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Abstract
Inorganic materials depleted of heavy stable isotopes are known to deviate strongly in some physico-
chemical properties from their isotopically natural (native) counterparts; however, in biotechnology such
effects have not been investigated yet. Here we explored for the first time the effect of simultaneous
depletion of the heavy carbon, hydrogen, oxygen and nitrogen isotopes on the bacterium E. coli and the
enzymes expressed in it. Bacteria showed faster growth, with proteins exhibiting higher thermal stability,
while for recombinant enzymes expressed in ultralight media, faster kinetics was discovered. At room
temperature, luciferase, thioredoxin and dihydrofolate reductase showed a 40-250% increase in activity
compared to the native counterparts. The efficiency of ultralight Pfu DNA polymerase in polymerase
chain reaction was also significantly higher than that of the normal enzyme. At 10 °C, the advantage
factor of ultralight enzymes typically increased by 50%, which points towards the reduction in structural
entropy as the main factor explaining the kinetic effect of heavy isotope depletion. Ultralight enzymes
may find an application where extreme reaction rates are required.

Introduction
Isotopes are atoms of the same element that share the same atomic number, but possess different
number of neutrons, which is translated in a mass difference. Most elements have several stable isotopes
(e.g., carbon has two and oxygen – three stable isotopes), and thus almost all natural compounds have a
polyisotopic composition. The question to what extent the isotopic composition plays a role in physical,
chemical and biological processes has interested scientists since the discovery of stable isotopes by
Aston in 1919. To answer this question best, pure isotopes of different elements have been isolated and
studied. The materials and compounds in which the heavier, less abundant isotopes have been
significantly depleted are called here ultralight or (near-)monoisotopic.  In solid state physics, it has been
found that near-monoisotopic materials possess strongly deviating properties: e.g., silicon 28Si (99.87%)
has a 60% higher thermal conductivity at 80K than silicon with natural (≈92% 28Si) isotopic
composition1. Qualitatively similar results have been obtained for monoisotopic diamond (99.8% 12C)2

and gallium arsenide. Strikingly, the thermal conductivity of germanium enriched to 99.99% 70Ge
increased up to 8 times compared to the natural isotopic composition, in which the share of 70Ge among
the five stable gallium isotopes is 21.2%3. Today, monoisotopic 28Si that is free of nuclear spins causing
decoherence in a quantum system emerges as a critical material in the development of quantum
information devices, such as quantum computers3.

On the molecular level, monoisotopic species can exhibit different kinetics of formation than their
polyisotopic counterparts. In the reaction of ozone O3 synthesis from molecular oxygen O2 by electrical
discharge, the isotope effects alter the reaction rates by typically 10% to 20% depending on the pressure
and temperature of the gas in which ozone is formed4. The strictly monoisotopic isotopomers 16O16O16O,
17O17O17O and 18O18O18O have been found to deviate in formation kinetics from other isotopomers,
especially the tri-isotopic 16O17O18O 5, 6.   
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In biological systems, each of the four most abundant elements (C, H, O and N) has more than one stable
isotope, the lighter one being the most abundant (e.g., the share of 12C is 98.9%). Microbes, plants and
animals, including mammals, can grow in an environment with significantly altered ratios of stable
isotopes compared to natural, but the phenotype of the organisms can be significantly affected7-14. The
researchers concluded that the “organisms of different isotopic compositions are actually different
organisms, to the degree that their isotopic compositions are removed from naturally occurring
compositions”10. 

Among the studies in which the heavy isotopes have been depleted, most reported effects relate to
deuterium depletion in water. A major deuterium-depleted water (DDW) phenomenon is the depressed
growth of cancer cells15, 16, which is currently being exploited in a clinical trial17, 18.   Recently, while
studying the antiproliferation effect of DDW in human lung adenocarcinoma cells, we found that DDW
induces mitochondrial redox imbalance which leads to oxidative stress19. In general, deuterium
concentration around the natural value of 150 ppm is found to be a cell growth regulator20. 

It is the easiest to manipulate the isotopic composition of bacteria and yeast, as some strains of these
can grow on minimal media composed of water, inorganic salts and a simple organic compound (e.g., an
amino acid, glucose or carboxylic acid) as a source of carbon. For instance, the effect of depletion of 13C
on E. coli bacteria growth has been reported21. 

Simultaneous depletion of several heavy stable isotopes in growth media leading to nearly-monoisotopic
organisms have been used for decades to produce near-monoisotopic bacterial proteins for structural
studies, e.g. with high-resolution mass spectrometry22, 23. However, the effect of the ultralight
composition on organism’s phenotype has not been reported yet to the best of our knowledge. Having
acquired considerable experience in measuring the parameters of bacterial growth in various isotopic
environments21, 24-26, we decided to investigate the effect of the depleted media on the growth and
phenotype of E. coli. For this, we formulated a M9 minimum media based on 13C-depleted glucose and
15N-depleted salt dissolved in D,18O-depleted water (Depleted media). As a control, the growth of E. coli in
isotopically natural media (Normal media) was monitored. Four different enzymes were recombinantly
produced in Depleted as well as Normal media, and their activity was carefully measured. We found
much bigger effects than previously reported for isotope phenomena in molecules, including the kinetics
of ozone formation. 

Results
The growth of E. coli BL21. The values of lag time, maximum growth rate and maximum density were
used21 for comparison of the E. coli growth in Normal and Depleted media (Fig. 1a). All three parameters
indicated that the Depleted media was more beneficial for bacterial growth, providing a significantly (all
p-values <<10−6, n = 21) higher maximum density, faster growth rate as well as a shorter lag time
(Fig. 1b).
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LC-MS analysis of bacterial lysate showed that in most proteins with MW <20 kDa the monoisotopic
mass dominates in the isotopic distribution of molecular ions (Fig. 1c). Fourier Transform Isotopic Ratio
Mass spectrometry (FT IsoR MS) of the peptide digest obtained from E. coli lysate that is based on the
analysis of the “fine structure” of fragment immonium ions of amino acid residues proved deep depletion
of 13C, significant depletion of 15N as well as a moderate reduction in deuterium in bacterial proteins
(Fig. 1d).

Dose dependence in Depleted media dilution. When the Depleted media was diluted by the Normal media
to below 80%, the maximum density of E. coli bacteria started to deviate significantly from that in pure
Depleted media (Fig. 1e), while maximum growth rate was affected only at a dilution below 40%
(Supplementary Fig. 1).

Thermal stability of bacterial proteins. Thermal proteome profiling is rapidly becoming one of the
standard methods of proteome analysis27. Briefly, the cellular or bacterial lysate undergoes a 3 min
incubation at a set of fixed temperature points ranging from 37°C to 83°C, after which the denatured
proteins that lost their solubility are spun down and the concentration of each remaining protein in the
supernatant is measured by proteomics. The resultant data are fitted with a sigmoidal curve (Fig. 2a), and
the middle point provides the melting temperature Tm. When two growth conditions are compared, the
melting temperature difference ∆Tm is considered.

The distribution of E. coli ∆Tm values (Fig. 2b, Supplementary Table 1) reveals that more proteins
increase their thermal stability upon becoming ultralight than decrease this stability. The median melting
temperature of such proteins was ∆Tm= 1.0±0.1°C higher than that of the proteins obtained in Normal
media (Supplementary Fig. 2).

We also noticed that the melting curve of many ultralight proteins shows steeper decline with temperature
than their isotopically natural counterparts. To test this observation, the melting curves were fitted with
the equation:

y = ((1 –Pl) / (1 + exp((x-Tm)/(B×x)))) + Pl (1)

where the term B is responsible for the slope steepness (lower values mean steeper curve) and Pl is
plateau. Of the 316 proteins found with significantly (p<0.05) altered slope, 239 proteins (76%) had a
steeper slope in the ultralight form (Fig. 2c, Supplementary Table 2). The median slope of ultralight
proteins was 27% higher than that of the proteins in Normal media (Fig. 2d).

Luciferase YY5. We expressed recombinantly luciferase YY528 in E. coli grown in both Normal and
Depleted media. In order to ensure validity of the comparison, a single peak in size-exclusion
chromatography (SEC) was isolated (Supplementary Fig. 3a) possessing activity. However, mass
spectrometry (MS) analysis showed that the isolated peak contains at least two molecules with different
molecular weights. Therefore, an additional purification step using strong cation exchange (SCX)
chromatography was implemented, which gave two well-separated fractions, fracI and fracII
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(Supplementary Fig. 2b). Both fractions, especially fracII, showed strong luciferase activity, and MS
analysis confirmed that fracII contains just one molecular specie. Tandem MS analysis of that fraction
provided isotopic distribution of the y87

12+ backbone fragment, with the monoisotopic mass dominant in
the Ultralight sample, consistent with strong depletion of heavy isotopes in that sample (Fig. 3a). Charge
deconvolution provided the average isotopic molecular mass of 61,728.9±0.3 Da of the Normal luciferase
in fracII, which was by 240.8±0.3 Da higher than expected (Supplementary Fig. 3e). The difference was
attributed to a combination of biotinylation and methylation, which are common post-translational
modifications (PTMs) in recombinant proteins29. The Ultralight fracII sample gave the average isotopic
mass of 61,697.5±0.3 Da, or 7.6±0.4 Da higher than the expected monoisotopic mass given the
240.8±0.3 Da mass shift due to a combination of biotinylation and methylation (Supplementary Fig. 3e).
Since in the Normal sample, the expected isotopic shift (the difference between the average isotopic and
monoisotopic masses)30 is 39.0 Da, the heavy isotopes in the Ultralight luciferase were depleted on
average by 81%:

Depletion% = [average MW (Normal - Ultralight)]/Isotopic shift ×100 (2)

The activity of fraction fracII was measured for different concentrations of the substrate D-luciferin
(Fig. 3b). The fitted Michaelis-Menten equation provided the Vmax and Km values. The maximum
reaction rate Vmax of the Ultralight luciferase was found to be 2.5±0.2 higher than the Normal one
(P=3⋅10−7, n=4), while the Km value (Michaelis constant, numerically equal to the substrate concentration
at which the reaction rate is half of Vmax) was not significantly changed. The activity of the Depleted
luciferase YY5 started to decline significantly when the Depleted media was diluted by the Normal media
to below 80% (Fig. 3d), which was a similar effect to that observed for E. coli growth parameters (Fig. 1e).

The fraction fracI turned out to be somewhat heterogeneous, with the main component corresponding to
a combination of double biotinylation and methylation (Supplementary Fig. 3c and 3d). This fraction
showed an order of magnitude lower activity than fracII (Supplementary Fig. 3f and 3g). It also
demonstrated a significant Ultralight/Normal ratio in maximum reaction rate (1.7±0.2, P=2×10−5), and a
small reduction in Km (0.87±0.05, P=0.02) (Supplementary Fig. 3h).

To test the refolding ability of the enzyme after thermal unfolding, the fracII luciferase samples were
incubated at 50°C for up to 100 min and then cooled down to RT. As expected, the enzyme activity has
dropped, but at all tested time points, the Ultralight enzyme demonstrated a 1.6±0.1 times higher activity
than the Normal enzyme (Fig. 3e). Importantly, at lower temperature than RT the ratio of Ultralight/Normal
activity for untreated fracII enzyme was increasing, reaching 2.3±0.1 times at 10°C (Fig. 3f).

Thioredoxin. Another tested enzyme was thioredoxin (Trx), an oxidation-reduction active enzyme
containing a cystine disulfide that is reduced to the dithiol cysteine form by thioredoxin reductase (TrxR)
with NADPH as a cofactor31. The reduced Trx can oxidize again by reducing its substrate, such as insulin
that is composed of peptide chains A and B linked together by two disulfide bonds. Reduction of insulin
in solution results in white precipitation originating from the free B chain, which is used for measuring Trx
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activity. Trx (Supplementary Fig. 4a-c) was expressed recombinantly in E. coli grown in both Normal and
Depleted media, purified and quantified by SEC (Supplementary Fig. 4d), with the purity verified by mass
spectrometry (Fig. 4a). Monoisotopic mass dominates in the isotopic distribution of molecular ions in the
Ultralight sample, which proved strong depletion of the heavy isotopes in that sample (Supplementary
Fig. 4e). The monoisotopic mass of the Ultralight protein was 11,784.9±0.1 Da, which was by 1.9±0.1 Da
lower than expected. The difference was attributed to a disulfide linkage between two cysteine residues,
which is a frequent post-translational modification in recombinant proteins 32. The depletion of Ultralight
Trx was 65%.

The activity of thioredoxin was measured for different concentrations of the substrate insulin (Fig. 4c) by
fitting the Michaelis-Menten equation (Fig. 4d). The maximum reaction rate of the Ultralight thioredoxin
was found to be (17±1)% higher than the Normal one (P=0.002, n=3), while the Km value was not
significantly altered.

The activity of enzyme was also measured at different temperatures in the range 15-40°C. As expected,
the enzyme activity dropped at lower temperature, but the Ultralight/Normal activity ratio increased to
2.0±0.3 at 15°C (Fig. 4e).

Dihydrofolate reductase. Dihydrofolate Reductase (DHFR) is a ubiquitous enzyme that is present in all
eukaryotic and prokaryotic cells. DHFR catalyzes the transfer of a hydride from NADPH to dihydrofolate
with an accompanying protonation to produce tetrahydrofolate, during which NADPH is oxidized to
NADP+. By monitoring the decrease in absorbance at 340 nm, at which NADPH has specific absorbance,
the ability of DHFR to catalyze the oxidation of NADPH can be measured. DHFR from Geobacillus
stearothermophilus (BsDHFR, Supplementary Fig. 5a and 5b) was expressed recombinantly in E. coli
grown in both Normal and Depleted media, purified and quantified by SEC (Supplementary Fig. 5c), with
the purity verified by mass spectrometry (Fig. 5a). Monoisotopic mass dominates in the isotopic
distribution of molecular ions in the Ultralight sample, while charge and isotope deconvolution of the
Normal BsDHFR mass spectrum provided the average molecular mass of 33820.4±0.2 Da, which was
only 0.2 Da lower than expected and within the experimental error. The average mass of the Ultralight
protein revealed the isotopic shift of 5.0±0.2 Da (Supplementary Fig. 5d), consistent with the depletion
degree of 76%.

The activity of BsDHFR was measured in the presence of 200 µM DHF and 100 µM NADPH. The decrease
in 340 nm UV absorbance for the reaction catalyzed by Ultralight BsDHFR was significantly faster
compared with the Normal enzyme (Fig. 5b), which was reflected in a steeper decreasing curve for
Ultralight BsDHFR. The fitted Michaelis-Menten equation (Fig. 5c) revealed a (70±2)% higher maximum
reaction rate for Depleted vs Normal BsDHFR (P=10−5, n=4), while the Km value was again not
significantly changed.

Similar to other tested enzymes, the activity of BsDHFR measured in the range 10-30°C dropped at lower
temperature, but the Ultralight/Normal activity ratio increased, reaching 2.1±0.2 at 10°C (Fig. 5e).
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Pfu DNA polymerase. Polymerase chain reaction (PCR) proved to be one of the biggest revolutions in
molecular biology. Due to its extremely high sensitivity and dynamic range, the potential for high
throughout as well as semi-quantitative nature, PCR is now widely used in research, clinical diagnostics,
etc. 33 For example, viral nucleic acid detection by real time (RT)–PCR remains the gold standard of
current diagnostic tests for the SARS-CoV-2 infection34. Although PCR is a mature technology, research is
still ongoing to obtain more efficient and DNA polymerase less prone to sequence errors35. Pfu DNA
polymerase36 is a high-fidelity, thermostable enzyme isolated from Pyrococcus furiosus. In this study, Pfu
was expressed recombinantly in E. coli grown in both Normal and Depleted media, purified and quantified
by SEC (Supplementary Fig. 6a), with the purity verified by mass spectrometry (Fig. 6a). In the Ultralight
sample, monoisotopic mass dominates in the isotopic distribution of b99

20+ ions, which confirms strong
depletion of heavy isotopes (Fig. 6a). Charge deconvolution of the Normal Pfu yielded the average
isotopic molecular mass of 100,194.3±0.6 Da, which was by 43.4±0.6 Da higher than expected
(Supplementary Fig. 6b). The difference was attributed to acetylation, possibly combination with
deamidation, which both are common PTMs in recombinant proteins29. Taking this into account, the
Ultralight sample (Supplementary Fig. 6b) gave the isotopic shift of 12.1±0.6 Da, which corresponds to
the depletion degree of 81%.

Human glyceraldehyde-3-phosphate dehydrogenase (GAPDH), one the most used reference genes in RT-
PCR assays 37, was selected as the targeted gene for activity assay. RNAs extracted from human non-
small lung cancer cell line A549 cells was reverse transcribed to cDNAs which were used as templates for
RT-PCR. With the concentration of input cDNAs 2 ng per 20 µL reaction it was found that RT-PCR
catalyzed by Ultralight Pfu was significantly faster compared to Normal enzyme (Fig. 6b). ´The cycle
threshold (Ct) value for RT-PCR was 11.1±0.3 cycles with Ultralight Pfu, while with Normal Pfu it was
13.6±0.4 cycles (Fig. 6d), consistent with faster kinetics of the Ultralight enzyme. The same qualitatively
result was obtained at a lower concentration of cDNA (0.2 ng / 20 µL reaction, Fig. 6c), with Ct values
14.4±0.4 cycles for RT- Ultralight Pfu and 17.1±0.3 cycles for the Normal enzyme (Fig. 6e). The efficiency
of PCR with the Ultralight enzyme was significantly higher, (97.7±0.8)%, compared to the Normal enzyme,
(92.8±2)% (Fig. 6f). Moreover, the amount of final product in the reaction with the Ultralight enzyme was
higher than that in the reaction with the Normal enzyme, which was possibly caused by the lower
efficiency of the Normal Pfu.

The activity of Pfu enzyme at different extension temperatures in the range 60-72 oC was studied by
detection of the fluorescence intensity of SYBR green I which presented the amount of double-stranded
DNA (dsDNA) produced in PCR. As expected, the enzyme activity dropped at lower temperature
(Supplementary Fig. 6c), but the Ultralight/Normal activity ratio increased, with a (54 ±5)% higher activity
for Ultralight enzyme at 60°C (Fig. 6g).

Discussion
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The most important finding of this work is that at least some enzymes expressed in E. coli grown in the
Depleted media show faster kinetics than the identical enzymes produced in the Normal media. This
finding is further supported by the faster E. coli growth in the Depleted media, which necessitates faster
(on average) enzymatic activity in the growing organism. The size of the heavy isotope depletion effect is
large (≈2.5-fold for luciferase and at least 50% for other enzymes). It should be noted that the isotope
depletion, however large in relative terms (>5-fold), is miniscule on the absolute scale, as the natural
abundance of the most abundant depleted isotope, 13C, is only 1.1%. Thus the kinetics enhancement due
to the normal kinetic isotope effect in strictly monoisotopic enzymes should be <1%. This reasoning is
supported by only a 13% reduction in the reaction speed of the DHFR enzyme with fully substituted heavy
isotopes of 13C, 15N and 2H at 40°C 38 and a 40% reduction at 5°C 39. The kinetics acceleration by up to
250% in Ultralight proteins cannot be accounted by the conventional kinetic isotope effect, and the low P-
values obtained (P=3⋅10−7 for luciferase and P<10−11 for the combined results of four enzymes) greatly
exceeds the five-sigma requirement for new discovery accepted in Physics, not to mention the proposed
P<0.005 threshold for discoveries in Life Sciences 40. Importantly, the majority of the Ultralight enzymes
are more thermally stable than Normal enzymes, and the superior kinetics of the Ultralight enzymes is
preserved even at higher temperatures.

A simple rationalization of the effect of ultralight enzymes is the following. Due to the dominance in
nature of light isotopes, every carbon atom is most likely 12C, every oxygen atom is most likely 16O, etc.
As the amino acid sequences of most enzymes are tightly optimized for function by natural selection, the
most likely configuration of a native enzyme should have close to maximum activity. Any deviation from
that configuration, such as those arising due to heavy isotopic substitution, is likely reducing this optimal
activity, however slightly. This qualitative reasoning explains why monoisotopic enzymes should have
close to maximum activity for a given amino acid sequence.

For a more involved and potentially quantitative explanation of this phenomenon, we considered the role
of entropy in the magic of enzymatic action, which is the enormous rate enhancement achieved by
enzymes compared to the equivalent enzyme-free reactions. This role has been debated for over a
century, and the debates are still ongoing41, 42. There are several well-documented cases where the
activation free energy decreases due to enzyme’s entropic effects by around 10 kcal/mol, leading to a rate
enhancement of ∼107 compared to the uncatalyzed reaction. However, despite substantial experimental
and theoretical efforts, there is no real consensus on the origin of such large entropic contributions.
Recent efforts have shown that the entropy considerations should not be limited to the substrate
entropies alone, but must also include all the relevant activation entropy parts, encompassing the whole
protein and its surrounding solvent 41. The presence of heavy isotopes contributes significantly to the
informational protein entropy, with the monoisotopic molecules having the lowest entropy 43. Indeed, a
single 13C atom in a protein molecule containing 10,000 carbon atoms (as in a ≈70 kDa enzyme) will
have 10,000 different places to reside in, which immediately results in 10,000 distinct isotopomers. At a
1.1% abundance, there will on average be ca. 110 13C atoms in such a molecule, giving a very large
number of isotopologues 44 differing from each other by the number of 13C atoms. With 2H, 15N, 17O and
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18O atoms present, each isotopologue will have an astronomical number of isotopomers 45. As each
protein isotopomer will have its own spectrum of vibrational frequencies distinctly different from other
isotopomers 46, vibrational entropy of a poly-isotopic protein could greatly exceed that of the
corresponding monoisotopic molecule or of a ultralight protein with much fewer heavy isotopes than
natural molecule. Vibrational entropy is known to account for the stability of short alpha-helices47 and
contributes significantly to the stability of globular proteins48. In general, vibrations of proteins, especially
those local to the active site, play a significant role in the enzymatic activity49. Thus it stands to reason
that the protein molecules with much lower vibrational entropy, such as monoisotopic or ultralight
enzymes, will exhibit significantly altered kinetic parameters than the same enzymes with natural
isotopes.

The lower intrinsic entropy due to the isotope depletion can also affect the rates of the protein thermal
unfolding and refolding 50. The thermal profiling experiments performed here on E. coli lysate suggested
that the majority of proteins increased their measured melting temperature, which could be due to a
number of scenarios. One possibility is a combination of an unchanged or slightly increased unfolding
rate with faster refolding. In favor of the latter scenario, for the same number of amino acid residues the
proteins with lower conformational entropy tend to fold faster 50.

Among other entropy-related explanations of the observed effects is the Isotopic Resonance (IsoRes)
phenomenon 21, 24, 25. Being a generalization of the ideas of Gao and Marcus, the IsoRes paradigm
predicts every type of symmetry (defined as a condition leading to a reduction in the number of quantum-
mechanical states compared to an asymmetric case) to affect reaction kinetics. At certain isotopic
compositions, often corresponding to significant heavy isotope enrichments compared to natural isotopic
abundances, IsoRes predicted faster kinetics, which has indeed been observed experimentally 21. The
strongest kinetic effect is however predicted by IsoRes for monoisotopic systems, in agreement with the
above observations.

Methods
Media Preparation

M9 minimum media were prepared as follows. Na2HPO4.2H2O, KH2PO4, NaCl, NH4Cl, MgSO4, CaCl2 and

glucose were obtained from Sigma-Aldrich. 13C-depleted glucose was purchased from Cambridge Isotope
Laboratories and 15N-depleted (NH4)2SO4 was from Merck. Deuterium Depleted Water (DDW) containing

≤5 ppm D and 410 ppm 18O was obtained from MTC Iceberg Ltd (Moscow, Russia). M9 stock salt
solutions (M9 5×SS) were prepared by dissolving 42.5 g Na2HPO4.2H2O, 15.0 g of KH2PO4 and 2.5 g of
NaCl in 1000 mL of either normal milli-Q water (for Normal M9 media) or DDW (for Depleted M9 media).
Both solutions were autoclaved before proceeding to M9 media preparation. M9 media were prepared by
mixing 800 mL of either normal milli-Q water (for Normal M9 media) or DDW (for Depleted M9 media),
200 mL of the corresponding M9 5xSS, 2.0 mL of 1M MgSO4, 0.1 mL of 1M CaCl2, 5 g of glucose and 1 g
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of (NH4)2SO4 (isotopically normal for Normal M9 media and 13C-depleted glucose and 15N-depleted
(NH4)2SO4 for Depleted M9 media). These media were filtered using 0.2 µm polyether sulfone (PES)
filters (VWR) before use.

E. coli growth

For each set of experiments, E. coli BL 21 strain was grown on plates containing LB agar (Sigma). A
single colony was transferred to a tube containing 6 mL of Normal M9 media and grown for 36 h. These
bacteria were further diluted (1:500) into tubes containing either Normal or Depleted M9 media and put
into honeycomb well plates (BioScreen, Finland) in 21 replicates. Bacterial growth was monitored by
measuring light diffraction on a BioScreen C instrument (BioScreen, Finland) at 37°C.

TPP sample preparation

E. coli BL21 grown in Normal and Depleted M9 media were diluted (1:500) into tubes containing either
Normal or Depleted M9 media in flasks. After 36 h of growth, the bacteria in each flask were collected,
washed, resuspended in PBS with protease inhibitor (5892791001, Sigma) and lysed by probe sonication.
The protein solution was collected after centrifuge and divided into 8 aliquots. These aliquots were
incubated for 3 min at either 37, 43, 49, 55, 61, 67, 73 or 79°C. After that the samples were kept at RT for 5
min to cool down and ultra-centrifuged at 35,000 rpm/min at 4°C for 30 min. Afterwards, the supernatant
was collected, reduced with 10 mM DTT (10708984001, Sigma) and alkylated with 25 mM IAA (I1149,
Sigma). The samples were precipitated using cold acetone at -20°C overnight, digested by Lys C (125–
05061, Wako Chemicals GmbH) at a 1:75 enzyme to protein ratio for 6 h at 30°C and then by trypsin
(V5111, Promega) (1:50 enzyme to protein ratio) overnight. After labeling using 16 TMTpro reagents
(A44520, Thermo Fisher Scientific) according to manufacturer’s instructions, multiplexing and desalting
with C18 Sep-pak columns (WAT054960, Waters), the peptides samples were fractionated using a Dionex
Ultimate 3000 UPLC system (Thermo Fisher Scientific) as described before 20. Every 8 fractions were
combined to a single pool and 12 such pools for each TMT-multiplexed sample set were analyzed by
nanoLC-MS/MS as customary in shotgun proteomics.

NanoLC-MS/MS analysis

NanoLC-MS/MS analyses were performed on an Orbitrap Fusion Lumos mass spectrometer (Thermo
Fisher Scientific). The instrument was equipped with an EASY ElectroSpray source and connected online
to an Ultimate 3000 nanoflow UPLC system. The samples were pre-concentrated and desalted online
using a PepMap C18 nano-trap column (length - 2 cm; inner diameter - 75 µm; particle size - 3 µm; pore
size - 100 Å; Thermo Fisher Scientific) with a flow rate of 3 µL/min for 5 min. Peptide separation was
performed on an EASY-Spray C18 reversed-phase nano-LC column (Acclaim PepMap RSLC; length - 50
cm; inner diameter - 2 µm; particle size - 2 µm; pore size – 100 Å; Thermo Scientific) at 55 °C and a flow
rate of 300 nL/min. Peptides were separated using a binary solvent system consisting of 0.1% (v/v) FA,
2% (v/v) ACN (solvent A) and 98% ACN (v/v), 0.1% (v/v) FA (solvent B). They were eluted with a gradient
of 3–26% B in 97 min, and 26–95% B in 9 min. Subsequently, the analytical column was washed with
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95% B for 5 min before re-equilibration with 3% B. The mass spectrometer was operated in a data-
dependent acquisition mode. A survey mass spectrum (from m/z 375 to 1500) was acquired in the
Orbitrap analyzer at a nominal resolution of 120,000. The automatic gain control (AGC) target for was set
as 100% standard, with the maximum injection time of 50 ms. The most abundant ions in charge states
2+ to 7+ were isolated in a 3 s cycle, fragmented using HCD MS/MS with 33% normalized collision energy,
and detected in the Orbitrap analyzer at a nominal mass resolution of 50,000. The AGC target for MS/MS
was set as 250% standard with a maximum injection time of 100 ms, whereas dynamic exclusion was
set to 45 s with a 10-ppm mass window.

Expression and purification of luciferase YY5

Part of this work was performed by the Protein Science Facility at Karolinska Institutet, Stockholm. The
construct psfLucYY5 was transformed into E. coli BL21 (DE3) T1R pRARE2 cells in Normal and Depleted
M9 media containing 50 µg/mL ampicillin and 34 µg/mL chloramphenicol at 37°C. The bacterial growth
was monitored by regular OD measurements. Protein expression of the fusion proteins was induced by
the addition of 0.5 mM isopropyl-1-thio-β-D-galactopyranoside (IPTG, Merck). The cells were harvested
after 16 h by centrifugation, and the pellet was resuspended in lysis buffer including 100 mM HEPES, 500
mM NaCl, 10% glycerol, 10 mM imidazole, 0.5 mM TCEP, pH 8.0, 1 mg/mL lysozyme, 0.1% DDM, 1 mM
MgSO4, protease inhibitors (complete EDTA-free 0.5 tab/mL), and benzonase (0.125 U/mL). After
centrifugation, the samples were loaded onto a resin column (GE Healthcare) equilibrated with binding
buffer (20 mM HEPES, 500 mM NaCl, 10% glycerol, 10 mM imidazole and 0.5 mM TCEP, at pH 7.5). The
column was washed with binding buffer followed by washing buffer (same as binding buffer but with 30
mM imidazole), and then recombinant luciferase YY5 was eluted with a similar buffer containing 500
mM imidazole. Fractions containing luciferase YY5 were combined and applied to a PD 10 column (GE
Healthcare) equilibrated with 50 mM Tris-HCl at pH 7.8. The size and purity of recombinant luciferase
YY5 was confirmed by SDS-PAGE.

Expression and purification of human Trx

The Trx expression plasmid (Supplementary Fig. 3a-c) was transformed into E. coli BL21 (DE) in Normal
and Depleted M9 media containing 50 µg/mL kanamycin (Merck, K1377) and the expression and
purification of Trx was performed as described above. Fractions containing Trx according to SDS-PAGE
analysis were pooled together and TEV protease (Sigma) was added to the protein sample at a 1:30
molar ratio. The mixture was incubated at 4°C overnight. The His-tag was removed by loading the protein
sample onto a 1 mL HisTrap column (GE Healthcare) pre-equilibrated with TEV cleavage reaction buffer
supplemented with 20 mM imidazole. The flow-through containing cleaved Trx protein was collected and
the purification fractions were analyzed by SDS-PAGE.

Expression and purification of BsDHFR

The BsDHFR expression plasmid (Supplementary Fig. 4a and 4b) was transformed into E. coli BL21 (DE)
in Normal and Depleted M9 media containing 50 µg/mL kanamycin and the expression and purification
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of BsDHFR was performed as above.

Expression and purification of Pfu

The construct Pfu DNA polymerase with Sso7d processivity-enhancing domain was transformed into E.
coli BL21 (DE3) T1R cells in Normal and Depleted M9 media containing 50 µg/mL ampicillin and 34
µg/mL chloramphenicol. The expression and purification of BsDHFR was performed as above.

Size exclusion chromatography (SEC)

SEC purification of the recombinant proteins was performed on a Dionex Ultimate 3000 UPLC system
(Thermo Fisher Scientific) with a 25 cm Waters column (2.1 mm ID; particle size 3.5 µm; pore size 300 Å)
at a flow rate of 300 µL/min. Fractionation of luciferase YY5, BsDHFR and Pfu were performed using 2×
phosphate-buffered saline diluted from 10× PBS (Lonza, 17517Q). Trx was purified using 50mM Tris-HCl
at pH 7.5 containing 2 mM EDTA. The elution was monitored by UV absorbance at 280 and 214 nm.

Strong cation exchange (SCX) chromatography

Luciferase YY5 isolated with SEC was additionally purified by SCX using a Dionex Ultimate 3000 UPLC
system (Thermo Fisher Scientific) with ProPac Strong Cation-Exchange Column (4×250mm, Thermo
Fisher Scientific) at a flow rate of 500 µL/min. Fractionation was performed using a binary solvent
system consisting of 12.5 mM sodium phosphate, pH 6.0 (solvent A) and 12.5 mM sodium phosphate, 1
M NaCl, pH 6.0 (solvent B). Elution was done with a 30 min gradient from 1–58% B monitored by UV
absorbance at 280 nm. Two fractions showing luciferase activity were collected and used for further
analysis.

Measurements of luciferase YY5 activity

Buffered co-factor solution (8 mL) was prepared containing 1 mM DTT, 0.2 mg/mL BSA, 5 mM of MgCl2,
4 mM DTT, 100 µM D-luciferin and 100 mM Tris-HCl at pH 7.8. 50 µL of each SCX fraction was mixed with
50 µL buffered co-factor solution in a 96-well microplate well and the luminescence was measured using
the Tecan Infinite M2000 PRO microplate reader. The luminescence of each fraction was normalized by
the total 280 nm UV absorbance of the SCX fraction.

Thermal stability assay of luciferase YY5

The protein concentration of Normal and Ultralight SEC-SCX purified luciferase YY5 was determined by
microBCA and 50 µL of 0.2 µg/mL enzyme was heated at 50°C for 5-120 min. After cooling to RT, the
enzyme solution was mixed with 50 µL of the reaction buffer containing 1 mM DTT, 0.2 mg/mL BSA, 5
mM of MgSO4, 4 mM DTT, 100 µM D-luciferin and 100 mM Tris−HCl at pH 7.8. The luciferase activity was
measured at 25°C using the Tecan Infinite M2000 PRO microplate reader.

Measurement of Trx activity
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The assay was performed at RT using 50 mM Tris-HCl containing 2 mM EDTA at pH 7.5 and 200 µM
NADPH (Roche, 10107824001). A 60 µL aliquot of each Trx SEC fraction was mixed in a 96-well
microplate well with 30 µL buffered enzyme solution containing 15 nM thioredoxin reductase and 10 µL
of insulin (Sigma, I0516) at a concentration ranging from 0 to 160 µM (the latter corresponds to 1
mg/mL). NADPH consumption was measured immediately every minute by the decrease of absorbance
at 340 nm during the initial linear phase of reaction in the Tecan Infinite M2000 PRO microplate reader.
The magnitude of the absorbance decrease at 340 nm of each fraction was normalized by the total UV
absorbance at 280 nm of the Trx SEC fraction.

Measurement of BsDHFR activity

The assay was performed at RT using 50 mM Tris-HCl at pH 7.5. A 60 µL aliquot of each BsDHFR SEC
fraction was mixed in a 96-well microplate well with 30 µL buffered enzyme solution containing 200 µM
dihydrofolic acid (Merck, D7006). NADPH consumption was measured immediately by the decrease of
absorbance at 340 after a concentration ranging from 0 to 100 µM NADPH was added.

PCR and RT-PCR catalyzed by recombinant Pfu

RNA was extracted from 107 A549 cells and purified using a PureLink RNA Mini Kit (Thermo Fisher
Scientific, 12183018A). A cDNA library was prepared using the High-Capacity cDNA Reverse Transcription
Kit with RNase Inhibitor (Thermo Fisher Scientific, 4374966) according to manufacturer’s instructions. RT-
PCR and PCR were performed with 0-2 µg cDNA in 20 mM Tris-HCl containing 50 mM KCl, 10 mM
(NH4)SO4, 2 mM Triton X-100 and 0.1 mg/mL BSA (PCR buffer) at pH 8.8 with 0.2 mM dNTP (Thermo
Fisher Scientific, N8080261), and 1 X SYBR green I (Thermo Fisher Scientific, 10710004). Human gene
GAPDH (10 µM, 131 bp) was used in the assay and the sequences of the primers were: 5' to 3'
GTCTCCTCTGACTTCAACAGCG (Forward) and 5' to 3' ACCACCCTGTTGCTGTAGCCAA (Reversed)
(Thermo Fisher Scientific). Normal or Ultralight Pfu purified by SEC was diluted with PCR buffer to 30
ng/mL and 1 mL was added to each 20 µL reaction volume. The PCR program on SimpliAmp Thermal
Cycler (Thermo Fisher Scientific) was 98°C for 2 min → 98°C for 10 s → 56°C for 30 s → 72°C for 30 s for
34 cycles and keep the reaction at 72°C for 5 min. RT-PCR was performed on Applied Biosystems Fast
7500 (Thermo Fisher Scientific) using the same program as PCR.

The gel for agarose gel electrophoresis was prepared by suspending 1 Advance Agarose Tablet (Genetics,
AG11) in 50 mL TBE buffer (89 mM Tris-borate and 2 mM EDTA, pH 8.3). each PCR final solution was
mixed with 2 µL FastDigest Green Buffer (Thermo Fisher Scientific, B72) and 15 µL mixture was loaded in
the gel. Then the gel was run at 80-150 V until the dye line reached ca. 75-80% of the gel length.
Afterwards, the DNA fragment was visualized under UV light at 280 nm.

Bottom-up proteomics data analysis

The LC-MS/MS raw files were processed by an in-house modified version of MaxQuant software (version
1.6.2.3) recognizing TMTpro as an isobaric mass tag using the “Specific Trypsin/P, Lyc/P” digestion
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mode with maximum two missed cleavages as described before 20. The MS/MS spectra were searched
against the Uniprot Escherichia coli BL21 database (UP000290528, containing 4,339 entries, last
modified on January 6, 2020).

Top-down mass spectrometry analysis analysis

The SEC or SCX fractions were concentrated using a 3 kDa centrifugal filter (Merck, UFC500324). The
proteins were desalted using ZipTip with 0.6 µL C4 resin (Merck, ZTC04S096). On-line LC-MS/MS
analysis was performed using a Dionex Ultimate NCS-3500RS Nano System coupled to an Orbitrap
Fusion Lumos mass spectrometer equipped with a HESI Ion Source (all – Thermo Fisher Scientific).

Protein separation online with MS was performed using a C4 reversed-phase PepMap™ 300 micro-flow
HPLC column (particle size 5 µm, 1 mm ID × 15 cm, Thermo Fisher Scientific) enclosed in a column oven
compartment maintained at 45°C, at a flow rate of 30 µL/min. 1 µg of protein sample was loaded and
separated using a binary solvent system consisting of Solvent A (2% acetonitrile, 98% water and 0.1%
formic acid) and Solvent B (2% water, 98% acetonitrile and 0.1% formic acid). The mobile phase
composition was 5% B from 0 to 2 min, followed by a 5-30% B gradient from 2 to 5 min, 30-95% B from 5
to 25 min, 95-5% B from 34 to 35 min and 5% B from 35 to 40 min. The electrospray voltage was 3.7 kV
with sheath gas at 15 units, auxiliary gas at 5 units and the vaporizer temperature at 75°C. The capillary
temperature was set at 300°C. The RF lens amplitude was set at 30% and an additional 15 V voltage
difference was applied within the source region to facilitate ion desolvation. All mass spectra were
acquired in the positive ion mode with the profile data type. Application mode was set at “intact protein”
with the collision gas pressure 1 mTorr. The nominal mass resolution at m/z 200 for luciferase and Pfu
was 15,000, for Trx and BsDHFR - 120,000, with 200% Normalized AGC and 10 microscans over a mass
range of m/z 500-1500. For tandem mass spectrometry, the most abundant charge states of the protein
ions were selected in a quadrupole mass filter with isolation window of 3.0 m/z units for higher-energy
collision dissociation (HCD) with normalized collision energy set at 20%. The range of charge states was
10-100 with the underdetermined charge states included. The MS/MS spectra were acquired with 3
dependent MS/MS events with a nominal mass resolving power of 120,000 with 5 microscans, over a
mass range of m/z 400-2000, with 500% Normalized AGC Target and Auto Maximum Injection Time. The
Dynamic exclusion was operated with exclusion duration of 30 s, mass width (High/Low) of 1.5 m/z
units and the repeat count set at 1. All mass spectra were analyzed, including isotope and charge
deconvolution, using Xcalibur 4.3 (Thermo Fisher Scientific) and the Average Over Selected Retention
Time and ReSpect™ (Isotopically Unresolved for luciferase YY5 and Pfu, Isotopically Resolved for Trx and
BsDHFR) algorithms in Thermo Scientific™ BioPharma Finder™ 2.0 software. Protein mass tolerance was
set to 20 ppm, and data were searched against the known protein amino acid sequence, allowing for
amidation (DE, C-term), acetylation (N-term), biotinylation (K), methylation (KR), oxidation (MW) and
deamidation (NQ) as variable modifications.

FT IsoR MS analysis
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Bacterial lysate was digested as above, and after desalting the peptides were analyzed by nanoLC-
MS/MS. Mass spectra were acquired on an Orbitrap Fusion Lumos Mass in the data-independent mode
with z≥2 peptides selected for MS/MS in an isolation window 1000 m/z units wide centered at m/z 800.
MS/MS was performed with HCD energy set at 50 NCE. The detection range was from m/z 50 to 200,
with the nominal mass resolving power of 60,000. Data processing was done using a home-written R
script analyzing the fine isotopic structure of the immonium ions of amino acids Pro, Val and Leu/Ile.
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Figure 1

E. coli growth in Normal and Depleted media. a, The growth curves of E. coli BL21 grown in Normal and
Depleted M9 media (n=21). b, The differences in maximum density (left), maximum growth rate (middle)
and lag time (right) of E. coli grown in Normal and Depleted media (n=21). c, Mass spectrum of the E. coli
protein Stringent Starvation Protein A (24.1 kDa) grown in the Normal (left) and Depleted (right) media.
The monoisotopic mass position is marked by square. d, FT isoR MS analysis of 13C/12C (left), 15N/14N
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(middle), 2H/1H (right) in E. coli grown in Normal and Depleted M9 media (n=3). e, Dose-response effect
of the Depleted media dilution by the Normal media on maximum density of E. coli bacteria (n=8).

Figure 2

Thermal stability of bacterial proteins. a, The melting curves of gltB in E. coli BL21 grown in Normal and
Depleted media (n=3). b, Volcano plot of melting temperature differences of proteins in E. coli grown in
Depleted versus Normal media (median values, n=3). The horizontal line indicates the p value of 0.05 in
two-tailed unpaired t-test. The proteins more stable in the Depleted media have positive ∆Tm values (red
dots), while less stable proteins have negative ∆Tm values (blue dots). c, Volcano plot of slopes of the E.
coli protein melting curves for bacteria grown in Depleted and Normal media (medians, n=3). The
horizontal line indicates the p value of 0.05 in two-tailed unpaired t-test. The proteins from the Depleted
media with steeper slopes have negative Log2 values (red dots), while those with more shallow slopes
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have positive values (blue dots). d, Comparison of median slopes of proteins in E. coli grown in Normal
and Depleted media (n=3).  

Figure 3
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Analysis of luciferase YY5 fracII by mass spectrometry and activity comparison of Normal and Ultralight
enzyme. a, Electrospray ionization mass spectra of fracII of Normal and Ultralight luciferase YY5 (left)
and a backbone fragment obtained by MS/MS of molecular ions; square denotes monoisotopic mass. b,
Activity curve of luciferase YY5 fracII. The luminescence readings (n=4) were normalized to the total UV
absorbance in SCX chromatography before being fitted with the Michaelis-Menten equation. c, Kinetic
parameters Vmax (left) and Km (right) of the Normal and Ultralight luciferase YY5, fracII (n=4). d, Dose-
response effect of the Depleted media dilution by the Normal media on activity of Luciferase YY5 (n=6).
e, The relative activity of the Ultralight luciferase YY5 fracII compared to Normal enzyme after heating at
50 °C for different time intervals and cooling to RT (n=4). f, The relative activity of the Ultralight luciferase
YY5 fracII compared to Normal enzyme at different temperatures (n=4).
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Figure 4

Analysis of Trx by mass spectrometry and activity comparison of Normal and Ultralight enzyme. a,
Electrospray ionization mass spectrum of the SEC-purified Normal (top) and Ultralight (bottom)
thioredoxin. The dots indicate the thioredoxin dimer, squares - the monoisotopic masses. b, Activity
comparison of Normal and Ultralight thioredoxin (n=3). c, Kinetic curves of the Normal and Ultralight
thioredoxin (n=3). d, The kinetic parameters Vmax (left) and Km (right) of the Normal and Ultralight
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thioredoxin (n=3). e, The relative activity of the Ultralight thioredoxin compared to Normal enzyme at
different temperatures (n=4).

Figure 5

Analysis of BsDHFR by mass spectrometry and activity comparison of Normal and Ultralight enzyme. a,
Electrospray ionization mass spectra of Normal and Ultralight BsDHFR (left) and a backbone fragment



Page 25/26

obtained by MS/MS of molecular ions; square - the monoisotopic mass. b, Activity comparison of Normal
and Ultralight BsDHFR (n=3). c, Kinetic curves of the Normal and Ultralight BsDHFR (n=4). d, The kinetic
parameters Vmax (left) and Km (right) of the Normal and Ultralight BsDHFR (n=4). e, The relative activity
of the Ultralight tBsDHFR compared to Normal enzyme at different temperatures (n=3).

Figure 6



Page 26/26

Analysis of Pfu by mass spectrometry and activity comparison of Normal and Ultralight enzyme. a,
Electrospray ionization mass spectra from SEC of Normal and Ultralight Pfu (left) and a backbone
fragment obtained by MS/MS of molecular ions; square - the monoisotopic mass. b, c, Comparisons of
the RT PCR analyses with 2 ng and 0.2 ng template cDNA catalyzed by Normal or Ultralight Pfu (n=6). d,
e, Comparisons of the corresponding Ct values. f, Efficiency of PCR with Normal and Ultralight Pfu (n=6).
g, The relative activity of the Ultralight Pfu compared to Normal enzyme at different temperatures (n=3).
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