[1] Zhang T, Liu B, Ahmad W et al (2017) Optical and electronic properties of femtosecond laser-induced sulfur-hyperdoped silicon N+/P photodiodes. Nanoscale Res Lett 12(1): 1-4
[2] Jin Y, Wang J, Sun B et al (2008) Solution-processed ultraviolet photodetectors based on colloidal ZnO nanoparticles. Nano Lett 8(6): 1649-1653
[3] Chen X, Zhu H, Cai J et al (2007) High-performance 4H-SiC-based ultraviolet p-i-n photodetector. J Appl Phys 102(2): 024505
[4] Tennant W E (2012) Interpreting mid-wave infrared MWIR HgCdTe photodetectors. Prog Quantum Electron 36(2-3): 273-292
[5] Gong X, Tong M, Xia Y et al (2009) High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm. Science 325(5948): 1665-1667
[6] Baeg K J, Binda M, Natali D et al (2013) Organic light detectors: photodiodes and phototransistors. Adv Mater 25(31): 4267-4295
[7] Li S, Zhang P, Wang Y et al (2017) Interface engineering of high efficiency perovskite solar cells based on ZnO nanorods using atomic layer deposition. Nano Res 10(3): 1092-1103
[8] Leijtens T, Stranks S D, Eperon G E et al (2014) Electronic properties of meso-superstructured and planar organometal halide perovskite films: charge trapping, photodoping, and carrier mobility. ACS Nano 8(7): 7147-7155
[9] Dursun I, Zheng Y, Guo T et al (2018) Efficient photon recycling and radiation trapping in cesium lead halide perovskite waveguides. ACS Energy Lett 3(7): 1492-1498
[10] De Wolf S, Holovsky J, Moon S J et al (2014) Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance. J Phys Chem Lett 5(6): 1035-1039
[11] Miyata A, Mitioglu A, Plochocka P et al (2015) Direct measurement of the exciton binding energy and effective masses for charge carriers in organic–inorganic tri-halide perovskites. Nat Phys 11(7): 582-587
[12] Wehrenfennig C, Eperon G E, Johnston M B (2014) High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Adv Mater 26(10): 1584-1589
[13] Kojima A, Teshima K, Shirai Y (2009) Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc 131(17): 6050-6051
[14] http://www.nrel.gov/pv/assets/images/efficiency-chart.gnp [OL]
[15] Saidaminov MI, Adinolfi V, Comin R et al (2015) Planar-integrated single-crystalline perovskite photodetectors. Nat Commun 6(1):1-7
[16] Dou L, Yang Y, You J, et al (2014) Solution-processed hybrid perovskite photodetectors with high detectivity. Nat Commun 5(1):1-6
[17] de Arquer FPG, Armin A, Meredith P, et al (2017) Solution-processed semiconductors for next-generation photodetectors. Nat Rev Mater 2(3): 1-17
[18] Wang N, Cheng L, Ge R et al (2016) Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nat Photonics 10(11): 699-704
[19] Zou W, Li R, Zhang S et al (2018) Minimising efficiency roll-off in high-brightness perovskite light-emitting diodes. Nat Commun 9(1): 1-7
[20] Lin K, Xing J, Quan LN et al (2018) Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature 562(7726): 245-248
[21] Liu P, He X, Ren J et al (2017) Organic–inorganic hybrid perovskite nanowire laser arrays. ACS Nano 11(6): 5766-5773
[22] Sutherland BR, Sargent EH (2016) Perovskite photonic sources. Nat Photonics 10(5): 295
[23] Tang X, Hu Z, Yuan W (2017) Perovskite CsPb2Br5 microplate laser with enhanced stability and tunable properties. Adv Opt Mater 5(3): 1600788
[24] Shang Q, Li M, Zhao L et al (2020) Role of the exciton–polariton in a continuous-wave optically pumped CsPbBr3 perovskite laser. Nano Lett 20(9): 6636-6643
[25] Niu G, Guo X, Wang L (2015) Review of recent progress in chemical stability of perovskite solar cells. J Mater Chem A 3(17): 8970-8980
[26] Domanski K, Correa-Baena JP, Mine N (2016) Not all that glitters is gold: metal-migration-induced degradation in perovskite solar cells. ACS Nano 10(6): 6306-6314
[27] Zhang T, Wang F, Chen H et al (2020) Mediator–Antisolvent Strategy to Stabilize All-Inorganic CsPbI3 for Perovskite Solar Cells with Efficiency Exceeding 16%. ACS Energy Lett 5(5): 1619-1627
[28] Zhang T, Wang F, Zhang P et al (2019) Low-temperature processed inorganic perovskites for flexible detectors with a broadband photoresponse. Nanoscale 11(6): 2871-2877
[29] Xiang W, Tress W (2019) Review on recent progress of all‐inorganic metal halide perovskites and solar cells. Adv Mater 31(44): 190285
[30] Chen W, Chen H, Xu G et al (2019) Precise control of crystal growth for highly efficient CsPbI2Br perovskite solar cells. Joule 3(1): 191-204
[31] Zhang J, Bai D, Jin Z et al (2018) 3D–2D–0D interface profiling for record efficiency all-inorganic CsPbBrI2 perovskite solar cells with superior stability. Adv Energy Mater 8(15): 1703246
[32] Yan L, Xue Q, Liu M et al (2018) Interface engineering for all-inorganic CsPbI2Br perovskite solar cells with efficiency over 14%. Adv Mater 30(33): 1802509
[33] Kind H, Yan H, Messer B et al (2002) Nanowire ultraviolet photodetectors and optical switches. Adv Mater 14(2): 158-160
[34] Zhang T, Wu J, Zhang P et al (2018) High Speed and stable solution‐processed triple cation perovskite photodetectors. Adv Opt Mater 6(13): 1701341
[35] Shaikh PA, Shi D, Retamal JRD et al (2016) Schottky junctions on perovskite single crystals: light-modulated dielectric constant and self-biased photodetection. J Mater Chem C 4(35): 8304-8312
[36] Guan X, Hu W, Haque M A et al [2018] Light‐responsive ion‐redistribution‐induced resistive switching in hybrid perovskite Schottky junctions. Adv Funct Mater 28(3): 1704665