[1] E. R. Myers, P. Moorman, J. M. Gierisch, L. J. Havrilesky, L. J. Grimm, S. Ghate, B. Davidson, R. C. Mongtomery, M. J. Crowley, D. C. McCrory, A. Kendrick, G. D. Sanders. Benefits and Harms of Breast Cancer Screening: A Systematic Review. JAMA. 2015;314:1615-34.
[2] W. H. Organization, WHO position paper on mammography screening. World Health Organization. Geneva. 2014.
[3] R. Swaminathan, E. Lucas, R. Sankaranarayanan. Cancer survival in Africa, Asia, the Caribbean and Central America: database and attributes. IARC Sci. Publ. 2011:23-31.
[4] J. Ferlay, M. Colombet, I. Soerjomataram, C. Mathers, D. M. Parkin, M. Piñeros, A. Znaor, F. Bray. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int. J. Cancer. 2019;144:1941-53.
[5] Early Breast Cancer Trialists' Collaborative Group (EBCTCG), R. Peto, C. Davies, J. Godwin, R. Gray, H. C. Pan, M. Clarke, D. Cutter, S. Darby, P. McGale, C. Taylor, Y. C. Wang, J. Bergh, A. Di Leo, K. Albain, S. Swain, M. Piccart, K. Pritchard. Comparisons between different polychemotherapy regimens for early breast cancer: meta-analyses of long-term outcome among 100 000 women in 123 randomised trials. Lancet. 2012;379:432-44.
[6] Early Breast Cancer Trialists' Collaborative Group (EBCTCG). Aromatase inhibitors versus tamoxifen in early breast cancer: patient-level meta-analysis of the randomised trials. Lancet. 2015;386:1341-52.
[7] H. Pan, R. Gray, J. Braybrooke, C. Davies, C. Taylor, P. McGale, R. Peto, K. I. Pritchard, J. Bergh, M. Dowsett, D. F. Hayes. 20-Year Risks of Breast-Cancer Recurrence after Stopping Endocrine Therapy at 5 Years. N. Engl. J. Med. 2017;377:1836-46.
[8] K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, M. S. Feld. Ultrasensitive chemical analysis by Raman spectroscopy. Chem. Rev. 1999;99:2957-76.
[9] J. Kneipp, H. Kneipp, K. Kneipp. SERS-a single-molecule and nanoscale tool for bioanalytics. Chem. Soc. Rev. 2008;37:1052-60.
[10] J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, R. P. van Duyne. Biosensing with plasmonic nanosensors. Nat. Mater. 2008;7:442-53.
[11] S. Laing, K. Gracie, K. Faulds. Multiplex in vitro detection using SERS. Chem. Soc. Rev. 2016;45:1901-18.
[12] S. L. Kleinman, R. R. Frontiera, A.-I. Henry, J. A. Dieringer, R. P. van Duyne. Creating, characterizing, and controlling chemistry with SERS hot spots. Phys. Chem. Chem. Phys. 2013;15:21-36.
[13] L. Fabris. SERS Tags: The Next Promising Tool for Personalized Cancer Detection? ChemNanoMat. 2016;2:249-58.
[14] E. Lenzi, D. Jimenez de Aberasturi, L. M. Liz-Marzán. Surface-Enhanced Raman Scattering Tags for Three-Dimensional Bioimaging and Biomarker Detection. ACS Sens. 2019;4:1126-37.
[15] G. Bodelón, V. Montes-García, C. Fernández-López, I. Pastoriza-Santos, J. Pérez-Juste, L. M. Liz-Marzán. Au@pNIPAM SERRS Tags for Multiplex Immunophenotyping Cellular Receptors and Imaging Tumor Cells. Small. 2015;11:4149-57.
[16] M. S. Strozyk, D. J. de Aberasturi, J. V. Gregory, M. Brust, J. Lahann, L. M. Liz-Marzán. Spatial Analysis of Metal-PLGA Hybrid Microstructures Using 3D SERS Imaging. Adv. Funct. Mater. 2017;27:1701626.
[17] M. S. Strozyk, D. Jimenez de Aberasturi, L. M. Liz-Marzán. Composite Polymer Colloids for SERS-Based Applications. Chem. Rec. 2018;18:807-18.
[18] C. Zong, M. Xu, L.-J. Xu, T. Wei, X. Ma, X.-S. Zheng, R. Hu, B. Ren. Surface-Enhanced Raman Spectroscopy for Bioanalysis: Reliability and Challenges. Chem. Rev. 2018;118:4946-80.
[19] S. de Vitis, M. L. Coluccio, F. Gentile, N. Malara, G. Perozziello, E. Dattola, P. Candeloro, E. Di Fabrizio. Surface enhanced Raman spectroscopy measurements of MCF7 cells adhesion in confined micro-environments. Opt. Lasers Eng. 2016;76:9-16.
[20] J. Wang, K. M. Koo, E. J. H. Wee, Y. Wang, M. Trau. A nanoplasmonic label-free surface-enhanced Raman scattering strategy for non-invasive cancer genetic subtyping in patient samples. Nanoscale. 2017;9:3496-503.
[21] Y. Wang, S. Kang, A. Khan, G. Ruttner, S. Y. Leigh, M. Murray, S. Abeytunge, G. Peterson, M. Rajadhyaksha, S. Dintzis, S. Javid, J. T. C. Liu. Quantitative molecular phenotyping with topically applied SERS nanoparticles for intraoperative guidance of breast cancer lumpectomy. Sci. Rep. 2016;6:21242.
[22] V. Moisoiu, A. Socaciu, A. Stefancu, S. Iancu, I. Boros, C. Alecsa, C. Rachieriu, A. Chiorean, D. Eniu, N. Leopold, C. Socaciu, D. Eniu. Breast Cancer Diagnosis by Surface-Enhanced Raman Scattering (SERS) of Urine. Appl. Sci. 2019;9:806.
[23] Y.-F. Huang, H.-P. Zhu, G.-K. Liu, D.-Y. Wu, B. Ren, Z.-Q. Tian. When the signal is not from the original molecule to be detected: chemical transformation of para-aminothiophenol on Ag during the SERS measurement. J. Am. Chem. Soc. 2010;132:9244-46.
[24] A. Shamsaie, M. Jonczyk, J. Sturgis, J. Paul Robinson, J. Irudayaraj. Intracellularly grown gold nanoparticles as potential surface-enhanced Raman scattering probes. J. Biomed. Opt. 2007;12:20502.
[25] C. D. Walkey, W. C. W. Chan. Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. Chem. Soc. Rev. 2012;41:2780-99.
[26] X.-S. Zheng, I. J. Jahn, K. Weber, D. Cialla-May, J. Popp. Label-free SERS in biological and biomedical applications: Recent progress, current challenges and opportunities. Spectrochim. Acta A. Mol. Biomol. Spectrosc. 2018;197:56-77.
[27] S. Laing, L. E. Jamieson, K. Faulds, D. Graham. Surface-enhanced Raman spectroscopy for in vivo biosensing. Nat. Rev. Chem. 2017;1:501.
[28] B. Pelaz, G. Charron, C. Pfeiffer, Y. Zhao, J. M. de La Fuente, X.-J. Liang, W. J. Parak, P. Del Pino. Interfacing engineered nanoparticles with biological systems: anticipating adverse nano-bio interactions. Small. 2013;9:1573-84.
[29] J. Piella, N. G. Bastús, V. Puntes. Size-Dependent Protein-Nanoparticle Interactions in Citrate-Stabilized Gold Nanoparticles: The Emergence of the Protein Corona. Bioconjug. Chem. 2017;28:88-97.
[30] N. M. S. Sirimuthu, C. D. Syme, J. M. Cooper. Investigation of the stability of labelled nanoparticles for SE(R)RS measurements in cells. Chem. Commun. 2011;47:4099-101.
[31] Arbeitsausschuss Chemische Terminologie (AChT) im DIN Deutsches Institut für Normung e.V. DIN 32645:2008-11, Chemische Analytik - Nachweis-, Erfassungs- und Bestimmungsgrenze unter Wiederholbedingungen - Begriffe, Verfahren, Auswertung, Beuth Verlag GmbH, Berlin. 2008.
[32] ICH Secretariat. ICH-Q2(R1) Validation of analytical procedures: Text and Methodology: International Conference on Harmonization (ICH) of Technical Requirements for the Registration of Pharmaceuticals for Human Use, Geneva. 2005.
[33] Z. Zhang, L. Wang, J. Wang, X. Jiang, X. Li, Z. Hu, Y. Ji, X. Wu, C. Chen. Mesoporous silica-coated gold nanorods as a light-mediated multifunctional theranostic platform for cancer treatment. Adv. Mater. 2012;24:1418-23.
[34] D. Rodríguez-Fernández, J. Langer, M. Henriksen-Lacey, L. M. Liz-Marzán. Hybrid Au–SiO 2 Core–Satellite Colloids as Switchable SERS Tags. Chem. Mater. 2015;27:2540-45.
[35] A. F. Stewart, A. Lee, A. Ahmed, S. Ip, E. Kumacheva, G. C. Walker. Rational design for the controlled aggregation of gold nanorods via phospholipid encapsulation for enhanced Raman scattering. ACS Nano. 2014;8:5462-667.
[36] J. H. Kang, Y. T. Ko. Lipid-coated gold nanocomposites for enhanced cancer therapy. Int. J. Nanomedicine. 2015;10:33-45.
[37] S. Y. Ip, C. M. MacLaughlin, N. Mullaithilaga, M. Joseph, S. Wala, C. Wang, G. C. Walker. Lipid-encapsulation of surface enhanced Raman scattering (SERS) nanoparticles and targeting to chronic lymphocytic leukemia (CLL) cells. SPIE. 2012;8212:821204.
[38] U. S. Dinish, Z. Song, C. J. H. Ho, G. Balasundaram, A. B. E. Attia, X. Lu, B. Z. Tang, B. Liu, M. Olivo. Single Molecule with Dual Function on Nanogold: Biofunctionalized Construct for In Vivo Photoacoustic Imaging and SERS Biosensing. Adv. Funct. Mater. 2015;25:2316-25.
[39] P. Verderio, S. Avvakumova, G. Alessio, M. Bellini, M. Colombo, E. Galbiati, S. Mazzucchelli, J. P. Avila, B. Santini, D. Prosperi. Delivering colloidal nanoparticles to mammalian cells: a nano-bio interface perspective. Adv. Healthc. Mater. 2014;3:957-76.
[40] Y. Wang, S. Schlücker. Rational design and synthesis of SERS labels. Analyst. 2013;138:2224-38.
[41] Y. Wang, A. B. Serrano, K. Sentosun, S. Bals, L. M. Liz-Marzán. Stabilization and Encapsulation of Gold Nanostars Mediated by Dithiols. Small. 2015;11:4314-20.
[42] B. Khlebtsov, T. Pylaev, V. Khanadeev, D. Bratashov, N. Khlebtsov. Quantitative and multiplex dot-immunoassay using gap-enhanced Raman tags. RSC Adv. 2017;7:40834-41.
[43] H.-M. Kim, D.-M. Kim, C. Jeong, S. Y. Park, M. G. Cha, Y. Ha, D. Jang, S. Kyeong, X.-H. Pham, E. Hahm, S. H. Lee, D. H. Jeong, Y.-S. Lee, D.-E. Kim, B.-H. Jun. Assembly of Plasmonic and Magnetic Nanoparticles with Fluorescent Silica Shell Layer for Tri-functional SERS-Magnetic-Fluorescence Probes and Its Bioapplications. Sci. Rep. 2018;8:13938.
[44] D. Zhu, Z. Wang, S. Zong, H. Chen, X. Wu, Y. Pei, P. Chen, X. Ma, Y. Cui. Ag@4ATP-coated liposomes: SERS traceable delivery vehicles for living cells. Nanoscale. 2014;6:8155-61.
[45] G. von White, Y. Chen, J. Roder-Hanna, G. D. Bothun, C. L. Kitchens. Ag@4ATP-coated liposomes: SERS traceable delivery vehicles for living cells. ACS Nano. 2012;6:4678-85.
[46] H.-Y. Lee, S. H. R. Shin, L. L. Abezgauz, S. A. Lewis, A. M. Chirsan, D. D. Danino, K. J. M. Bishop Integration of gold nanoparticles into bilayer structures via adaptive surface chemistry. J. Am. Chem. Soc. 2013;135:5950-53.
[47] J. Nam, Y. S. Ha, S. Hwang, W. Lee, J. Song, J. Yoo, S. Kim. pH-responsive gold nanoparticles-in-liposome hybrid nanostructures for enhanced systemic tumor delivery. Nanoscale. 2013;5:10175-78.
[48] T. Lajunen, L. Viitala, L.-S. Kontturi, T. Laaksonen, H. Liang, E. Vuorimaa-Laukkanen, T. Viitala, X. Le Guével, M. Yliperttula, L. Murtomäki, A. Urtti. Light induced cytosolic drug delivery from liposomes with gold nanoparticles. J. Control. Release. 2015;203:85-98.
[49] B. Y. Moghadam, W.-C. Hou, C. Corredor, P. Westerhoff, J. D. Posner. Role of nanoparticle surface functionality in the disruption of model cell membranes. Langmuir. 2012;28:16318-26.
[50] E. M. Curtis, A. H. Bahrami, T. R. Weikl, C. K. Hall. Modeling nanoparticle wrapping or translocation in bilayer membranes. Nanoscale. 2015;7:14505-14.
[51] D. Ag Seleci, V. Maurer, F. B. Barlas, J. C. Porsiel, B. Temel, E. Ceylan, S. Timur, F. Stahl, T. Scheper, G. Garnweitner. Transferrin-Decorated Niosomes with Integrated InP/ZnS Quantum Dots and Magnetic Iron Oxide Nanoparticles: Dual Targeting and Imaging of Glioma. Int. J. Mol. Sci. 2021;22:4556.
[52] D. Ag Seleci, M. Seleci, J.-G. Walter, F. Stahl, T. Scheper. Niosomes as Nanoparticular Drug Carriers: Fundamentals and Recent Applications. J. Nanomater. 2016;2016:7372306.
[53] D. Ag Seleci, V. Maurer, F. Stahl, T. Scheper, G. Garnweitner. Rapid Microfluidic Preparation of Niosomes for Targeted Drug Delivery. Int. J. Mol. Sci. 2019;20:4696.
[54] Shilpa, B. P. Srinivasan, M. Chauhan. Niosomes as vesicular carriers for delivery of proteins and biologicals. Int. J. Drug. Del. 2011;3:14-24.
[55] S. Moghassemi, A. Hadjizadeh. Nano-niosomes as nanoscale drug delivery systems: an illustrated review. J. Control. Release. 2014;185:22-36.
[56] C. Marianecci, L. Di Marzio, F. Rinaldi, C. Celia, D. Paolino, F. Alhaique, S. Esposito, M. Carafa. Niosomes from 80s to present: the state of the art. Adv. Colloid. Interface. Sci. 2014;205:187-206.
[57] I. F. Uchegbu, S. P. Vyas. Non-ionic surfactant based vesicles (niosomes) in drug delivery. Int. J. Pharm. 1998;172:33-70.
[58] D. Ag Seleci, M. Seleci, F. Stahl, T. Scheper. Tumor homing and penetrating peptide-conjugated niosomes as multi-drug carriers for tumor-targeted drug delivery. RSC Adv. 2017;7:33378-84.
[59] M. G. Arafa, D. Ghalwash, D. M. El-Kersh, M. M. Elmazar. Propolis-based niosomes as oromuco-adhesive films: A randomized clinical trial of a therapeutic drug delivery platform for the treatment of oral recurrent aphthous ulcers. Sci. Rep. 2018;8:18056.
[60] I. P. Kaur, D. Aggarwal, H. Singh, S. Kakkar. Improved ocular absorption kinetics of timolol maleate loaded into a bioadhesive niosomal delivery system. Graefes Arch. Clin. Exp. Ophthalmol. 2010;248:1467-72.
[61] L. Seguella, F. Rinaldi, C. Marianecci, R. Capuano, M. Pesce, G. Annunziata, F. Casano, G. Bassotti, A. Sidoni, M. Milone, G. Aprea, G. D. de Palma, M. Carafa, M. Pesce, G. Esposito, G. Sarnelli. Pentamidine niosomes thwart S100B effects in human colon carcinoma biopsies favouring wtp53 rescue. J. Cell Mol. Med. 2020;24:3053-63.
[62] V. Maurer, C. Frank, J. C. Porsiel, S. Zellmer, G. Garnweitner, R. Stosch. Step-by-step monitoring of a magnetic and SERS-active immunosensor assembly for purification and detection of tau protein. J. Biophotonics. 2020;13:e201960090.
[63] V. Maurer, S. Altin, D. Ag Seleci, A. Zarinwall, B. Temel, P. M. Vogt, S. Strauß, F. Stahl, T. Scheper, V. Bucan, G. Garnweitner. In-Vitro Application of Magnetic Hybrid Niosomes: Targeted siRNA-Delivery for Enhanced Breast Cancer Therapy. Pharmaceutics. 2021;13:394.
[64] S. Jose, C. T. A, R. Sebastian, S. M. H, A. N. A, A. Durazzo, M. Lucarini, A. Santini, E. B. Souto. Transferrin-Conjugated Docetaxel-PLGA Nanoparticles for Tumor Targeting: Influence on MCF-7 Cell Cycle. Polymers. 2019;11:1905.
[65] H. A. Joshi, E. S. Attar, P. Dandekar, P. V. Devarajan, Transferrin Receptor and Targeting Strategies. in Targeted Intracellular Drug Delivery by Receptor Mediated Endocytosis, Vol. 39, AAPS Advances in the Pharmaceutical Sciences Series (Eds: P. V. Devarajan, P. Dandekar, A. A. D'Souza), Springer International Publishing, Cham. 2019:457-80.
[66] D. S. Grubisha, R. J. Lipert, H.-Y. Park, J. Driskell, M. D. Porter. Femtomolar detection of prostate-specific antigen: an immunoassay based on surface-enhanced Raman scattering and immunogold labels. Anal. Chem. 2003;75:5936-43.
[67] D. Zhu, Z. Wang, S. Zong, Y. Zhang, C. Chen, R. Zhang, B. Yun, Y. Cui. Investigating the Intracellular Behaviors of Liposomal Nanohybrids via SERS: Insights into the Influence of Metal Nanoparticles. Theranostics. 2018;8:941-54.
[68] C. Kojima, Y. Hirano, E. Yuba, A. Harada, K. Kono. Preparation and characterization of complexes of liposomes with gold nanoparticles. Colloids Surf. B Biointerfaces. 2008;66:246-52.
[69] J. Rejman, V. Oberle, I. S. Zuhorn, D. Hoekstra. Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem. J. 2004;377:159-69.
[70] D. Drescher, J. Kneipp. Nanomaterials in complex biological systems: insights from Raman spectroscopy. Chem. Soc. Rev. 2012;41:5780-99.
[71] H. Hillaireau, P. Couvreur, Cell. Nanocarriers' entry into the cell: relevance to drug delivery. Mol. Life Sci. 2009;66:2873-96.
[72] Y. Shen, X. Li, D. Dong, B. Zhang, Y. Xue, P. Shang. Transferrin receptor 1 in cancer: a new sight for cancer therapy. Am. J. Cancer Res. 2018;8:916-31.
[73] S. Pizzamiglio, M. de Bortoli, E. Taverna, M. Signore, S. Veneroni, W. C.-S. Cho, R. Orlandi, P. Verderio, I. Bongarzone. Expression of Iron-Related Proteins Differentiate Non-Cancerous and Cancerous Breast Tumors. Int. J. Mol. Sci. 2017;18.
[74] H. O. Habashy, D. G. Powe, C. M. Staka, E. A. Rakha, G. Ball, A. R. Green, M. Aleskandarany, E. C. Paish, R. Douglas Macmillan, R. I. Nicholson, I. O. Ellis, J. M. W. Gee. Transferrin receptor (CD71) is a marker of poor prognosis in breast cancer and can predict response to tamoxifen. Breast Cancer Res. Treat. 2010;119:283-93.
[75] W. Wang, Z. Deng, H. Hatcher, L. D. Miller, X. Di, L. Tesfay, G. Sui, R. B. D'Agostino, F. M. Torti, S. V. Torti. IRP2 regulates breast tumor growth. Cancer Res. 2014;74:497-507.
[76] A. Zarinwall, M. Asadian-Birjand, D. A. Seleci, V. Maurer, A. Trautner, G. Garnweitner, H. Fuchs. Magnetic Nanoparticle-Based Dianthin Targeting for Controlled Drug Release Using the Endosomal Escape Enhancer SO1861. Nanomaterials. 2021;11:1057.
[77] M. Nag, V. Gajbhiye, P. Kesharwani, N. K. Jain. Transferrin functionalized chitosan-PEG nanoparticles for targeted delivery of paclitaxel to cancer cells. Colloids Surf. B Biointerfaces. 2016;148:363-70.
[78] S. Zakel, S. Wundrack, G. O'Connor, B. Güttler, R. Stosch. Validation of isotope dilution surface-enhanced Raman scattering (IDSERS) as a higher order reference method for clinical measurands employing international comparison schemes. J. Raman Spectrosc. 2013;44:1246-52.
[79] C. Frank, C. Brauckmann, M. Palos, C. G. Arsene, J. Neukammer, M. E. Del Castillo Busto, S. Zakel, C. Swart, B. Güttler, R. Stosch. Comparison of potential higher order reference methods for total haemoglobin quantification-an interlaboratory study. Anal. Bioanal. Chem. 2017;409:2341-51.
[80] C. Frank, O. Rienitz, R. Jährling, D. Schiel, S. Zakel. Reference measurement procedures for the iron saturation in human transferrin based on IDMS and Raman scattering. Metallomics. 2012;4:1239-44.
[81] A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson. Meep: A flexible free-software package for electromagnetic simulations by the FDTD method. Comput. Phys. Commun. 2010;181:687-702.
[82] C. V. Yerin, V. I. Lykhmanova, M. V. Yerina. Spectral dependences of the complex refractive index of concentrated magnetic fluids. Magnetohydrodynamics. 2018;54:157-62.
[83] P. B. Johnson, R. W. Christy. Optical Constants of the Noble Metals. Phys. Rev. B 1972;6:4370-79.
[84] S. Saavedra-Alonso, P. Zapata-Benavides, A. K. Chavez-Escamilla, E. Manilla-Muñoz, D. E. Zamora-Avila, M. A. Franco-Molina, C. Rodriguez-Padilla. WT1 shRNA delivery using transferrin-conjugated PEG liposomes in an in vivo model of melanoma. Exp. Ther. Med. 2016;12:3778-84.
[85] American Society for Testing and Materials. E1840-96, Standard guide for raman shift standards for spectrometer calibration. 2007.