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Abstract
Background: Genetics play an important role in late-onset Alzheimer’s Disease (AD) etiology and dozens
of genetic variants have been implicated in AD risk through large-scale GWAS meta-analyses. However,
the precise mechanistic effects of most of these variants have yet to be determined. Deeply phenotyped
cohort data can reveal physiological changes associated with genetic risk for AD across an age spectrum
that may provide clues to the biology of the disease.

Methods: We utilized over 2000 high-quality quantitative measurements obtained from blood of 2831
cognitively normal adult clients of a consumer-based scientific wellness company, each with CLIA-
certified whole-genome sequencing data. Measurements included: clinical laboratory blood tests, targeted
chip-based proteomics, and metabolomics. We performed a phenome-wide association study utilizing
this diverse blood marker data and 25 known AD genetic variants, adjusting for sex, age, vendor (for
clinical labs), and the first four genetic principal components; sex-SNP interactions were also assessed.

Results: We observed statistically significant SNP-analyte associations for five genetic variants after
correction for multiple testing (for SNPs in or near NYAP1, ABCA7, INPP5D, and APOE), with effects
detectable from early adulthood. The ABCA7 SNP and the APOE2 and APOE4 encoding alleles were
associated with lipid variability, as seen in previous studies; in addition, six novel proteins were
associated with the e2 allele. The most statistically significant finding was between the NYAP1 variant
and PILRA and PILRB protein levels, supporting previous functional genomic studies in the identification
of a putative causal variant within the PILRA gene. Sex modified the effects of four genetic variants, with
multiple interrelated immune-modulating effects associated with the PICALM variant. In post-hoc
analysis, sex-stratified GWAS results from an independent AD case-control meta-analysis supported sex-
specific disease effects of the PICALM variant, highlighting the importance of sex as a biological
variable.

Conclusions: Known AD genetic variation influenced lipid metabolism and immune response systems in
a population of non-AD individuals, with associations observed from early adulthood onward. Further
research is needed to determine whether and how these effects are implicated in early-stage biological
pathways to AD. These analyses aim to complement ongoing work on the functional interpretation of AD-
associated genetic variants.

Background
The rapidly decreasing cost of genomics paired with technological advances in the generation of multi-
omic data has resulted in multiple datasets of deeply phenotyped individuals with a variety of health
outcomes (1–3). The data collected in these studies have the potential to yield important insights into
potential molecular drivers of health observable in the blood periphery. The present study seeks to
leverage a unique and relatively large set of multi-omic, deep-phenotyping data to shed light on genetic
pathways to late-onset Alzheimer’s disease (AD) by assessing differences in ~2000 analytes in the blood
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that show association with known genetic risk variants for AD. Coupled with high-dimensional data sets,
this approach has the potential to yield clues into gene pleiotropy, disease processes, and possible early-
intervention strategies, which are critically important given the essentially untreatable nature of late-stage
Alzheimer’s disease once significant brain deterioration has occurred.

Genetic variation plays a substantial role in AD risk, with twin studies estimating AD heritability at 58-79%
(4). While the emergence of recent large-scale consortia efforts has facilitated well-powered meta-
analyses of genome-wide association studies (GWAS) to identify multiple common variants with small
effect sizes (5, 6), the research community is still untangling exactly how this genetic variation influences
disease risk. Functional genomics studies are beginning to identify likely genetic pathways to disease
with the aid of transcriptomic, epigenomic, and endophenotypic data (7–10). So far, genetic and multi-
omic studies of AD studies have largely focused on older individuals with either clinically diagnosed AD
or milder symptoms of cognitive decline, despite research pointing to highly variable AD pathobiology
that occurs on a spectrum, and begins decades before clinical symptoms onset (11).

In this study, we leveraged the results from a large-scale GWAS meta-analysis (5) alongside data from a
deeply phenotyped wellness cohort to investigate the physiological periphery effects of genetic risk for
AD in individuals without known cognitive impairment, at all ages. We undertook an agnostic approach
by adopting a phenome-wide association study (PheWAS) design (12). By examining how genetic
variation impacts 2008 analytes in the blood of 2831 individuals, we sought to complement previous
functional genomics studies as well as potentially reveal new testable hypotheses for future studies. In
addition, we tested for associations between a polygenic risk score (PGRS) for AD and blood analytes to
determine if a relative burden of genetic risk might impact observable changes in the blood, and we
assessed for effect modification of genetic risk by sex.

Methods
Population

The Institute for Systems Biology, through partnership with their spin-out company Arivale, has access to
a wealth of data collected from subscribers in the commercially available (now closed) Arivale Scientific
Wellness program (3, 13), from July 2015 to May 2019. In brief, participants in the Arivale program were
assigned a health coach upon joining the program, who then utilized data from clinical blood assays and
detailed health-history and behavioral questionnaires to personalize health advice and management of
health goals. Participants consented to their de-identified data being used for research purposes.

Blood-derived analytes

We identified 2831 individuals with whole genome sequencing (WGS) and at least one class of blood-
derived analyte, described as follows. For each participant, fasting clinical blood laboratory tests were
measured upon joining the program. Blood samples were collected at either local facilities hosted by
LabCorp (North Carolina, USA) or Quest Diagnostics (New Jersey, USA). Whole genome sequencing was
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performed on DNA extracted from whole blood with library preparation using the Illumina TruSeq Nano
Library prep kit and sequenced using Illumina HiSeq X, PE-150, target 30X coverage at a single Clinical
Laboratory Improvement Amendmnets (CLIA)-approved sequencing laboratory. At the baseline blood
draw, 2827 of the 2831 individuals with sequenced whole genomes had up to 63 fasting clinical blood
lab tests. Clinical blood tests included standard markers for cardiometabolic health (lipid levels),
diabetes, inflammation, kidney and liver function, nutrition (vitamins and minerals), and blood cell counts.
Frozen plasma samples were also sent to Olink (Olink Bioscience, Sweden) for targeted proteomics
assays based on Olink’s proximity extension assay technique. Up to 2694 of these participants had
quantitative proteomic data on 274 proteins from three Olink panels (Cardiovascular II, Cardiovascular III,
and Inflammation panels). An additional 919 proteins (from 10 additional panels available at Olink at the
time) were obtained from a subsample of 354 individuals, in which Apolipoprotein E (APOE) e2/e2 and
APOE e4/e4 genotypes were overrepresented. Since multiple batches were performed, previously
generated pooled control samples were run with each batch and used for batch correction and multiple
control samples were included on each plate. Aliquots of frozen plasma samples were sent to Metabolon,
Inc. to conduct metabolomics assays using the Metabolon HD4 discovery platform. Up to 1855 of the
participants had data from 754 metabolites. Relative concentration values were reported for each
metabolite. For all analytes, only analytes with <20% missing were included in analyses.

SNP selection

We selected 25 common and somewhat-rare (>1% allele frequency) single nucleotide polymorphisms
(SNPs) that were significantly associated with AD in a large-scale meta-analysis based on updated data
from the International Genomics of Alzheimer’s Project (IGAP) (5). In addition to these variants, we also
included the SNP coding for APOE e2 (rs7412). The 25 SNPs were linked to 24 genes (two SNPs in
APOE), as detailed in Table S1.

Polygenic risk score calculation for AD: PGRS for age-associated AD risk was computed using summary
statistics from the initial IGAP-driven GWAS meta-analysis (6). Briefly, the set of SNPs included in the PGS
was determined as follows. The Benjamini-Hochberg (14) procedure was applied to the p-values for all
SNPs tested in the GWAS to account for multiple testing by controlling the false discovery rate (FDR) at a
5% level. This FDR-filtered set of SNPs was then further pruned using linkage disequilibrium (LD): pairs of
SNPs in close proximity capturing highly correlated information (r2 > 0.2) were identified, and the SNP
with the smaller p-value in the pair was kept; this was repeated until all remaining SNPs were mutually
uncorrelated (r2 < 0.2 for all pairs). The PGRS for each individual was then calculated by summing up the
published effect size for each selected SNP multiplied by the number of effect alleles the individual
carried for that SNP, across all of the selected SNPs. Missing genotypes were mean imputed using the
effect allele frequency.

Statistical analysis
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Following a phenome-wide association study approach (PheWAS) (12, 15), the primary model for each
SNP used linear regression, with genotype (0, 1, or 2, with 0 indicating homozygosity for the major allele
and 2 indicating homozygosity for the minor allele) as the predictor, and each continuous quantitative
analyte as the dependent variable. Clinical lab and metabolite values were natural log transformed to
account for right skewness and outliers, with +1 added to each natural log transformation to prevent zero
values. Proteomic quantities were presented as normalized protein expression (NPX), Olink’s arbitrary
unit, which is in log2 scale. Genetic ancestry was represented by principal components (PCs) 1-4,
calculated using previously described methods (16). All SNP models were adjusted for age, sex, genetic
ancestry PCs 1-4, and vendor identification for the clinical labs. Secondary models tested effect
modification by sex by including a gene x sex interaction term in the models. We accounted for multiple
comparisons by applying the Benjamini-Hochberg method (14) at alpha=0.05 on a per-SNP basis and
applied to the main effect of genotype in the primary models, while we set B-H alpha=0.1 of the sex-SNP
interaction term as the threshold for the gene x sex interaction models. The FDR rate took into account
testing for all 2008 possible analytes, with the understanding that this adjustment was highly
conservative given a high degree of correlation among multiple groups of analytes, and the fact that
some analytes were sampled in only a subset of individuals. Both raw and adjusted p-values are reported.

We also repeated the primary PheWAS approach with participants stratified by self-identified race, due to
evidence for variable genetic risk for cognitive outcomes between non-Hispanic white (hereafter referred
to as “white”) and non-white populations (17, 18). Unfortunately, due to small numbers of individuals in
specific non-white racial and ethnic groups, which become vanishingly small when accounting for allele
frequency and numbers of available samples (Table 1), we were not able to assess genetic risk effects in
individual groups with statistical rigor and had to group all non-white participants into one stratum for
analysis. The stratified white and non-white group analyses serve as an investigation into whether our
primary results reflected the majority-white makeup of the Arivale population. PheWAS was applied as
described above, with FDR to account for multiple comparisons.

To visualize genotype-analyte associations across adulthood, we created boxplots of the log-transformed
analyte values by genotype, stratified by age group (by decade, from 18-29 to 70 and over). One-way
analysis of variance (ANOVA) was used to test whether there was an overall difference between
genotypes within each age group. All statistical analyses were performed in R v3.5.1 (https://www.R-
project.org/).

In post-hoc exploratory analysis focused on the SNP in the PICALM (Phosphatidylinositol Binding
Clathrin Assembly Protein) locus (rs3851179), sex-stratified and sex-interaction analyses was performed
on 12,324 cases (57.7% female) and 11,453 controls (59.9% female) of European ancestry from the
Alzheimer’s Disease Genetics Consortium (ADGC) (see Supplementary Table 4 for dataset details).
Datasets were imputed to the Haplotype Reference Consortium (HRC) (19) panel using the Michigan
Imputation Server
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Table 1. Baseline self-reported characteristics of Arivale participants with available whole-genome
sequences
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Characteristica N=2831

Age, mean (sd) 47.0 (12.0)

Female, n (%) 1719 (60.7)

Nonwhiteb, n (%) (n=2725) 597 (21.9)

Afro-Caribbean 1 (<0.1)

American Indian or Alaska Native 5 (0.2)

Ashkenazi Jewish 49 (1.8)

Asian 84 (3.1)

Black or African American 64 (2.3)

East Asian 91 (3.3)

Hispanic Latino or Spanish origin 120 (4.4)

Middle Eastern or North African 18 (0.7)

Native Hawaiian or other Pacific Islander 17 (0.6)

Sephardic Jewish 4 (0.1)

South Asian 79 (2.9)

White 2128 (78.1)

Other 65 (2.4)

BMI, mean (sd) (n=2750) 27.9 (6.4)

Obesec, n (%) (n=2750) 802 (29.2)

Moderate activity ≥ 3x/wk, n (%) (n=2275) 1460 (64.2)

Vigorous activity ≥ 3x/wk, n (%) (n=2271) 697 (30.7)

Ever smoke, n (%) (n=2207) 565 (25.6)

Current meds for cholesterol, n (%) (n=2378) 287 (12.1)

Past and/or current self-report of:  

Migraine, n (%) (n=2229) 558 (25.0)

aFor categories with missing data, total non-missing N is reported in parentheses

bRace/ethnicity categories presented to participants in Arivale questionnaire

cObese defined as BMI≥30
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Characteristica N=2831

High cholesterol, n (%) (n=2301) 558 (24.2)

Depression, n (%) (n=2278) 521 (22.9)

GERD, n (%) (n=2220) 464 (20.9)

Hypertension, n (%) (n=2316) 434 (18.7)

Asthma, n (%) (n=2361) 376 (15.9)

aFor categories with missing data, total non-missing N is reported in parentheses

bRace/ethnicity categories presented to participants in Arivale questionnaire

cObese defined as BMI≥30

(https://imputationserver.sph.umich.edu/index.html#!). Standard pre-imputation quality control was
performed on all datasets individually, including exclusion of individuals with low call rate, individuals
with a high degree of relatedness, and variants with low call rate (20). Individuals with non-European
ancestry according to principal components analysis of ancestry-informative markers were excluded
from the further analysis. Detailed descriptions of individual ADGC datasets can be found in Kunkle et al.
(5) and Table S5. Study-specific logistic regression analyses employed Plink (21) for sex-interaction
analysis and SNPTest (22) for sex-stratified analysis. Sex-interaction, which analyzed the sex*variant
interaction, and sex-stratified analysis of males and females separately, were performed for two separate
models per analysis, one adjusting for age, sex and PCs (model 1) and a second adjusting for age, sex,
PCs and APOE (model 2). Results were meta-analyzed with METAL using inverse variance-based analysis
(23).

Results
Summary of population and study design

Sixty-one percent of Arivale participants were female, 22% were of non-white self-reported ethnicity, and
28% were obese (Table 1). The mean age at blood draw was 47 years, with a range of 18 to 89+. In
general, individuals who joined Arivale had somewhat higher levels of cardiovascular risk markers
compared to the US population, and slightly lower rates of obesity and pre-diabetes (3) (these rates were
consistent with rates in the geographies and ethnicities of the population, mostly from the west coast
region of the United States).

Phenome-wide association study results

We observed 33 SNP-analyte associations that were statistically significant at FDR-adjusted p-
value<0.05, with most of the associations observed for the APOE SNPs (rs7412, or the e2-defining allele,
and rs429358, or the e4-defining allele). The other SNPs showing significant associations with at least
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one clinical chemistry, protein, or metabolite were rs10933431, rs12539172, and rs3752246 (Figure 1,
Table S2).

NYAP1

The most robust SNP-analyte associations we observed were between rs12539712 in the 3’ region of
NYAP1 (Neuronal Tyrosine Phosphorylated Phosphoinositide-3-Kinase Adaptor 1), and two co-regulated
proteins, paired immunoglobulin-like type 2 receptors beta and alpha (PILRB and PILRA) (Figure 2).
Carriage of the minor allele (AD risk odds ratio (OR)=0.92) was associated with significant reduction in
normalized protein expression (NPX) of PILRB and PILRA compared to individuals homozygous for the
major allele (FDR-adjusted p-values=2.2x10−33 and 2.3x10−17, respectively), while the overall level of NPX
increased with age among all genotypes. The reduction in protein levels appears roughly dose-dependent
with the number of minor alleles and was observed in all but the oldest and youngest age groups (likely
due to small numbers of the minor allele in these groups (Table S3A). These observations led us to
previous studies pointing to variation in PILRA as the causal gene at this locus, with a missense SNP as a
leading candidate (G78R, rs1859788) (24–27). In post-hoc analysis, we repeated the PheWAS with this
putative causal SNP (which was in LD with our index SNP rs12539172, R2=0.77), and the associations
became stronger (FDR-adjusted p-value for PILRB=3.6x10−52; for PILRA=1.4x10−22) (Figure 2), with
genotype differences observed in all age groups (Table S3A).

APOE4: We observed significant associations between rs429358 (which encodes the e4 allele) and
multiple related clinical measures of cholesterol (Figure 3). Differences by genotype were less
pronounced in older age groups likely due to statin use (Table S3B); exploratory analyses visualizing only
individuals who did not report use of statin-lowering medications showed more consistent genotype-
dependent differences between rs429358 and the top cholesterol marker, low-density lipoprotein (LDL)
particle number (Figure S1, Table S3B). The concentration of two proteins in the blood were associated
with the e4 allele: PLA2G7 (Platelet Activating Factor Acetylhydrolase) and CD28 (T-Cell-Specific Surface
Glycoprotein CD28) (Figure 3). Selected lipid metabolites in the blood were positively associated with e4:
two diacylglycerol (DG) metabolites (one of which was measured twice in the Metabolon panel) were
higher in e4 carriers compared to non-carriers.

APOE2: we observed significantly lower levels of multiple clinical measures of LDL cholesterol associated
with carriage of the e2 allele (Figure 4). As the unadjusted plots show, e2 homozygotes are dramatically
different than other genotypes, though it should be noted that few e2 homozygotes were present in the
population (n=16) and were within a limited age range (30-59 years). Selected lipid metabolites in the
blood were positively associated with e2: a monoglyceride (MG) and four diacylglycerol (DG) metabolites
(one of which was a replicate) were higher in e2 carriers compared to non-carriers. We observed six e2-
protein associations (Figure 5), such that each of the following proteins were observed at higher levels in
e2 carriers: low density lipoprotein receptor (LDLR), heme oxygenase-1 (HMOX-1), SLAM family member 8
(SLAMF8), ring finger protein 31 (RNF31), contactin associated protein 2 (CNTNAP2), and signal
recognition particle 14 (SRP14).
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ABCA7

The ABCA7 (ATP Binding Cassette Subfamily A Member 7) variant (rs3752246), which has been
associated with increased risk of AD (OR=1.15, Table S1), was associated with lower levels of two
lactosylceramide (LC) metabolites in the sphingolipid family. These differences were evident starting in
the youngest age groups (Figure S2, Table S3A). The minor allele of rs3752246 was also associated with
higher levels of DEFA1 (Defensin Alpha 1), an antimicrobial peptide.

INPP5D

An intronic SNP in INPP5D (Inositol Polyphosphate-5-Phosphatase D) (rs10933431), which was
associated with a lowered risk of AD in meta-analyses, was associated with lower levels of the protein
IDUA (alpha-L-iduronidase) (Figure S2).

Polygenic risk score

No associations were observed between the APOE-free PGRS and any analyte after FDR correction for
multiple testing, either in primary analyses or in analyses adjusted for e4 status, or among non-e4
individuals only. No effect modification by sex or APOE4 status was observed.

Sex-specific findings

We observed a SNP x sex interaction involving the AD-protective PICALM variant, such that the minor
allele was associated with higher levels of 30 proteins in men and lower levels of the proteins in women
(Figure 6, Figure S3, Table S4). These proteins were highly correlated with one another (mean pairwise
spearman’s rho = 0.49); thus, it is unclear whether the associations are independently biologically
meaningful, or whether there is a passenger effect, in which one or a few proteins are driving the sex-
differential association with genotype observed in the data. In addition, the PICALM variant is associated
with a sex-specific effect on five highly correlated long-chain fatty acid (LCFA) metabolites and one
polyunsaturated fatty acid (PFA) metabolite (Docosahexaenoic acid) (Figure 6). To investigate further, we
conducted a post-hoc analysis examining the impact of this variant on AD risk stratified by sex, in a meta-
analysis of clinically diagnosed late-onset AD (18,812 individuals, Table S5). While AD risk was reduced
in both men and women among carriers of the minor allele, the effect was stronger among men (Table 2
and Table S6), which was consistent with the sex-stratified SNP-analyte analyses (data not shown).
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Table 2
Results of sex-specific analysis and sex-SNP interaction analysis of PICALM variant 3851179 in the

ADGCa

Sex-stratified resultsb Beta StdError P-value MAF

Male model 1 -0.206 0.035 5.62E-09 0.358

Male model 2 -0.176 0.038 4.08E-06 0.359

Female model 1 -0.083 0.029 4.37E-03 0.354

Female model 2 -0.087 0.031 5.60E-03 0.352

Interaction Resultsc Interaction beta Std Error P-value MAF

Model 1 0.116 0.044 8.05E-03 0.354

Model 2 0.372 0.048 7.84E-02 0.354

aN=9,135 cases (60% female), 9,677 controls (60% female)

bModel 1: adjusted for age, sex, and PCs; Model 2: adjusted for age, sex, PCs, and APOE genotype.

cModel 1: adjusted for age and PCs; Model 2: adjusted for age, PCs, and APOE.

Other observed sex-specific effects were more modest (Figure 6). The SNP near CD2AP (CD2 Associated
Protein) interacted with sex to affect three highly correlated sphingomyelins and three plasmologens,
while the SNP in SPI1 (Transcription Factor PU.1) interacted with sex to affect SPARC related modular
calcium binding 2 (SMOC2). Lastly, the missense ABCA7 SNP interacted with sex to affect levels of
Ubiquitin conjugating enzyme E2f (UBE2F).

Stratification by self-identified race/ethnicity

Unfortunately, due to vanishingly small numbers in individual self-identified groups (Table 1), we were not
able to assess genetic risk effects in individual groups with statistical rigor. As expected, analyses
restricted to white individuals recapitulated results of the overall analysis (Figure S4). In the nonwhite
group overall, we observed effect sizes that were consistent with the overall results and white-only results
(Figure S5).

 

Discussion
Our study examines associations between known genetic risk factors for AD and blood markers (clinical
labs, proteins, and metabolites). It provides insight into the manifestation of AD-related genetic risk in
blood-borne analytes from cognitively normal individuals and demonstrated how AD-related genetic
variation manifests in the blood across adulthood. Our results contribute to the growing literature
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highlighting a potential causal variant (missense SNP in PILRA), point to potential new mechanisms of
protection among APOE2 carriers, and suggest a role for infectious diseases as AD risk factors, alongside
lipid metabolism, immune response, and endocytosis. We also uncovered intriguing differences between
men and women in how genetic risk manifests in the blood. These analyses not only add to the existing
literature on functional genomics in AD, but also offer up multiple potential new hypotheses to catalyze
future studies.

The strongest associations in the study were between the NYAP1 SNP (rs12539172) and the
PILRB/PILRA proteins. This locus was originally identified by rs1476679 near ZCWCP1 (6). NYAP1 and
ZCWPW1 are located near PILRA and PILRB on chromosome 7, within a linkage disequilibrium (LD)
block. In previous gene expression studies, the initial index SNP for ZWCWP1 has been associated with
expression of multiple PILRB and PILRA transcripts in brain (9, 28). PILRA and PILRB are paired, co-
regulated inhibiting/activating receptors, respectively, that are expressed on innate immune cells,
recognize certain O-glycosylated proteins, and have an important role in regulating acute inflammatory
reactions (29). The R78 substitution in PILRA (rs1859788) has been shown to reduce the binding
capacity of endogenous ligands and thereby potentially increase microglial activity (27). In addition,
while controversial, work from our group and others (30–32) has suggested a potential viral role in AD
risk. Notably, the R78 variant has been implicated in HSV-1 (Herpes Simplex Virus type 1) infectivity (27)
and differences in HSV-1 antibody titer levels (24). While previous studies have hypothesized that
reduced activity of PILRA was due to steric conformational changes in the protein leading to reduced
binding of key ligands (including HSV-1 glycoprotein B), our results suggest that reduced levels of
circulating PILRA protein in R78 carriers could also be a factor in the overall protective effect of this
genetic variant.

Statistically significant associations were observed between multiple lipid analytes and the SNPs
encoding both APOE4 (rs429358) and APOE2 (rs7412). APOE normally plays a key role in lipid transport,
including shuttling cholesterol to neurons in healthy brains. Notably, APOE has a role in beta-amyloid (Aβ)
metabolism, and while the exact mechanism is unknown, the e4 variant appears to accelerate neurotoxic
Aβ accumulation, aggregation, and deposition in the brain (33). The associations we observed between
the e4 variant and increased levels of total cholesterol and LDL cholesterol, along with lower levels of
high-density lipoprotein (HDL), were consistent with previous cardiovascular disease cohort studies that
included young, middle-aged, and older adults (34–37). The e4 allele was associated with increased NPX
of two inflammatory proteins. PLA2G7 is a known cardiovascular risk marker with pro-inflammatory and
oxidative activities (38) which has previously been associated with APOE genotypes (39) and implicated
in AD and cognitive decline (38, 40). To our knowledge, CD28 protein levels have not previously been
associated with e4 status, though this relatively weak association may be a downstream result of APOE
isoform-specific effects on inflammation (41).

Blood cholesterol levels among APOE2 carriers were also largely consistent with a body of existing data
(35); the e2 variant was associated with lower levels of multiple measures of LDL cholesterol. It should be
noted that while 5-10% of e2 homozygotes develop type III hyperlipoproteinemia (typically in the presence
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of an existing metabolic disorder (42)) resulting in elevated cholesterol levels, all e2 homozygotes in the
study had significantly decreased levels of LDL cholesterol compared to other genotypes. In contrast, the
e2 variant was associated with higher levels of six lipid metabolites in the diacylglycerol and
monoacylglycerol family; interestingly, both the e4 variant and e2 variants were associated with increased
levels of the same two lipid metabolites in the diacylglycerol family, despite the opposite effects of these
two variants on circulating blood cholesterol. Diacylglycerol is a precursor to triacylglyceride (TG), which
is typically higher in APOE2 carriers (37). The effects of high DGs and TGs remains unclear. DG-rich diets
fed to diabetic APOE-knockout mice had reduced atherosclerosis and lower plasma cholesterol than mice
fed TG-rich or western diets (43, 44); however, non-targeted metabolomics studies have shown elevated
levels of DGs and MGs in AD and mild cognitive impairment (MCI) patient brains and blood compared to
cognitively intact individuals (45, 46).

We observed six proteins that were significantly upregulated in APOE2 carriers (Figure 3). The LDLR
protein had higher levels of NPX in e2 carriers, particularly in e2 homozygotes (Figure 3a). Though APOE2
is known to bind poorly to LDLR (~2% of e3 or e4 binding activity) (47), APOE2 was associated with lower
levels of LDL cholesterol across age groups as noted previously, perhaps due to compensatory up-
regulation of LDLR (37). Greater understanding of the compensatory mechanism leading to upregulated
LDLR and lower circulating LDL cholesterol is needed. The e2 variant was associated with increased
levels of the highly inducible HMOX-1, which has antioxidant properties and has been associated with
both neuroprotection and neurodegeneration (48). SLAMF8 may be another link to an antioxidant effect
of APOE2, as it has been implicated in modulation of reactive oxygen species and inflammation via
negative regulation of NOX activity (49). APOE2 carriers displayed higher levels of RNF31 protein (aka
HOIP). HOIP is the catalytic component of the linear ubiquitin chain assembly complex (LUBAC), which
was shown to have a role in the recognition and degradation of misfolded proteins (50). Variation in
CNTNAP2, a member of the neurexin superfamily of proteins involved in cell-cell interactions in the
nervous system, has been associated with neurodevelopmental disorders (51), and has been implicated
in AD-related dementia (52). Lastly, SRP14, which has a role in targeting secretory proteins to the rough
endoplasmic reticulum (ER) membrane, has been identified as one of many tau-associated ER proteins in
AD brains (53). To our knowledge, the APOE2-protein associations described here are novel and may help
point to the mechanisms of protection associated with the e2 variant.

ABCA7 is involved in lipid efflux from cells into lipoprotein particles, plays a role in lipid homeostasis (54),
and has also been implicated in Aβ processing and deposition in the brain (55). Our results support
ABCA7’s lipid-related function by showing lower levels of two LC metabolites among individuals carrying
the AD-risk allele of rs3752246. In contrast, we observed higher NPX of DEFA1 protein in carriers of the
ABCA7 variant, which is consistent with previous studies showing higher levels of this protein in cerebral
spinal fluid (CSF) and sera of AD patients compared to controls (56, 57), potentially linking ABCA7 with
an inflammatory response pathway to AD. Lastly, lower NPX of IDUA was associated with the INPP5D
SNP. INPP5D, which encodes the lipid phosphatase SHIP1, is a negative regulator of immune signaling
and is expressed in microglia (58). To our knowledge, this association has not been previously observed.
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Genetic variation likely affects men and women differentially, pointing to mechanisms that contribute to
known differences in AD pathology between the sexes (59). The set of proteins that were differentially
affected by sex and PICALM genotype are primarily implicated in immune processes, cell adhesion, and
regulatory processes, with widely overlapping functions (Figure S6). Our results highlight an interaction
between the AD-risk variant in PICALM and multiple proteins implicated in immune response in a sex-
specific manner, and support emerging research showing sex differences in the neuroimmune response
that impact microglia function (60). We also observed a sex-differential effect of the variant on multiple
LCFA metabolites and one PFA metabolite (DHA). A potential link between PICALM function, lipids, and
AD is feasible: fatty acids, and DHA in particular, have long been known to have a role in maintaining
brain health and cognition (61), while PICALM expression has been shown to influence cholesterol
homeostasis through multiple mechanisms (62). This multi-analyte interaction was supported by results
from sex stratified GWAS meta-analyses, which showed differing effect sizes of the variant on men vs.
women.

In addition to these sex-specific PICALM effects, the SNP near CD2AP, a scaffolding protein, interacted
with sex to affect three highly correlated sphingomyelins and three plasmologens, while the SNP in SPI1,
a transcription factor associated with microglial activation (63), interacted with sex to affect SMOC2, a
protein involved in microgliosis that has been previously associated with Aβ positivity in CSF (64).

We also examined an AD-specific polygenic risk score. While the PGRS is predictive of disease in
case/control studies (65), it was not associated with any blood analytes in the all-ages AD-free Arivale
cohort. Combining genetic effects into a single score for AD likely served to dilute any individual genetic
effect on the manifestation of genetic risk in the blood. In addition, the relative youth and cognitive health
of this cohort should be taken into account. The PGRS may be more likely to detect perturbation in
analytes that are markers of systemic inflammation or immune dysfunction in later life and among
cohorts experiencing cognitive impairment.

The results presented here are novel and we believe will be of interest to the AD-related functional
genomics community, though several limitations should be noted. The study population was not a
random sample but was self-selected. The population is largely self-identified non-hispanic white, was
mostly located on the west coast, and likely has higher than average socio-economic status (though
these data were not captured). Thus, results may not be generalizable to a broader population. At this
time, we were not aware of a suitable replication cohort that would contain parallel -omics panels in an
all-ages health-heterogeneous cohort. Future studies will be needed to assess generality of the findings to
other populations, not only for the sake of replicability of the findings, but due to the relative ancestral
homogeneity of this data set. Previous studies have shown genetic heterogeneity between white and non-
white individuals, particularly with regard to African Americans and risk of cognitive outcomes among
carriers of APOE and ABCA7 variants (17, 18). Given known wide-ranging racial/ethnic disparities in
dementia incidence (66), it is imperative that future deep-phenotyping studies are far more inclusive than
the study presented here.
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Another limitation to the interpretation of results concerns the issue of pleiotropy; we cannot discern
pleiotropic, non-AD-related effects from true causal effects that are implicated in AD pathogenesis.
However, even if the associations described here are purely the result of pleiotropy and are unrelated to
causal mechanisms of AD, the novel associations we described may provide clues to the function of
several genes that are highly interesting to the AD community. Related, we only obtained peripheral
plasma, and are unable to examine effects in AD-relevant compartments such as brain or CSF. We had
high-coverage WGS available and did not interrogate other types of genetic variation such as copy
number variants, indels, and short tandem repeats. Lastly, data harmonization with other studies will be a
challenge. For instance, most previous metabolomics studies used metabolomics data that lacked
complete speciation, and more work is needed with newer technologies that yield high fidelity data to
determine the biological effects of specific serum metabolites.

This study also has multiple strengths. While most studies focused on AD-related genetic variation
consist of case/control cohorts in older adults, the Arivale data offered an unprecedented look into how
genetic variation perturbs physiological pathways in the blood long before disease onset, in health-
heterogeneous individuals of all ages. This feature allowed us to observe subtle changes in blood
associated with genetic variation, due to the relatively large sample size (2831 individuals with WGS) and
the high quality of the blood analytes collected. Our results are from a “real-world” cohort, which promises
to be an increasing source of large-scale data in the community going forward, with its accompanying
advantages and disadvantages. Some results were previously unobserved and need to be replicated
(such as the associations between APOE2 and multiple proteins), while other results agree with previous
findings and serve to reinforce confidence that the results are reasonably representative and not simply
spurious.

Conclusions
Due to a unified world-wide effort, dozens of genetic variants have been robustly implicated in the
development of AD, though we are still in the early stages of understanding exactly how genetic variation
contributes to disease. Our study showed that AD-related genetic variation manifests in the blood, from
early adulthood onward, and highlights known targets for prevention in early and mid-life, such as
cholesterol monitoring, mitigation of inflammation, and possibly, HSV-1 prevention and/or viral load
management. Importantly, as well as yielding new insight into the pathobiology of AD through adulthood,
these results may provide a significant number of new drug targets that are highly novel and biologically
plausible or may serve as biomarkers if confirmed to have a consistent influence on AD pathophysiology.
Lastly, these results highlight the need to assess for sex differences in future studies. Taken together,
these results not only illustrate previously unobserved biological phenomenon as a result of AD-
associated genetic variation, but also serve as an important resource for the generation of hypotheses for
future functional genomics studies and emphasize the potential insight that can be gleaned from deeply
phenotyped individuals.
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Figure 1

Statistically significant SNP-analyte associations after correcting for multiple testing (threshold FDR-
adjusted p-value=0.05), by SNP. Top panel: log-transformed beta-coefficient from the linear regression
model adjusted for sex, age, and genetic principal components 1-4; markers above the zero line (orange)
indicate analytes that increased in value with the minor allele, while markers below the line indicate
markers that decreased in value. Second panel: FDR-adjusted –log10 p-value; orange line at FDR-p=0.05.
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Proteins=red, metabolites=blue, clinical chemistries=purple. Metabolite codes: DG=diacylglycerol;
LC=lactosylceramide; o=oleoyl; a=arachidonoyl; g=glycerol; l=linoleoyl; p=palmitoyl. Third panel: minor
allele frequency (MAF). Bottom panel: Total sample size for each analyte-SNP regression.

Figure 2

Unadjusted box plots of normalized protein expression (NPX) levels of PILRA and PILRB by genotype and
age group. White boxplots=individuals who are homozygous for the major allele, gray
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boxplots=heterozygotes, black boxplots=minor allele homozygotes. Box plot midline=median value,
lower/upper hinges=25th and 75th percentiles, respectively; lower whisker ends/upper whisker ends no
further than 1.5 x interquartile range from the hinge. Data beyond whiskers are outlying points. Top panel:
NPX of PILRA and PILRB by rs12539172 (NYAP1) genotype; Bottom panel: NPX of PILRA and PILRB by
rs1859788 genotype.

Figure 3
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Unadjusted box plots of clinical chemistries and metabolites significantly associated with APOE4
genotype, by age group. White boxplots=individuals who are homozygous for the major allele, gray
boxplots=heterozygotes, black boxplots=minor allele homozygotes. Box plot midline=median value,
lower/upper hinges=25th and 75th percentiles, respectively; lower whisker ends/upper whisker ends no
further than 1.5 x interquartile range from the hinge. Data beyond whiskers are outlying points.
Abbreviations/units: LDL particle number (log nmol/L); LDL cholesterol (log mg/dL); Total cholesterol
(log mg/dL); HDL cholesterol (log nmol/L); Triglycerides (log nmol/L); T-cell-specific surface glycoprotein
CD28 (CD28); oleoyl-arachidonoyl-glycerol (DG oag); palmitoyl-arachidonoyl-glycerol (DG pag); oleoyl-
arachidonoyl-glycerol.
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Figure 4

Unadjusted box plots of clinical chemistries and metabolites significantly associated with APOE2
genotype, by age group. White boxplots=individuals who are homozygous for the major allele, gray
boxplots=heterozygotes, black boxplots=minor allele homozygotes. Box plot midline=median value,
lower/upper hinges=25th and 75th percentiles, respectively; lower whisker ends/upper whisker ends no
further than 1.5 x interquartile range from the hinge. Data beyond whiskers are outlying points.
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Abbreviations: LDL particle number (log nmol/L); LDL cholesterol (log mg/dL); Total cholesterol (log
mg/dL); LDL small (log nmol/L); Diacylglycerol, oleoyl-arachidonoyl-glycerol (DG oag); Diacylglycerol,
linoleoyl-arachidonoyl-glycerol (DG lag); Diacylglycerol, palmitoyl-arachidonoyl-glycerol (DG pag);
Diacylglycerol, oleoyl-oleoyl-glycerol (DG oog); Monoacelyglycerol, 1-linoleoylglycerol (1-Monolinolein).

Figure 5

Unadjusted box plots of normalized protein expression levels (NPX) of six proteins significantly
associated with APOE2 genotype, by age group. White boxplots=individuals who are homozygous for the
major allele, gray boxplots=heterozygotes, black boxplots=minor allele homozygotes. Box plot
midline=median value, lower/upper hinges=25th and 75th percentiles, respectively; lower whisker
ends/upper whisker ends no further than 1.5 x interquartile range from the hinge. Data beyond whiskers
are outlying points. Abbreviations: Low-Density Lipoprotein Receptor (LDLR); heme oxygenase-1
(HMOX1); SLAM family member 8 (SLAMF8); E3 ubiquitin-protein ligase RNF31 (RNF31); Contactin-
associated protein-like 2 (CNTNAP2); Signal recognition particle 14 kDa protein (SRP14).



Page 33/34

Figure 6

Heatmap of statistically significant genotype x sex interaction terms at FDR-adjusted p-value<0.1. Beta
coefficients obtained from sex-stratified analyses, middle-column p-values from interaction term in the
full model. SL=sphingolipid; LCFA=long-chain fatty acid; PFA=polyunsaturated fatty acid.
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