1Shen, S.-Z., et al. A sudden end-Permian mass extinction in South China. GSA Bulletin 131 (1-2), 205–223, doi: https://doi.org/10.1130/B31909.1 (2019).
2Rampino, M.R., Caldeira, K. Major perturbation of ocean chemistry and a ‘Strangelove Ocean’ after the end-Permian mass extinction. Terra Nova 17, 554–559, https://doi.org/10.1111/j.1365-3121.2005.00648.x (2005).
3Cascales-Miñana, B., Cleal, C. The plant fossil record reflects just two great extinction events. Terra Nova 26, 195–200 (2014).
4Fielding, C.R., et al. Age and pattern of the southern high-latitude continental end-Permian extinction constrained by multiproxy analysis, Nat. Comm. 10, 385 (2019).
5Nowak, H., Schneebeli-Hermann, E., Kustatscher, E. No mass extinction for land plants at the Permian-Triassic transition. Nat. Comm. 10, 384, doi: https://doi.org/10.1038/s41467-018-07945-w (2019).
6Gastaldo, R.A., Neveling, J., Geissman, J.W., Kamo, S.L., Looy, C.V. A tale of two Tweefonteins: What physical correlation, geochronology, magnetic polarity stratigraphy, and palynology reveal about the end-Permian terrestrial extinction paradigm in South Africa. GSA Bulletin doi: https://doi.org/10.1130/B35830.1 (2021).
7Xiong, C, Wang Q. Permian–Triassic land-plant diversity in South China: Was there a mass extinction at the Permian/Triassic boundary? Paleobiology 37.1, 157–167 (2011).
8Feng, Z., et al. From rainforest to herbland: New insights into land plant responses to the end-Permian mass extinction. Earth-Science Reviews 204, 103153 (2020).
9McLoughlin, S. Glossopteris–insights into the architecture and relationships of an iconic Permian Gondwanan plant. Journal of the Botanical Society of Bengal 65, 93–106 (2011).
10Rigby, J.F. The Gondwana palaeobotanical province at the end of the Palaeozoic in 24th International Geological Congress (Montreal, 1972), Proceedings, Section 7, 324–330 (International Geological Congress, 1972).
11Retallack, G.J., et al. Multiple Early Triassic greenhouse crises impeded recovery from Late Permian mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology 308, 233–251 (2011).
12Looy, C.V., Brugman, W.A., Dilcher, D.L., Visscher, H. The delayed resurgence of equatorial forests after the Permian–Triassic ecologic crisis. PNAS 96, 13857–13862 (1999).
13Gabites, H.I. Triassic paleoecology of the Lashly Formation, Transantarctic Mountains, Antarctica. M. Sc. Thesis, 1–148 (Victoria University of Wellington, New Zealand, 1985).
14Mays, C., et al. Refined Permian–Triassic floristic timeline reveals early collapse and delayed recovery of south polar terrestrial ecosystems. GSA Bulletin, doi: https://doi.org/10.1130/B35355.1 (2019).
15Escapa, I.H., et al. Triassic floras of Antarctica: plant diversity and distribution in high paleolatitude communities. Palaios 26, 522–544 (2011).
16Retallack, G.J., Krull, E.S. Landscape ecological shift at the Permian–Triassic boundary in Antarctica. Australian Journal of Earth Sciences 46, 785–812 (1999).
17Gulbranson, E.L., Cornamusini, G., Ryberg, P.E., Corti, V. When does large woody debris influence ancient rivers? Dendrochronology applications in the Permian and Triassic, Antarctica. Palaeogeography, Palaeoclimatology, Palaeoecology 541, 109544 (2020).
18Sheldon, N.D. Abrupt chemical weathering increase across the Permian-Triassic boundary. Palaeogeography, Palaeoclimatology, Palaeoecology 231, 315–321 (2006).
19Frank, T.D., et al. Pace, magnitude, and nature of terrestrial climate change through the end-Permian extinction in southeastern Gondwana. Geology, doi: https://doi.org/10.1130/G48795.1 (2021).
20Collinson, J.W., Hammer, W.R., Askin, R.A., Elliot, D.H. Permian-Triassic boundary in the central Transantarctic Mountains, Antarctica. GSA Bulletin 118, 747–763 (2006).
21Elliot, D.H., Fanning, C.M., Isbell, J.L., Hulett, S.R.W. The Permo-Triassic Gondwana sequence, central Transantarctic Mountains, Antarctica: Zircon geochronology, provenance, and basin evolution. Geosphere 13, 155–178 (2017).
22Askin, R.A. Permian palynomorphs from southern Victoria Land, Antarctica. Antarctic Journal of the U.S. 30, 47–48 (1995).
23Kyle, R.A., Schopf, J.M., 1982, Permian and Triassic palynostratigraphy of the Victoria Group, Transantarctic Mountains in Antarctic Geosciences (ed. Craddock, C.) 649–659 (University of Wisconsin Press, 1982).
24Sidor, C.A., Smith, R.M.H., Huttenlocker, A.K., Peecook, B.R. New Middle Triassic tetrapods from the Upper Fremouw Formation of Antarctica and their depositional setting. Journal of Vertebrate Paleontology 34, 793–801 (2014).
25Fritts, H.C. Tree Rings and Climate (Academic Press, 1976).
26Torrence, C., Compo, G.P. A practical guide to wavelet analysis. Bulletin of the American Meteorological Society 79, 61–78 (1998).
27Gulbranson, E.L., et al. Leaf habit of Late Permian Glossopteris trees from high palaeolatitude forests. Journal of the Geological Society 171, 493–507 (2014).
28Ryberg, P.E. Reproductive diversity of Antarctic glossopterid seed ferns. Review of Palaeobotany and Palynology 158, 167–179 (2009).
29Mays, C., et al. Lethal microbial blooms delayed freshwater ecosystem recovery following the end-Permian extinction. Nat. Commun. 12, 5511 https://doi.org/10.1038/s41467-021-25711-3
2021.
30Decombeix, A-.L., Bomfleur, B., Taylor, E.L., Taylor, T.N. New insights into the anatomy,development, and affinities of corystosperm trees from the Triassic of Antarctica.Review of Palaeobotany and Palynology 203, 22–34 (2014).
31Lu, J., Zhang, P., Yang, M., Shao, L., Hilton, J. Continental records of organic carbon isotopic composition (δ13Corg), weathering, paleoclimate and wildfire linked to the End-Permian Mass Extinction.Chemical Geology 558, 119764 (2020).
32Cui, C., Cao, C. Increased aridity across the Permian–Triassic transition in the mid-latitude NE Pangea. Geological Journal, https://doi.org/10.1002/gj.4123 (2021).
33Yu, Y., Chu, D., Song, H., Guo, W., Tong, J. Latest Permian–Early Triassic paleoclimatic reconstruction by sedimentary and isotopic analyses of paleosols from the Schichuanhe section in central North China Basin. Palaeogeography, Palaeoclimatology, Palaeoecology 585, 110726 (2022).
34Sheldon, N.D., Chakrabarti, R., Retallack, G.J., Smith, R.M.H. Contrasting geochemical signatures on land from the Middle to Late Permian extinction events. Sedimentology 61, 1812-1829 (2014).
<background-color:;sup>35</background-color:;sup>Gulbranson, E.L., Montañez, I.P., Tabor, N.J. A proxy for humidity and floral province from paleosols. <background-color:;i>The Journal of Geology</background-color:;i><background-color:;b>119</background-color:;b>, 559–573 (2011).
36Vajda, V., et al. End-Permian (252 Mya) deforestation, wildfires and flooding–An ancient biotic crisis with lessons for the present. Earth and Planetary Science Letters 529, 115875 (2020).
<background-color:;sup>37</background-color:;sup>Francis, J.E., Woolfe, K.J., Arnott, M.J, Barrett, P.J. Permian climates of the southern margin of Pangea: evidence from fossil wood of Antarctica in Pangea: Global Environments and Resources(eds.Embry, A.F., Beauchamp, B., Glass, D.J.) 275–282 (AAPG Memoir 17, 1994).
38Wright, W.E., Baisan, C., Streck, M., Wright, W.W., Szejner, P. Dendrochronology and middle Miocene petrified oak: Modern counterparts and interpretation. Palaeogeography, Palaeoclimatology, Palaeoecology 445, 38–49 (2016).
<background-color:;sup>39</background-color:;sup>Luthardt, L., Rößler, R. Fossil forest reveals sunspot activity in the early Permian.<background-color:;i>Geology</background-color:;i><background-color:;b>45</background-color:;b>, 279–282 (2017).
40St. George, S, Telford, R.J. Fossil forest reveals sunspot activity in the Early Permian:COMMENT. Geology 45, e427 (2017).
41Baillie, M.G.L., Pilcher, J.R. A simple cross-dating program for tree-ring research.Tree-Ring Bulletin 33, 7–14 (1973).
42Hollstein, E. Mitteleuropäische eichenchronologie, Trierer Grabungen und Forschungen XI, Philip von Zabern (1980).
43Bunn, A.G. Statistical and visual crossdating in R using the dplR library. Dendrochronologia 28, 251–258, doi: 10.1016/j.dendro.2009.12.001 (2010).
44Buras, A. A comment on the expressed population signal. Dendrochronologia 44, 130–132 (2017).
45Roesch, A., Schmidbauer, H. WaveletComp Computational Wavelet Analysis https://CRAN.R-project.org/package=WaveletComp. R package version 1.1 (2018).
46Sheldon, N.D., Retallack, G.J., Tenaka, S. Geochemical climofunctions from North American soils and application to paleosols across the Eocene-Oligocene boundary in Oregon.The Journal of Geology 110, 687–696 (2002).
47Yang, J., Cawood, P.A., Du, Y., Feng, B., Yan, J. Global continental weathering trends across the Early Permian glacial to postglacial transition: correlating high- and low-paleolatitude sedimentary records. Geology 42, 835–838 (2014).
48Panahi, A., Young, G.M., Rainbird, R.H. Behavior of major and trace elements (including REE) during Paleoproterozoci pedogenesis and diagenetic alteration of an Archean granite near Ville Marie, Québec, Canada. Geochimica et Cosmochimica Acta 64, 2199–2220 (2000).