], FACT-L [32], FACT-G [25], and FACT-B [19]. That is to say, social or
functional well-being has no direct relevance with the individual’s health utility, as it is unlikely that better social well-being
would decrease health utility.

In this study, we found that the OLS model had the largest r2 and adjusted r2 among the regression models. The r2 and
adjusted r2 values of all models were larger than 0.5, except for Model 1, which indicated that the model had good explanatory
power. A systematic review of mapping studies showed that a more complex approach including interaction and squared
terms and non-health-related variables (e.g., socio-demographics) was feasible and improved the accuracy of the model by r2

and adjusted r2 [34]. Therefore, we used the squared terms and interaction terms in Models 4 and 5 to improve model
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performance and make more accurate predictions for this study. In previous studies, the model’s explanatory power ranged
from 0.417 to 0.909 in terms of r2 [15]. The r2 of model OLS 5 reached 0.623, indicating that the model performed well. The
predictive performance of the models is to examine the difference between the predicted and observed values for assessing
the mapping algorithm by MAE and RMSE. The OLS model has the lowest MAE, and the TPM has the lowest RMSE. However,
taking the MAE as the predictive criterion in the regression model, the OLS model, GLM, and CLAD model have a similar
goodness of fit results, but the Tobit model and TPM did not perform well in the current study. A literature review [34] showed
that the MAE values ranged from 0.0011 to 0.19, representing a margin of error of up to 15% of the range of the preference-
based measure with the uncertainty of the mapping estimation [35].

Our finding demonstrated that the OLS model had the best goodness of fit and was considered the best compared to other
models. This result is consistent with previous literature studies mapping a disease-specific instrument to a preference-based
instrument [15, 19, 36]. The results of this study show that EQ-5D has a high ceiling effect (62.7%), which is similar to a
previous study on the general population in the United States, which presented a relatively high EQ-5D index score (50%) on the
ceiling effect[37]. Most mapping functions have been estimated by the CLAD model, Tobit model, and TPM because the
collected data suffer from a high ceiling effects. A study found that the CLAD model was more closely related to the health
utility values between the OLS and CLAD models, when mapping FACT-G to EQ-5D health utility [25]. Previous studies showed
that CLAD and OLS models perform better than the Tobit model using mean prediction in a developed mapping algorithm [38].
Although the Tobit and CLAD models allow to censor the data of preference-based measures and censored the predicted
values at 1, they performed poorly under the serious assumptions of heteroscedasticity and non-normality in economic
evaluation and should not be used for estimating the health utility index [39]. We also used the GLM with the Gamma family
with an identity link function that replaced the Gaussian family as it performed similar results with the OLS model. Gamma
regression performed well by the skewed distribution of health utility values. The TPM deals with the ceiling effect by
separately modeling the full health utility values of 1 and the not- perfect health values of less than 1, as previously reported in
the literature [19, 20, 22]. However, contrary to previous findings, the TPM in this study showed a worse predictive effect than
other models [4]. In addition, there may be a multicollinearity problem in TPM, and the specific data distribution leads to
misspecification. It is also possible that the model's predictions were too low because fewer patients with poor health
responded to the survey. Nevertheless, while the TPM did not perform well, it could also deal with the boundary problem in
most situations when the second TPM takes a more stringent setting.

Most of the previous literature studies have been published to explore the predictive performance of the model when
developing a mapping function to estimate EQ-5D preference-based health utility values from a disease-specific measure of
FACT-G for cancer patients in cost-utility analysis. These studies show that mapping models focus more on the selection
criteria of model performance and prediction ability. The most appropriate model depends on the data and the way they are
applied. Some mapping studies have reported that the predictive performance of disease-specific measures was achieved by
using statistical criteria and standards based on the MAE, MSE, and RMSE criteria to compare the difference between the
predicted and the observed values [2, 4, 23]. However, although the values of r2, MAE, and RMSE were higher than those of
previous studies, the overall predictive ability was not satisfactory. We used the mean scores of the FACT-G instead of the
patient’s prediction when predicting the mean of the EQ-5D utility index [40]. In addition, uncertainties or errors in the economic
assessment may affect the accuracy of the utility value, leading to an incorrect estimation of the patient's HRQoL, and further
research is needed to assess their impact on the mapping algorithm [2].

Our current study demonstrated that the predictive performance of the FACT-G was effective in the OLS model in the Chinese
cancer population. Although the OLS model is a common mapping algorithm and the predicted values are close to the true
values, it requires very strict assumptions, namely those of normal distribution and homogeneity of variance. In addition,
previous studies have shown that OLS produces a low predictive ability, which will affect its prediction performance. This is
similar to previous literature studies that overestimated those with poor health and underestimated those with good health
utility values, as shown in Table 6 [15, 41]. Therefore, as reported by Zhang et al., the mapping algorithm of cost-utility analysis
predicts the average utility index of the general population, rather than at the individual level [25]. When the data distribution is
heavily skewed, it is important to consider the proportion of cancer patients who are in poor health.
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There are several limitations to this study. First, the study suffers from a high ceiling effect in the health utility index, which
was 62.7% for Chinese cancer patients, leading to a high mean EQ-5D values of 0.9353. This may be due to the smaller
proportion of people in poorer health. Moreover, we did not observe a negative EQ-5D utility value, which limits the
generalizability of outcomes in more severe patients. That is, the study did not take full advantage of the potential range of
scores by the Liu et al. algorithm. Recently published studies have suggested that an increasing number of countries are using
the EQ-5D-5L tool as a preference-based measure instead of EQ-5D-3L due to its ability to reduce ceiling effects and sensitivity
[42]. In addition, the Chinese value set of EQ-5D-5L was published in 2017 [43]. Second, the EQ-5D-3L value set we used is
based on the general Chinese population preference sample, which may not apply to other countries due to cultural and other
differences. Therefore, the value set should be based on a mapping algorithm developed according to the country's specific
preferences for economic assessment analysis. Finally, the study collected a relatively small sample and the data consisted of
Chinese patients with five different types of cancer. Therefore, future studies need a larger sample size and external data to
verify the generalizability of this study.

Conclusion
We developed a FACT-G to EQ-5D mapping algorithm for the economic assessment analysis of cancer patients in China. The
algorithm found that the OLS model, GLM, and Tobit models perform well and have a good predictive ability compared to the
observed and predictive EQ-5D utility scores among all the regression models, so the three models preferred to predict EQ-5D
values in mapping studies. The findings in this study may provide policymakers and researchers with references for the
economic evaluation of specific health conditions in cost-utility analysis when estimating the health utilities of cancer patients.
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