RB-SiC ceramic is one of the most important and useful material as optical precision elements in many scientific research fields. In this paper, a novel cold atmospheric plasma (CAP), which is based on the precision grinding process in surface technology to modify at room temperature (RT) for grinding with a combination of plasma oxidation surface modification is proposed. To identify the performance of the proposed cold atmospheric plasma (CAP) method on the surface modification of RB-SiC ceramic, precision grinding test was conducted. To reveal the fundamental issue in the grinding of RB-SiC ceramic, numerical calculation and model analysis were conducted to investigate the effect of the composite process on grinding forces and the mechanism of subsurface material removal in the presence of plasma oxidation. As a result of the method included the kept constant during the precision grinding of the composite process self-adaption-grinding process to avoid the deviation caused by second grinding particle entry. As a summary, we provides a significant cold atmospheric plasma-precision grinding compound process toward the establishment of the basic theory by analyzing the mechanism of the simulated design and computation. The process and technical difficulties of RB-SiC ceramic and mechanism of subsurface material removal during precision grinding were be solved.