This paper investigates a particular family of semi-rational solutions in determinant form by using the KP hierarchy reduction method, which describe resonant collisions among lumps or resemble line rogue waves and dark solitons in the Hirota-Maccari system. Due to the resonant collisions, the line resemble rogue waves are generated and attenuated in the background of dark solitons with line profiles of finite length, it takes a short time for the lumps to appear from and disappear into the dark solitons background. These novel dynamic of localized solitary waves may be help to understand some physical phenomena of nonlinear localized waves propagation in many physical settings.