1 Correale, P. et al. Cetuximab±chemotherapy enhances dendritic cell‐mediated phagocytosis of colon cancer cells and ignites a highly efficient colon cancer antigen‐specific cytotoxic T‐cell response in vitro. International journal of cancer 130, 1577-1589 (2012).
2 Pugin, J. in Novartis Foundation symposium. 21 (Wiley Online Library).
3 Bairwa, M. K., Jakhar, J. K., Satyanarayana, Y. & Reddy, A. D. Animal and plant originated immunostimulants used in aquaculture. Journal of Natural Product and Plant Resources 2, 397-400 (2012).
4 Saxena, M., Saxena, J., Nema, R., Singh, D. & Gupta, A. Phytochemistry of medicinal plants. Journal of pharmacognosy and phytochemistry 1 (2013).
5 Dhama, K. et al. Medicinal and therapeutic potential of herbs and plant metabolites/extracts countering viral pathogens-current knowledge and future prospects. Current drug metabolism 19, 236-263 (2018).
6 Jeney, G., Wet, L. D., Jeney, Z. & Yin, G. Plant extracts. Dietary Nutrients, Additives, and Fish Health. John Wiley and Sons, Inc. pp, 321-332 (2015).
7 Elsayed, D. H., El-Shamy, A. A., Abdelrazek, H. M. A. & El-Badry, D. A. Effect of genistein on semen quality, antioxidant capacity, caspase-3 expression and DNA integrity in cryopreserved ram spermatozoa. Small Ruminant Research 177, 50-55, doi:https://doi.org/10.1016/j.smallrumres.2019.06.009 (2019).
8 Atanasov, A. G. et al. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnology advances 33, 1582-1614 (2015).
9 El-Hak, H. N. G. & Mobarak, Y. M. Copper oxychloride–induced testicular damage of adult albino rats and the possible role of curcumin in healing the damage. Environmental Science and Pollution Research, 1-14 (2020).
10 Gad El-Hak, H. N. & Mobarak, Y. M. The ameliorative impacts of curcumin on copper oxychloride-induced hepatotoxicity in rats. The Journal of Basic and Applied Zoology 79, 44, doi:10.1186/s41936-018-0059-x (2018).
11 Tembhurne, S., Feroz, S., More, B. & Sakarkar, D. A review on therapeutic potential of Nigella sativa (kalonji) seeds. J Med Plants Res 8, 167-177 (2014).
12 Salem, M. L. Immunomodulatory and therapeutic properties of the Nigella sativa L. seed. International immunopharmacology 5, 1749-1770 (2005).
13 Shariatifar, A., Riazi, M., Ebnolelm, M. & Jahromy, M. H. Effects of Nigella sativa L. seed extract on fatigue, blood biochemical parameters and thyroid function in male mice. Chinese Medicine 2014 (2014).
14 Hosseini, M. et al. The effects of Nigella sativa hydro-alcoholic extract and thymoquinone on lipopolysaccharide-induced depression like behavior in rats. Journal of pharmacy & bioallied sciences 4, 219 (2012).
15 Namazi, N., Larijani, B., Ayati, M. H. & Abdollahi, M. The effects of Nigella sativa L. on obesity: A systematic review and meta-analysis. Journal of ethnopharmacology 219, 173-181 (2018).
16 Boseila, A. & Messalam, A. Immunostimulant effect of different fractions of Nigella sativa L. seeds against Rabies vaccine. Nat. Sci 9, 7 (2011).
17 Gholamnezhad, Z., Keyhanmanesh, R. & Boskabady, M. H. Anti-inflammatory, antioxidant, and immunomodulatory aspects of Nigella sativa for its preventive and bronchodilatory effects on obstructive respiratory diseases: A review of basic and clinical evidence. Journal of Functional Foods 17, 910-927 (2015).
18 Keyhanmanesh, R., Boskabady, M. H., Eslamizadeh, M. J., Khamneh, S. & Ebrahimi, M. A. The effect of thymoquinone, the main constituent of Nigella sativa on tracheal responsiveness and white blood cell count in lung lavage of sensitized guinea pigs. Planta medica 76, 218-222 (2010).
19 Boskabady, M., Mohsenpoor, N. & Takaloo, L. Antiasthmatic effect of Nigella sativa in airways of asthmatic patients. Phytomedicine 17, 707-713 (2010).
20 Boskabady, M. H. & Farhadi, J. The possible prophylactic effect of Nigella sativa seed aqueous extract on respiratory symptoms and pulmonary function tests on chemical war victims: a randomized, double-blind, placebo-controlled trial. The Journal of Alternative and Complementary Medicine 14, 1137-1144 (2008).
21 Ahmed, S. Y. & El-Sayed, S. A. Dietary Supplementation by some Phytogenic Substances in Albino Rats: Their Effects on Growth Performance and Serum Interlukin-6. Pharmacology 13, 274-279 (2017).
22 Ashraf, S. S. et al. Nigella sativa Extract as a Potent Antioxidant for Petrochemical-Induced Oxidative Stress. Journal of Chromatographic Science 49, 321-326, doi:10.1093/chrsci/49.4.321 (2011).
23 Dong, J. et al. Effects of Nigella sativa seed polysaccharides on type 2 diabetic mice and gut microbiota. International Journal of Biological Macromolecules (2020).
24 Akhtar, M. T. et al. Antidiabetic potential of Nigella sativa L seed oil in alloxaninduced diabetic rabbits. Tropical Journal of Pharmaceutical Research 19, 283-289 (2020).
25 Abdelrazek, H., Kilany, O. E., Muhammad, M. A., Tag, H. M. & Abdelazim, A. M. Black seed thymoquinone improved insulin secretion, hepatic glycogen storage, and oxidative stress in streptozotocin-induced diabetic male wistar rats. Oxidative medicine and cellular longevity 2018 (2018).
26 Haq, A., Lobo, P. I., Al-Tufail, M., Rama, N. R. & Al-Sedairy, S. T. Immunomodulatory effect of Nigella sativa proteins fractionated by ion exchange chromatography. International journal of immunopharmacology 21, 283-295 (1999).
27 Majdalawieh, A. F. & Fayyad, M. W. Immunomodulatory and anti-inflammatory action of Nigella sativa and thymoquinone: A comprehensive review. International immunopharmacology 28, 295-304 (2015).
28 Boskabady, M.-H., Keyhanmanesh, R., Khameneh, S., Doostdar, Y. & Khakzad, M.-R. Potential immunomodulation effect of the extract of Nigella sativa on ovalbumin sensitized guinea pigs. Journal of Zhejiang University Science B 12, 201-209 (2011).
29 Gholamnezhad, Z., Rafatpanah, H., Sadeghnia, H. R. & Boskabady, M. H. Immunomodulatory and cytotoxic effects of Nigella sativa and thymoquinone on rat splenocytes. Food and Chemical Toxicology 86, 72-80 (2015).
30 Al-Ghamdi, M. The anti-inflammatory, analgesic and antipyretic activity of Nigella sativa. Journal of ethnopharmacology 76, 45-48 (2001).
31 Ghannadi, A., Hajhashemi, V. & Jafarabadi, H. An investigation of the analgesic and anti-inflammatory effects of Nigella sativa seed polyphenols. Journal of medicinal food 8, 488-493 (2005).
32 Mutabagani, A. & El-Mahdy, S. Study of the anti-inflammatory activity of Nigella sativa L and thymoquinone in rats, Saudi Pharm. J 5, 110-113 (1997).
33 Alemi, M., Sabouni, F., Sanjarian, F., Haghbeen, K. & Ansari, S. Anti-inflammatory effect of seeds and callus of Nigella sativa L. extracts on mix glial cells with regard to their thymoquinone content. AAPS PharmSciTech 14, 160-167 (2013).
34 Amin, B. & Hosseinzadeh, H. Black cumin (Nigella sativa) and its active constituent, thymoquinone: an overview on the analgesic and anti-inflammatory effects. Planta medica 82, 8-16 (2016).
35 Khan, M. A., Chen, H.-c., Tania, M. & Zhang, D.-z. Anticancer activities of Nigella sativa (black cumin). Afr J Tradit Complement Altern Med 8, 226-232, doi:10.4314/ajtcam.v8i5S.10 (2011).
36 Mahmood, A., Fouad, A., Noor, S., Wasman, S. & Saba, F. Anti-ulcerogenic effects of Nagilla sativa in ethanol-induced gastric injuries in rats. J Med Plant Res 5, 5577-5583 (2011).
37 Rifat-uz-Zaman, M. S. A. & Khan, M. S. Gastroprotective and anti-secretory effect of Nigella sativa seed and its extracts in indomethacin-treated rats. Pak J Biol Sci 7, 995-1000 (2004).
38 El-Obeid, A., ELTahir, K. E. H., Elhag, H. & Haseeb, A. M. ANTI-ULCEROGENIC EFFECTS OF NIGELLA SATIVA L. MELANIN. (2015).
39 Nasuti, C. et al. Anti-Inflammatory, anti-arthritic and anti-nociceptive activities of Nigella sativa oil in a rat model of arthritis. Antioxidants 8, 342 (2019).
40 Ali, B. The effect of Nigella sativa oil on gentamicin nephrotoxicity in rats. The American journal of Chinese medicine 32, 49-55 (2004).
41 Uz, E. et al. Nigella sativa oil for prevention of chronic cyclosporine nephrotoxicity: an experimental model. American journal of nephrology 28, 517-522 (2008).
42 Canayakin, D. et al. Paracetamol-induced nephrotoxicity and oxidative stress in rats: the protective role of Nigella sativa. Pharmaceutical biology 54, 2082-2091 (2016).
43 Vahdati-Mashhadian, N., Rakhshandeh, H. & Omidi, A. An investigation on LD50 and subacute hepatic toxicity of Nigella sativa seed extracts in mice. Die Pharmazie-An International Journal of Pharmaceutical Sciences 60, 544-547 (2005).
44 Khan, T. A., Khan, M. N., Hasan, R., Fatima, H. & Kousar, E. Effects of Nigella sativa (Black Seed) on serum levels of urea and uric acid in acetaminophen induced hepatotoxicity of commercial layer chickens. Journal of World’s Poultry Research 3, 89-92 (2013).
45 Ghonime, M., Eldomany, R., Abdelaziz, A. & Soliman, H. Evaluation of immunomodulatory effect of three herbal plants growing in Egypt. Immunopharmacology and immunotoxicology 33, 141-145 (2011).
46 Balaha, M. F., Tanaka, H., Yamashita, H., Rahman, M. N. A. & Inagaki, N. Oral Nigella sativa oil ameliorates ovalbumin-induced bronchial asthma in mice. International immunopharmacology 14, 224-231 (2012).
47 Salem, M. L. & Hossain, M. S. Protective effect of black seed oil from Nigella sativa against murine cytomegalovirus infection. International journal of immunopharmacology 22, 729-740 (2000).
48 Shoieb, A. M., Elgayyar, M., Dudrick, P. S., Bell, J. L. & Tithof, P. K. In vitro inhibition of growth and induction of apoptosis in cancer cell lines by thymoquinone. International journal of oncology 22, 107-113 (2003).
49 Silahtaroglu, S., Güngör, S. S. U., Ilçim, A. & Kökdil, G. Fatty acid, tocopherol, mineral composition, total phenolic, flavonoid and thymoquinone content, and antioxidant potential of Nigella stellaris. European Journal of Chemistry 5, 263-266 (2014).
50 Oladeji, S. O., Adelowo, F. E. & Odelade, K. A. Mass spectroscopic and phytochemical screening of phenolic compounds in the leaf extract of Senna alata (L.) Roxb.(Fabales: Fabaceae). Brazilian Journal of Biological Sciences 3, 209-219 (2016).
51 Khattak, K. F. & Simpson, T. J. Effect of gamma irradiation on the extraction yield, total phenolic content and free radical-scavenging activity of Nigella staiva seed. Food Chemistry 110, 967-972 (2008).
52 Nergiz, C. & Ötleş, S. Chemical composition of Nigella sativa L. seeds. Food chemistry 48, 259-261 (1993).
53 Mariod, A. A., Ibrahim, R. M., Ismail, M. & Ismail, N. Antioxidant activity and phenolic content of phenolic rich fractions obtained from black cumin (Nigella sativa) seedcake. Food Chemistry 116, 306-312 (2009).
54 NRC. Nutrient requirements of laboratory animals: 1995. (National Academies Press, 1995).
55 Mohamed, H., El-Sayed, I. & Moawad, M. Protective effect of Nigella sativa seeds against dimethylaminoazobenzene (DAB) induced liver carcinogenesis. Nat Sci 8, 80-87 (2010).
56 Bashir, M. U., Qureshi, H. J. & Saleem, T. Comparison of anti-inflammatory activity of Nigella sativa and diclofenac sodium in albino rats. Journal of Ayub Medical College Abbottabad 27, 523-526 (2015).
57 Ebaid, H. M., Elgawish, R. A. R., Abdelrazek, H. M. A., Gaffer, G. & Tag, H. M. Prenatal Exposure to Soy Isoflavones Altered the Immunological Parameters in Female Rats. International Journal of Toxicology 35, 274-283, doi:10.1177/1091581815625595 (2016).
58 Gaffer, G. G., Elgawish, R. A., Abdelrazek, H. M., Ebaid, H. M. & Tag, H. M. Dietary soy isoflavones during pregnancy suppressed the immune function in male offspring albino rats. Toxicology reports 5, 296-301 (2018).
59 Bancroft, J. D. & Gamble, M. Theory and practice of histological techniques. (Elsevier health sciences, 2008).
60 Zhao, X. et al. Saikosaponin A Inhibits Breast Cancer by Regulating Th1/Th2 Balance. Front Pharmacol 10, 624-624, doi:10.3389/fphar.2019.00624 (2019).
61 Elgawish, R. A. R. & Abdelrazek, H. M. Effects of lead acetate on testicular function and caspase-3 expression with respect to the protective effect of cinnamon in albino rats. Toxicology Reports 1, 795-801 (2014).
62 Rahmani, A. H. & Aly, S. M. Nigella sativa and its active constituents thymoquinone shows pivotal role in the diseases prevention and treatment. Asian J Pharm Clin Res 8, 48-53 (2015).
63 Kazemi, M. Chemical composition and antioxidant properties of the essential oil of Nigella sativa L. Bangladesh Journal of Botany 44, 111-116 (2015).
64 İlhan, N. & Seçkin, D. Protective effect of Nigella sativa seeds on CCl4-induced hepatotoxicity. FÜ Sağlık Bil Dergisi 19, 175-179 (2005).
65 Al-Suhaimi, E. A. Hepatoprotective and immunological functions of Nigella sativa seed oil against hypervitaminosis A in adult male rats. Int J Vitam Nutr Res 82, 288-297 (2012).
66 Ghasemi, H. A., Kasani, N. & Taherpour, K. Effects of black cumin seed (Nigella sativa L.), a probiotic, a prebiotic and a synbiotic on growth performance, immune response and blood characteristics of male broilers. Livestock Science 164, 128-134 (2014).
67 El-Dakhakhny, M., Madi, N., Lembert, N. & Ammon, H. Nigella sativa oil, nigellone and derived thymoquinone inhibit synthesis of 5-lipoxygenase products in polymorphonuclear leukocytes from rats. Journal of ethnopharmacology 81, 161-164 (2002).
68 Chehl, N., Chipitsyna, G., Gong, Q., Yeo, C. J. & Arafat, H. A. Anti-inflammatory effects of the Nigella sativa seed extract, thymoquinone, in pancreatic cancer cells. HPB 11, 373-381 (2009).
69 Mohamed, A. M., Metwally, N. M. & Mahmoud, S. S. Sativa seeds against Schistosoma mansoni different stages. Memórias do Instituto Oswaldo Cruz 100, 205-211 (2005).
70 Adetuyi, F. & Ibrahim, T. Effect of fermentation time on the phenolic, flavonoid and vitamin C contents and antioxidant activities of okra (Abelmoschus esculentus) seeds. Nigerian Food Journal 32, 128-137 (2014).
71 Hameed, S. et al. Characterization of extracted phenolics from black cumin (Nigella sativa linn), coriander seed (Coriandrum sativum L.), and fenugreek seed (Trigonella foenum-graecum). International Journal of Food Properties 22, 714-726 (2019).
72 Hirose, Y., Fujita, T., Ishii, T. & Ueno, N. Antioxidative properties and flavonoid composition of Chenopodium quinoa seeds cultivated in Japan. Food Chemistry 119, 1300-1306 (2010).
73 Zhang, S., Zhang, L., Wang, L. & Zhao, Y. Total phenols, flavonoids, and procyanidins levels and total antioxidant activity of different Korean pine (Pinus koraiensis) varieties. Journal of Forestry Research 30, 1743-1754 (2019).
74 Al-Jassir, M. S. Chemical composition and microflora of black cumin (Nigella sativa L.) seeds growing in Saudi Arabia. Food Chemistry 45, 239-242 (1992).
75 Atta, M. B. Some characteristics of nigella (Nigella sativa L.) seed cultivated in Egypt and its lipid profile. Food chemistry 83, 63-68 (2003).
76 Koç, A. et al. Therapeutic Trials of Nigella sativa. Journal of Pharmacy and Pharmacology 7, 564-577 (2019).
77 Platel, K. & Srinivasan, K. Influence of dietary spices or their active principles on digestive enzymes of small intestinal mucosa in rats. International journal of food sciences and nutrition 47, 55-59 (1996).
78 Platel, K. & Srinivasan, K. Influence of dietary spices and their active principles on pancreatic digestive enzymes in albino rats. Food/Nahrung 44, 42-46 (2000).
79 Hannan, J. M. A. & Ansari, P. Nigella sativa stimulates insulin secretion from isolated rat islets and inhibits the digestion and absorption of (CH(2)O)(n) in the gut. 39, doi:10.1042/bsr20190723 (2019).
80 Dollah, M. A., Parhizkar, S. & Izwan, M. Effect of Nigella sativa on the kidney function in rats. Avicenna journal of phytomedicine 3, 152 (2013).
81 Papenfuss, T. L. & Cesta, M. F. in Immunopathology in Toxicology and Drug Development: Volume 2, Organ Systems (ed George A. Parker) 37-57 (Springer International Publishing, 2017).
82 Assayed, M. E. Radioprotective effects of black seed (Nigella sativa) oil against hemopoietic damage and immunosuppression in gamma-irradiated rats. Immunopharmacology and Immunotoxicology 32, 284-296, doi:10.3109/08923970903307552 (2010).
83 Al-Othman, A. M., Ahmad, F., Al-Orf, S., Al-Murshed, K. S. & Arif, Z. Effect of dietary supplementation of Ellataria cardamomum and Nigella sativa on the toxicity of rancid corn oil in Rats. Int J Pharmacol 2, 60-65 (2006).
84 Sultan, M. T. et al. Nigella sativa fixed and essential oil modulates glutathione redox enzymes in potassium bromate induced oxidative stress. BMC Complement Altern Med 15, 330-330, doi:10.1186/s12906-015-0853-7 (2015).
85 Farhoosh, R., Johnny, S., Asnaashari, M., Molaahmadibahraseman, N. & Sharif, A. Structure–antioxidant activity relationships of o-hydroxyl, o-methoxy, and alkyl ester derivatives of p-hydroxybenzoic acid. Food Chemistry 194, 128-134, doi:https://doi.org/10.1016/j.foodchem.2015.08.003 (2016).
86 Cho, A.-S. et al. Chlorogenic acid exhibits anti-obesity property and improves lipid metabolism in high-fat diet-induced-obese mice. Food and Chemical Toxicology 48, 937-943, doi:https://doi.org/10.1016/j.fct.2010.01.003 (2010).
87 Abolfathi, A. A., Mohajeri, D., Rezaie, A. & Nazeri, M. Protective Effects of Green Tea Extract against Hepatic Tissue Injury in Streptozotocin-Induced Diabetic Rats. Evidence-Based Complementary and Alternative Medicine 2012, 740671, doi:10.1155/2012/740671 (2012).
88 Shin, D.-S., Kim, K. W., Chung, H. Y., Yoon, S. & Moon, J.-O. Effect of sinapic acid against carbon tetrachloride-induced acute hepatic injury in rats. Archives of Pharmacal Research 36, 626-633, doi:10.1007/s12272-013-0050-5 (2013).
89 Sanjeev, S., Bidanchi, R. M., Murthy, M. K., Gurusubramanian, G. & Roy, V. K. Influence of ferulic acid consumption in ameliorating the cadmium-induced liver and renal oxidative damage in rats. Environmental Science and Pollution Research 26, 20631-20653, doi:10.1007/s11356-019-05420-7 (2019).
90 parvizi, f., yaghmaei, p., haeri rohani, s. a. & Mard, S. A. Hepatoprotective properties of p-coumaric acid in a rat model of ischemia-reperfusion. Avicenna Journal of Phytomedicine, doi:10.22038/ajp.2020.16007 (2020).
91 Zang, Y., Zhang, D., Yu, C., Jin, C. & Igarashi, K. Antioxidant and hepatoprotective activity of kaempferol 3-O-β-d- (2,6-di-O-α-l-rhamnopyranosyl)galactopyronoside against carbon tetrachloride-induced liver injury in mice. Food Science and Biotechnology 26, 1071-1076, doi:10.1007/s10068-017-0170-7 (2017).
92 Elgawish, R. A., El-Beltagy, M. A., El-Sayed, R. M., Gaber, A. A. & Abdelrazek, H. M. Protective role of lycopene against metabolic disorders induced by chronic bisphenol A exposure in rats. Environmental Science and Pollution Research, 1-10 (2020).
93 Charles, D. J. in Antioxidant Properties of Spices, Herbs and Other Sources 265-271 (Springer New York, 2013).
94 Pravansha, S., Thippeswamy, B. S. & Veerapur, V. P. Immunomodulatory and antioxidant effect of Leptadenia reticulata leaf extract in rodents: possible modulation of cell and humoral immune response. Immunopharmacology and Immunotoxicology 34, 1010-1019, doi:10.3109/08923973.2012.689767 (2012).
95 Thippeswamy, N. B. & Naidu, K. A. Antioxidant potency of cumin varieties—cumin, black cumin and bitter cumin—on antioxidant systems. European Food Research and Technology 220, 472-476, doi:10.1007/s00217-004-1087-y (2005).
96 Ahmad, A. et al. A review on therapeutic potential of Nigella sativa: A miracle herb. Asian Pacific Journal of Tropical Biomedicine 3, 337-352, doi:https://doi.org/10.1016/S2221-1691(13)60075-1 (2013).
97 Martin, L. B. et al. Phytohemagglutinin-induced skin swelling in birds: histological support for a classic immunoecological technique. Functional Ecology 20, 290-299, doi:10.1111/j.1365-2435.2006.01094.x (2006).
98 Vinkler, M., Bainová, H. & Albrecht, T. Functional analysis of the skin-swelling response to phytohaemagglutinin. Functional Ecology 24, 1081-1086, doi:10.1111/j.1365-2435.2010.01711.x (2010).
99 Anna M. Forsman, Scott K. Sakaluk, Charles F. Thompson & Laura A. Vogel. Cutaneous Immune Activity, but Not Innate Immune Responsiveness, Covaries with Mass and Environment in Nestling House Wrens (Troglodytes aedon). Physiological and Biochemical Zoology 83, 512-518, doi:10.1086/649894 (2010).
100 Cooper, A. M., Solache, A. & Khader, S. A. Interleukin-12 and tuberculosis: an old story revisited. Current Opinion in Immunology 19, 441-447, doi:https://doi.org/10.1016/j.coi.2007.07.004 (2007).
101 Hamza, T., Barnett, J. B. & Li, B. Interleukin 12 a Key Immunoregulatory Cytokine in Infection Applications. Int J Mol Sci 11, 789-806 (2010).
102 Segel, M. J. et al. Role of interferon-γ in the evolution of murine bleomycin lung fibrosis. American Journal of Physiology-Lung Cellular and Molecular Physiology 285, L1255-L1262, doi:10.1152/ajplung.00303.2002 (2003).
103 Novelli, F. & Casanova, J.-L. The role of IL-12, IL-23 and IFN-γ in immunity to viruses. Cytokine & Growth Factor Reviews 15, 367-377, doi:https://doi.org/10.1016/j.cytogfr.2004.03.009 (2004).
104 Wallach, D. et al. TUMOR NECROSIS FACTOR RECEPTOR AND Fas SIGNALING MECHANISMS. Annual Review of Immunology 17, 331-367, doi:10.1146/annurev.immunol.17.1.331 (1999).
105 Ferlazzo, G. et al. Distinct roles of IL-12 and IL-15 in human natural killer cell activation by dendritic cells from secondary lymphoid organs. Proceedings of the National Academy of Sciences of the United States of America 101, 16606-16611, doi:10.1073/pnas.0407522101 (2004).
106 Cancro, M. P. & Smith, S. H. Peripheral B cell selection and homeostasis. Immunologic Research 27, 141-148, doi:10.1385/IR:27:2-3:141 (2003).
107 Gholamnezhad, Z., Boskabady, M. H. & Hosseini, M. Effect of Nigella sativa on immune response in treadmill exercised rat. BMC Complement Altern Med 14, 437, doi:10.1186/1472-6882-14-437 (2014).
108 Aljabre, S. H. M., Alakloby, O. M. & Randhawa, M. A. Dermatological effects of Nigella sativa. Journal of Dermatology & Dermatologic Surgery 19, 92-98, doi:https://doi.org/10.1016/j.jdds.2015.04.002 (2015).
109 Gholamnezhad, Z., Havakhah, S. & Boskabady, M. H. Preclinical and clinical effects of Nigella sativa and its constituent, thymoquinone: A review. Journal of Ethnopharmacology 190, 372-386, doi:https://doi.org/10.1016/j.jep.2016.06.061 (2016).
110 Titiek, H., Akrom, A., Indrayanti, I. & Sagiran, S. Black Cumin Seed Oil Increase Leucocyte and CD4Thelper Number in Sprague-dawley Rats Induced with Dimethylbenzanthracene. International Journal of Public Health Science 8, 238-245, doi:10.11591/ijphs.v8i2.17930 (2019).
111 Mohan, V. P. et al. Effects of Tumor Necrosis Factor Alpha on Host Immune Response in Chronic Persistent Tuberculosis: Possible Role for Limiting Pathology. Infection and Immunity 69, 1847-1855, doi:10.1128/iai.69.3.1847-1855.2001 (2001).
112 Bhat, P., Leggatt, G., Waterhouse, N. & Frazer, I. H. Interferon-γ derived from cytotoxic lymphocytes directly enhances their motility and cytotoxicity. Cell Death & Disease 8, e2836-e2836, doi:10.1038/cddis.2017.67 (2017).
113 Salem, M., Alenzi, F. & Attia, W. Thymoquinone, the active ingredient of Nigella sativa seeds, enhances survival and activity of antigen-specific CD8-positive T cells in vitro. British journal of biomedical science 68, 131-137 (2011).
114 Wherry, E. J. & Ahmed, R. Memory CD8 T-cell differentiation during viral infection. Journal of virology 78, 5535-5545 (2004).
115 Kenny, E., Mason, D., Pombo, A. & Ramírez, F. Phenotypic analysis of peripheral CD4+ CD8+ T cells in the rat. Immunology 101, 178-184, doi:10.1046/j.1365-2567.2000.00071.x (2000).
116 Earnshaw, W. C., Martins, L. M. & Kaufmann, S. H. Mammalian Caspases: Structure, Activation, Substrates, and Functions During Apoptosis. Annual Review of Biochemistry 68, 383-424, doi:10.1146/annurev.biochem.68.1.383 (1999).
117 Brown, D. M. Cytolytic CD4 cells: Direct mediators in infectious disease and malignancy. Cellular Immunology 262, 89-95, doi:https://doi.org/10.1016/j.cellimm.2010.02.008 (2010).
118 Tau, G. Z., Cowan, S. N., Weisburg, J., Braunstein, N. S. & Rothman, P. B. Regulation of IFN-γ Signaling Is Essential for the Cytotoxic Activity of CD8<sup>+</sup> T Cells. The Journal of Immunology 167, 5574-5582, doi:10.4049/jimmunol.167.10.5574 (2001).
119 Shanmugam, M. K. et al. Modulation of diverse oncogenic transcription factors by thymoquinone, an essential oil compound isolated from the seeds of Nigella sativa Linn. Pharmacological research 129, 357-364 (2018).
120 Elmore, S. A. Histopathology of the lymph nodes. Toxicologic pathology 34, 425-454 (2006).
121 O'Dowd, G., Bell, S. & Wright, S. Wheater's Pathology: A Text, Atlas and Review of Histopathology E-Book. (Elsevier Health Sciences, 2019).
122 Choo-Kang, B. S. et al. TNF-blocking therapies: an alternative mode of action? Trends in immunology 26, 518-522 (2005).
123 Good, D. J. & Gascoyne, R. D. Atypical Lymphoid Hyperplasia Mimicking Lymphoma. Hematology/Oncology Clinics of North America 23, 729-745, doi:https://doi.org/10.1016/j.hoc.2009.04.005 (2009).