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Abstract
Aspergillus oryzae HML366 is a newly screened cellulase-producing strain. The endoglucanase HML ED1
from A. oryzae HML366 was quickly purified by two-step method ammonium sulfate precipitation and
strong anion exchange column. SDS-PAGE electrophoresis indicated that the molecular weight of the
enzyme was 68 kDa. The optimum temperature of the purified endoglucanase was 60 ℃ and the enzyme
activity was stable below 70 ℃. The optimum pH was 6.5, and the enzyme activity was stable at pH
between 4.5 to 9.0. The analysis indicated that additional Na+, K+, Ca2+, and Zn2+ reduced the catalytic
ability of enzyme to the substrate, but Mn2+ enhanced its catalytic ability to the substrate.The Km and
Vmax of the purified endoglucanase was 8.75 mg/mL and 60.24 μmol/min·mg, respectively. In this study,
we for the first time reported that A. oryzae HML366 can produce a heat-resistant and wide pH tolerant
endoglucanase HML ED1, which has potential industrial application value in bioethanol, paper, food,
textile, detergent and pharmaceutical industries.

Introduction
Plant lignocellulose accounts for 50% of total biomass in the world and is an important renewable
biomass energy material (Lynd et al 2002; Mikulski and Klosowski 2020; Xu et al 2019). Cellulose is a
linear homopolysaccharide of 100–1000 D-glucose units, which are linked together by β-(1,4)-Glycosidic
bond (Himmel et al 2007; Yang et al 2021; Zhou et al 2021).

Cellulases are enzymes involved in the hydrolysis of cellulose. Three types of enzymes, including
cellobiohydrolase (EC 3.2.1.91), endoglucanase (EC 3.2.1.4) and β -Glucosidase (EC 3.2.1.21), play an
essential role in effectively degrading cellulose into glucose (Béguin and Aubert 1994; Qin et al 2021;
Zhao et al 2021).

Cellulose can be fermented to produce ethanol and different types of energy and chemicals. Concerns
about global climate change, increased demand for energy, and reduced oil supply have prompted people
to develop renewable energy to replace fossil fuels. The production of ethanol by cellulose hydrolysis has
become a subject of great interest (Chandrasekhar et al 2021; Srivastava et al 2021).

The endoglucanase (EC 3.2.1.4) acts on the non-crystalline areas inside the cellulose molecule to
randomly hydrolyze the β-1,4-glycosidic bond in the cellulose molecule to produce short cellulose chains,
thus playing an important role at the initation step of reaction. Endoglucanases provide raw materials
that can be used in industrial applications. Endoglucanases is used to remove fluff fibers on the surface
of cellulose to enhance the softness and brightness of cotton. Endoglucanases are also used to promote
the soil removal from fabrics. It can be added to detergent products to increase color and soften fabrics.
As a feed additive, it can improve the absorption rate of starch and vegetable oil by animals. In food
industry, endoglucanases can increase the juice yield of vegetable juices. It can also increase the strength
of pulp. Thus, endoglucanases have been widely used in pulp, textiles, bioethanol, washing, wine and
beer, food processing, animal feed, agriculture, biomolecular chemical products and the pharmaceutical
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industry (Araújo et al 2021; Haq et al 2021; Aich and Datta 2020; Li et al 2021; Pereira et al 2021; Ibrahim
et al 2021; Petrova et al 2009; Zhang et al 2021).

Our group previously collected samples from the National Nature Reserve of Huanjiang County, Guangxi,
and screened a cellulase-producing fungus HML366, which was identified as Aspergillus oryzae by
phenotype and ITS-rDNA sequence analysis (Qin et al 2011). We have completed the purification
experiment of partial cellulases from A. oryzae HML366 and tandem time-of-flight mass spectrometry
detection. Relying on the full-length sequencing data of A. oryzae chromosome genes performed by
Machida et al. (2005). We first report of a two-step rapid purification of two novel valuable βglucosidases
from A. oryzae HML366, we quickly isolated and purified a new type of β-glucosidase with high
transglycosidase activity and a predicted β-glucosidase from A. oryzae HML366 (He et al 2013). A.
oryzae HML366 can simultaneously produce a new 33.6 kDa xylanase (He et al 2015). An extracellular
enzyme HML CBH1 with a molecular weight of 48 kDa can also be isolated from the enzyme solution of
A. oryzae HML366. This enzyme belongs to glycoside hydrolase family 7, and has both exoglucanase
and endoglucanase activities (Qin et al 2020) .

A. oryzae HML366 contains abundant new enzyme resources. Our group aims to complete the
purification of endoglucanase from this strain, and provide experimental basis for the comprehensive
application of cellulase.

Materials And Methods
Materials and Methods 

Microorganism and culture conditions

A. oryzae HML366 used in this study was stored on potato dextrose agar (PDA) slants and stored at 4°C
in Guangxi Colleges Universities Key Laboratary of Exploitation and Utilization of Microbial and Botanical
Resources. A. oryzae HML366 was originally isolated from the soil beneath the rotten wood in Mulun
Forestry Center, Huanjiang County, Guangxi, China (Qin et al. 2011) and deposited in the Chinese Center
for Type Culture Collection (Accession No. CCTCC AF 2021152).

Cellulase re-screening solid medium: 10 g bagasse and 6 g bran were mixed well with 30 mL Mandels
nutrient salt solution in a 500 mL Erlenmeyer flask （Eveleigh et al 2009）. The cultures were turned twice a
day and incubate at 30 °C for 5 days. 200 mL sterile ddH2O was added to the culture, and extracted in a
constant temperature water bath at 40 °C for 1h before filtering with four layers of gauze. The solution
was centrifuged at 6000 r/min for 10 min to obtain a crude enzyme solution. The supernatant was
collected and stored at 4 °C for future use (He et al 2013).  

Endoglucanase rapid identification plate
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1% sodium carboxymethyl cellulose made with sodium acetate buffer (pH5.0) was added to the plate
with 1.5% agarose, followed by dropping 100 μL enzyme solution to the plate, and reacted at 30 ℃ for 30
min. The plate was stained for 30 min with 0.2 % Congo red, and then decolorized with three times
volume of 1 mol/L NaCl. The presence of transparent circle on the plate indicated that there was
ndoglucanase activity in the sample (He et al 2013, Sugimura et al 2006).  

Determination of enzyme activity and protein concentration

1% (w/v) carboxymethyl cellulose (CMCNa, Fluka) dissolved in 2% (w/v) sodium citrate (50 mM/pH 4.8)
was used as a substrate, and the 3,5-di Nitrosalicylic acid (DNS) method was used. Enzyme activity (U) is
defined as the amount of enzyme needed to catalyze the production of 1 μmol glucose per minute (Miller
1959). The protein concentration was measured at 595 nm according to the method of Bradford (1976 )
by using the Bradford Protein Assay Kit (Beyotime Institute of Biotechnology (China). All assays were
performed in triplicate.  

Purification of A. oryzae HML366 endoglucanase

All purification steps were performed at 4 °C. 

Seven aliquots of crude enzyme solution were prepared and 100 mL for each aliquot. The proteins in
each sample were precipitated with 30%-90% relative saturation (10% concentration gradient increase) of
ammonium sulfate, respectively. After precipitation, the samples were incubated for 12 h at 4 ℃. The
enzyme solutions were centrifuged for 20 min at 4 ℃ with a speed of 8000 r/min. The precipitates were
collected after centrifugation and dissolved with citric acid buffer solution (pH 4.8), and made up to 1/5
of the original volume. Sephadex G-25 gel column was used to quickly desalt from enzyme solution, and
the enzyme activity of endoglucanase was identified with endoglucanase quick identification plate to
determine the best conditions for ammonium sulfate precipitation and salting-out. The crude enzyme
products were stored at 4 °C for further purification.

The crude enzymes were further purified by using MonoQ10/100GL (Amersham Biosciences, Sweden)
strong anion exchange chromatography column (Petrova et al 2009; Zhang et al 2021; Qin et al 2011)
with a BioLogic Duo-Flow protein purifier (Bio-Rad). (pressure 530 psi). 0.01 mol/L Tris-HCl (pH 8.3)
solution was used as the starting buffer, and 1 mol/L NaCl in 0.01 mol/L Tris-HCl (pH 8.3) was used as
the elution buffer, and flow rate was 1 mL/min. The enzyme was eluted using 60 mL of 0 to 0.3 M linear
gradient of NaCl, and collected 0.5 mL per tube. The purified enzyme was stored at 4 °C. The enzyme
activity of endoglucanase was determined, and the protein purity was detected by SDS-PAGE. 

SDS-polyacrylamide gel electrophoresis analysis

According to Laemmli (1970) method, the enzyme products were subjected to separation with 12% SDS-
PAGE gel in Tris-glycine buffer (pH 8.3) at a voltage of 120V. The gel was stained with coomassie brilliant
Blue R 250, and the molecular weight of enzymes was evaluated by comparing the relative mobility of
purified protein with low molecular weight protein standard (Beyotime Institute of Biotechnology). 
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zymogram analysis

The purified enzyme was subjected to non-denaturing protein gel electrophoresis with pH 8.3
electrophoresis buffer at 4 ℃ by using 50 V constant voltage. The separation gel and stacking gel was
made by 8% acrylamide and 4% acrylamide, respectively, and 0.1% (w/v) sodium carboxymethyl cellulose
(CMCNa, Fluka) was added in the separation gel. After the electrophoresis, the separation gel was stained
for 20 min with 0.2% Congo red and then decolored with 1 mol/L NaCl to perform zymogram analysis (He
et al 2013).  

The effect of temperature and pH on enzyme activity

The definition of relative enzyme activity: the highest enzyme activity under a certain condition of the
experimental project was set to 100%, and the ratio of enzyme activity under other conditions to the
highest enzyme activity was defined as relative enzyme activity. 

To determine the optimal temperature of endoglucanase, the enzyme activity was measured under the
conditions of 30 ℃-90 ℃ in 50 mM acetate buffer. To determine the effect of temperature on the
stability of enzyme, the enzyme was incubated for 60 min in a water bath at temperatures between
40 ℃ and 90 ℃, and the residual enzyme activity was then measured at 60 ℃.

To determine the optimal pH of enzyme, the enzyme was stored in following buffers with a concentration
of 50 mM：disodium hydrogen phosphate-citric acid buffer, pH 3.0-7.5; Tris-HCl buffer，pH 7.5-pH 9.0；and
glycine-NaOH buffer，pH 9.0-11.0. The solutions were first stored for 24h at 4 ℃, followed by 3 h at 30 ℃.
The relative enzyme activity was determined at the optimal temperature. Relative enzymatic activity was
defined as follows. The maximum enzymatic activity under specific control conditions were defined as
100 %, and the measured activities under varying conditions in the same experiment were normalized to
derive the relative enzymatic activity in percentage. Three parallel tests were performed.  

Effect of metal ions on enzyme activity

Different metal ions were added to the purified enzyme solution with a final concentration of 2 mM, and
the enzyme activity was then tested. The enzyme activity was calculated according to the average value
of data from three parallel experiments. 

Kinetics analysis of the purified enzyme

To determine the kinetic parameters of the enzymatic reaction of endoglucanase, CMC-Na (0.2–3 mM)
 was used as the substrate and the reaction was performed in pH 5.0 sodium acetate buffer at optimal
temperature. The initial reaction rate was calculated, and the Km value and Vmax of the purified enzyme
was calculated by using Lineweaver-Burk plot (Horovitz and Levitzki 1987).  

Thin-layer chromatography analysis of enzymatic hydrolysis products
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The CMC-Na containing 50 μL purified enzyme was dissolved in 50 mmol sodium acetate buffer (pH5.0)
to make 1% cellobiose, cellotriose and cellotetraose substrates. 1mL substrate was transferred and kept it
at 30 ℃ for 12 hours. The hydrolyzed product was detected with silica thin plate chromatography. The
extender was made by mixing of n-butanol, ethyl acetate, ammonia, and water with a ratio of 6:3:3:1
(v/v). Color developer A was made by mixing 1g aniline with 25 mL acetone, and developer B was made
by mixing 1 mL diphenylamine with 25 mL acetone. Developer A and B was mixed, followed by adding 5
mL 85% phosphoric acid and mixed well. The plate was dried off after chromatography was finished, and
the developer was sprayed. The plate was dried at 120°C for 10 min to develop the color (Jo et al 2003). 

Results
Purification and identification of endoglucanase produced by solid-state fermentation of A. oryzae
HML366

The endoglucanase activity and protein amount were increased greatly when the saturation of
ammonium sulfate was between 50% and 80%, and the maximum value appeared when the saturation
ws 80%. The proteins were precipitated under 80% of the ammonium sulfate saturation, and redissolved
in 0.1 mol/L citric acid-sodium citrate buffer solution (pH 4.8). Sephadex G-25 gel column was used to
quickly desalt, and the recovered enzyme product was stored at 4 °C for further purification. 

linear elution analysis of enzyme purification

Tris-HCl elution buffer that contains 1 mol/L NaCl was used for elution at a flow rate of 1
mL/min. Enzyme was separated and purified with a continuous salt gradient from 0 to 0.5 M NaCl. It was
found that the purified HML ED1 was mainly located in the No. 60 collection tube corresponding to peak
1. It was shown that 8% of elution buffer can purify endoglucanase very well (Fig. 1). 

The enzyme solution in the No. 60 collection tube was concentrated and subjected to SDS-PAGE
electrophoresis, and the molecular weight standard was Prestained Color Protein Molecular Weight
Marker P0071 (Beyotime Biotechnology, China). HML ED1 protein was shown as a single band on the gel
with the molecular weight of 68 kDa (Fig. 2).

After a two-step purification, the endoglucanase HML ED1 from A. oryzae HML366 was isolated (Fig. 2),
and the purification yields were 17.6% and the purification folds were 4.8 (Tab. 1). 

Purified HML ED1 rapid identification plate

Sodium carboxymethyl cellulose is a specific substrate for endoglucanase, which can produce a
transparent circle after being hydrolyzed (He et al 2013). The transparent circle in Figure 3 confirmed that
the enzyme solution produced by solid fermentation of A. oryzae HML366 had endoglucanase activity.
After active staining with 1% Congo red stain solution and decolorizing with 1 M NaCl, a clear band was
shown, indicating that HML366 can produce an endoglucanase (Fig. 4, lane 1). 



Page 7/19

The influence of temperature and pH on the activity of purified endoglucanase HML ED1

The enzyme was reacted with sodium carboxymethyl cellulose substrate at 25 ℃-90 ℃, and the optimal
reaction temperature of HML ED1 was determined by measuring the enzyme activity. The enzyme
showed highest activity at 60 ℃, indicating that the optimal enzymatic reaction temperature of the
enzyme was 60 ℃ (Fig. 5A). The enzyme activity of the purified enzyme was on the rise between
25 ℃ and 60 ℃, and the relative enzyme activity was 100% at 25 ℃ for 0.5 h and 30 ℃ for 1 h, and
there was almost no loss of enzyme activity. The enzyme activity at 60 ℃ for 0.5 h and 1 h still remained
97% and 96.8%, respectively. While the loss of enzyme activity was gradually increased when the enzyme
solution was incubated at 70 ℃-90 ℃. These data indicated that the enzyme activity was relatively
stable between 25 °C and 70 °C (Fig. 5B).

The enzyme activity of HML ED1 was gradually increased at pH between 3.0 to 6.5, and the highest
enzyme activity was shown at pH 6.5 (Fig. 5C), indicating that the enzyme was acid cellulase. The
enzyme activity of HML ED1 was greatly influenced at pH between 3.0 to 4.5, and the relative enzyme
activity was 62.14%, 70.08%, 86.54% and 90.56% for pH value at 3, 3.5, 4, and 4.5, respectively. The
relative enzyme activity remained between 95.46%-100% at pH 5.0 to 7.0, indicating that the enzyme
activity was relatively stable in this interval. The enzyme activity loss was gradually increased over pH
9.0, and the enzyme activity was 94.46% and 64.26% at pH 9.0 and 11.0, respectively (Fig. 5D). Thus,
HML ED1 was stable in the range of pH 4.5-9.0. These characteristics make this isolated enzyme suitable
for industrial saccharification processes for bioethanol production and other applications. 

Analysis of purified endoglucanase HML ED1 hydrolysate

The CMC Na, cellobiose, cellotriose, and cellotetraose hydrolysates were analyzed by TLC (Fig. 6). Four
spots were found for CMC Na hydrolyses, they were glucose, cellobiose, cellotriose, and cellotetraose;
cellotriose was hydrolyzed to obtain cellobiose; cellotetraose was hydrolyzed to obtain cellobiose and
cellotriose. Cellotriose and cellotetraose cannot be hydrolyzed to produce glucose. No spots were found
in cellobiose (Fig. 6). It was speculated that the randomly cleavage of internal β-1,4-glycosidic bonds by
HML ED1 mainly produced cellobiose and cellotriose, but not glucose. These results indicated that HML
ED1 has endoglucanase activity. 

Enzymatic reaction kinetics

Based on Lineweaver-Burk plot, it was shown that Km and Vmax were 8.75 mg/mL and 60.24
μmol/min·mg, respectively. 

The influence of metal ions on enzyme activity

Metal ions are often used as activators or inhibitors in the catalytic reaction of enzymes. Therefore,
adding appropriate metal ions to the enzyme reaction system can improve the catalytic efficiency of the
enzyme. 
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Ag2+, Co2+, Cu2+, Zn2+, and Hg2+ had a strong inhibitory effect on the purified endoglucanase HML ED1 of
A. oryzae HML366, while Mn2+, Ca2+ and Mg2+ had obvious activation effects on HML ED1, and Na+ and
K+ had no significant effect (Tab. 2). Hg2+ interacts with cysteine residues in the sulfhydryl bond, and it
reacts with cysteine residues, and can change the tertiary structure of the protein. The active site may
contain sulfhydryl groups. These sulfhydryl groups participate in catalysis and are essential for
maintaining the structure of the enzyme. The divalent cobalt ion forms a complex with a variety of amino
acids, and the enzyme active site bound by the cobalt ion is irreversible, completely denaturing the
enzyme's activity. Other ions are the same as Mg2+, Mn2+, Ca2+, Na+, Cu2+ and Fe3+, and these metals also
tend to form metal complexes with proteins, which ultimately affect enzyme activity by changing their
structures (Amisha and Amita 2021; Wang et al 2020).

Discussion
Endoglucanases can be produced by various filamentous fungi, such as Penicillium, Fusarium,
Trichoderma and Aspergillus (Hirasawa et al 2019). Among them, Trichoderma is widely used as a
cellulase producer, and Aspergillus has received more attention due to its powerful ability to secrete
cellulase (Hirasawa et al 2019; Liu et al 2011; Tian et al 2018).

The endoglucanase of Clostridium thermocellum has an optimal pH of 6.6 and an optimal temperature of
70°C. It hydrolyzes carboxymethyl cellulose and hydrolyzes cellodextrin, cellotetraose and cellopentose at
a higher rate, but does not hydrolyze crystalline cellulose (Fauth et al 1991).

Koga et al. extracted the endoglucanase STCE1 from Staphylotrichum coccosporum NBRC 31817. The
optimum temperature of STCE1 is 60 ℃. STCE1 has high resistance to anionic surfactants and oxidants,
indicating that STCE1 is a universal enzyme used for laundry (Koga et al 2008). Chaabouni et al. purified
two endoglucanase EG A and EG B from Penicillium occitanis. The optimal temperature for the enzyme
activity of EG A is 60°C, and for enzyme activity of EG B is 50°C. Both endoglucanases can hydrolyze
carboxymethyl cellulose, but cannot hydrolyze microcrystalline cellulose (Avicel), but it is inhibited by the
divalent cations Hg2 +,

Co2 + and Mn2 + (Chaabouni et al 2005). The highest activity of thermophilic fungal endoglucanase is
usually at 50°C -80°C. As catalysts, heat-resistant enzymes have obvious advantages. Heat-resistant
enzymes have obvious advantages as catalysts. In these processes, high temperatures often promote
enzymes to penetrate cell wall materials and destroy cellulose raw materials, resulting in better
hydrolysis. Thermophilic fungi are now considered to be a promising source of enzymes. The
thermostable cellulase used for cellulose degradation can increase the rate of hydrolysis and
saccharification (Fontes et al 1997; Lee et al 2010; Li et al 2006; Ghio et al 2020; Saqib et al 2010 ).

Thermophilic fungi can produce heat-resistant enzymes. In the process of cellulose degradation, cellulose
swells at a higher temperature and converts to a form that can be more easily broken down. The
screening of thermophilic fungi and the application of heat-resistant enzymes are important directions for
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comprehensive applications of cellulose. Thermal stability is an important feature of industrial
applications. These thermal enzymes have great application potential in the food, chemical,
pharmaceutical industry and environmental biotechnology (Araújo et al 2021).

After hydrolysis of cellulose to produce glucose, it can be further fermentated to ethanol. The
thermostable endoglucanase can improve the hydrolysis of cellulose and promote high-efficiency
saccharification, generating more glucose than previous reports. Thus, thermostable endoglucanase can
enhance the hydrolysis efficiency and catalyze the conversion of cellulosic biomass into fermentable
sugars, thus it can be used in the production of cellulosic ethanol. In addition, the thermostable
endoglucanase may also be used as a robust hydrolase that can be integrated into the industrial
fermentation process (Fauth et al 1991; Koga et al 2008; Lee et al 2010; Tian et al 2018).

Recent studies have also shown that the addition of purified endoglucanases to commercial cellulases
can cause stimulating effects on the hydrolysis of lignocellulosic biomass (Sujit et al 2014).

A. oryzae HML366 is a cellulase-producing strain newly screened by our group from the original forest
sampling. 68 kDa endoglucanase HML ED1 was isolated by the two-step rapid purification method.
Javed et al. Isolated a 25 kDa endoglucanase (Javed et al 2009), and Kitamoto et al. purified and
obtained 31 kDa and 53 kDa endoglucanase (Kitamoto et al 1996), but 68 kDa endoglucanase has not
been reported so far. We showed that the enzyme activity was stable below 70 ℃, and it was also stable
at pH 4.5 to 9.0. Our analysis indicated that Km and Vmax of the enzyme was 8.75 mg/mL and 60.24
µmol/min·mg, respectively. This endoglucanase has many useful features, including a wide range of pH
stability, thermal stability. These characteristics make the enzyme very suitable for hydrolysis involved in
saccharification processes, including the production of bioethanol, fabrics, food and animal feed. In this
study, we for the first time reported A. oryzae HML366 can produce heat-resistant and wide pH tolerance
endoglucanase HML ED1, which has potential industrial value in bioethanol, papermaking, feed, food,
textile, detergent and pharmaceutical industries.
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Values represent the means of values from three independent experiments, with a standard deviation.

Figures

Figure 1
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Protein purification map of anion exchange chromatography. 1, the peak of HML ED1 protein; A the
ultraviolet absorption curve of protein; B the conductivity curve. C the elution buffer concentration (%).
The abscissa showed the elution time, and the left ordinate was the protein UV absorbance (AU) at 280
nm and the elution buffer concentration (%), and the right ordinate was the conductance (mS/cm). 

Figure 2

SDS-PAGE of the purified enzyme HML ED1. 1, 2 original fermented solution; 3, 4 HML ED1; 5 Prestained
Color Protein Molecular Weight Marker P0071(Beyotime Biotechnology，China ).
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Figure 3

Detection of endoglucanase activity of purified HML CBH1 enzyme. The arrow points were the clear
circles produced by the hydrolysis of sodium carboxymethyl cellulose substrate by endoglucanase
enzyme.
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Figure 4

Zymogram analysis of extracellular enzyme solution and purified enzyme produced by Aspergillus oryzae
HML366. 1 Purified enzyme stained with 1% Congo red, 1 M NaCl cleaning. 2 It is the original fermented
solution, stained with Coomassie Brilliant Blue.
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Figure 5

A. Optimum temperature of the purified endoglucanase from A. oryzae HML366. B. Thermal stability of
the purified endoglucanase from A. oryzae HML366. C. Optimum pH on the activity of the purified
endoglucanase from A. oryzae HML366. D. The pH stability of the purified endoglucanase from A. oryzae
HML366.

Figure 6

Hydrolytic activity of the purifed endoglucanase from A. oryzae HML366 shown by TLC. Lane 1, mixed
standards containing G1 Glucose, G2 Cellobiose, G3 Cellotriose, and G4 Cellotetraose; Lane 2, Cellobiose
standard; Lane 3, Glucose standard; Lane 4, CMC Na + HML ED1; Lane 5, Cellobiose + HML ED1; 6.
Cellotriose + HML ED1; 7. Cellotetraose + HML ED1.


