1. Vafadar, A., Guzzomi, F., Rassau, A. & Hayward, K. Advances in Metal Additive Manufacturing: A Review of Common Processes, Industrial Applications, and Current Challenges. Appl. Sci. 11, 1213 (2021).
2. Sames, W. J., List, F. A., Pannala, S., Dehoff, R. R. & Babu, S. S. The metallurgy and processing science of metal additive manufacturing. Int. Mater. Rev. 61, 315–360 (2016).
3. Gisario, A., Kazarian, M., Martina, F. & Mehrpouya, M. Metal additive manufacturing in the commercial aviation industry: A review. J. Manuf. Syst. 53, 124–149 (2019).
4. Mohd Yusuf, S., Cutler, S. & Gao, N. Review: The Impact of Metal Additive Manufacturing on the Aerospace Industry. Metals (Basel). 9, 1286 (2019).
5. Leal, R. et al. Additive manufacturing tooling for the automotive industry. Int. J. Adv. Manuf. Technol. 92, 1671–1676 (2017).
6. Mantovani, S. et al. Synergy between topology optimization and additive manufacturing in the automotive field. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 235, 555–567 (2021).
7. Wu, S.-H. et al. Porous Titanium-6 Aluminum-4 Vanadium Cage Has Better Osseointegration and Less Micromotion Than a Poly-Ether-Ether-Ketone Cage in Sheep Vertebral Fusion: Porous Ti Cage has Better Osseointegration than PEEK. Artif. Organs 37, E191–E201 (2013).
8. Ahangar, P., Cooke, M. E., Weber, M. H. & Rosenzweig, D. H. Current Biomedical Applications of 3D Printing and Additive Manufacturing. Appl. Sci. 9, 1713 (2019).
9. Attaran, M. The rise of 3-D printing: The advantages of additive manufacturing over traditional manufacturing. Bus. Horiz. 60, 677–688 (2017).
10. Laureijs, R. E. et al. Metal Additive Manufacturing: Cost Competitive Beyond Low Volumes. J. Manuf. Sci. Eng. 139, 81010 (2017).
11. Plocher, J. & Panesar, A. Review on design and structural optimisation in additive manufacturing: Towards next-generation lightweight structures. Mater. Des. 183, 108164 (2019).
12. Svetlizky, D. et al. Directed energy deposition (DED) additive manufacturing: Physical characteristics, defects, challenges and applications. Mater. Today S1369702121001139 (2021). doi:10.1016/j.mattod.2021.03.020
13. Bartlett, J. L. & Li, X. An overview of residual stresses in metal powder bed fusion. Addit. Manuf. 27, 131–149 (2019).
14. Sanchez, S. et al. Powder Bed Fusion of nickel-based superalloys: A review. Int. J. Mach. Tools Manuf. 165, 103729 (2021).
15. Bajaj, P. et al. Steels in additive manufacturing: A review of their microstructure and properties. Mater. Sci. Eng. A 772, 138633 (2020).
16. Zhang, D., Liu, X. & Qiu, J. 3D printing of glass by additive manufacturing techniques: a review. Front. Optoelectron. (2020). doi:10.1007/s12200-020-1009-z
17. Chen, Z. et al. 3D printing of ceramics: A review. J. Eur. Ceram. Soc. 39, 661–687 (2019).
18. Yee, D. W. & Greer, J. R. Three‐dimensional chemical reactors: in situ materials synthesis to advance vat photopolymerization. Polym. Int. 70, 964–976 (2021).
19. Aboulkhair, N. T. et al. 3D printing of Aluminium alloys: Additive Manufacturing of Aluminium alloys using selective laser melting. Prog. Mater. Sci. 106, 100578 (2019).
20. Liu, Z., He, B., Lyu, T. & Zou, Y. A Review on Additive Manufacturing of Titanium Alloys for Aerospace Applications: Directed Energy Deposition and Beyond Ti-6Al-4V. JOM 73, 1804–1818 (2021).
21. Martin, J. H. et al. 3D printing of high-strength aluminium alloys. Nature 549, 365–369 (2017).
22. Jadhav, S. D. et al. Surface Modified Copper Alloy Powder for Reliable Laser-based Additive Manufacturing. Addit. Manuf. 35, 101418 (2020).
23. Robinson, J., Stanford, M. & Arjunan, A. Stable formation of powder bed laser fused 99.9% silver. Mater. Today Commun. 24, 101195 (2020).
24. Gibson, I., Rosen, D. & Stucker, B. Additive Manufacturing Technologies. Additive Manufacturing Technologies (Springer New York, 2015). doi:10.1007/978-1-4939-2113-3
25. Kajtaz, M., Subic, A., Brandt, M. & Leary, M. Three-Dimensional Printing of Sports Equipment. in Materials in Sports Equipment 161–198 (Elsevier, 2019).
26. Unkovskiy, A. et al. Stereolithography vs. Direct Light Processing for Rapid Manufacturing of Complete Denture Bases: An In Vitro Accuracy Analysis. J. Clin. Med. 10, 1070 (2021).
27. Manoj, A., Bhuyan, M., Raj Banik, S. & Ravi Sankar, M. 3D printing of nasopharyngeal swabs for COVID-19 diagnose: Past and current trends. Mater. Today Proc. 44, 1361–1368 (2021).
28. Ligon, S. C., Liska, R., Stampfl, J., Gurr, M. & Mülhaupt, R. Polymers for 3D Printing and Customized Additive Manufacturing. Chem. Rev. 117, 10212–10290 (2017).
29. Herzberger, J., Meenakshisundaram, V., Williams, C. B. & Long, T. E. 3D Printing All-Aromatic Polyimides Using Stereolithographic 3D Printing of Polyamic Acid Salts. ACS Macro Lett. 7, 493–497 (2018).
30. Zhang, B. et al. Highly stretchable hydrogels for UV curing based high-resolution multimaterial 3D printing. J. Mater. Chem. B 6, 3246–3253 (2018).
31. Yee, D. W. et al. Hydrogel-Based Additive Manufacturing of Lithium Cobalt Oxide. Adv. Mater. Technol. 6, 2000791 (2021).
32. Corbel, S., Dufaud, O. & Roques-Carmes, T. Materials for Stereolithography. in Stereolithography (ed. Bártolo, P. J.) 141–159 (Springer US, 2011).
33. Nguyen, H. X., Suen, H., Poudel, B., Kwon, P. & Chung, H. Development of an innovative, high speed, large-scaled, and affordable metal additive manufacturing process. CIRP Ann. 69, 177–180 (2020).
34. Vyatskikh, A. et al. Additive manufacturing of 3D nano-architected metals. Nat. Commun. 9, 593 (2018).
35. Oran, D. et al. 3D nanofabrication by volumetric deposition and controlled shrinkage of patterned scaffolds. Science (80-. ). 362, 1281–1285 (2018).
36. Long, T. E. & Williams, C. B. Printing nanomaterials in shrinking gels. Science (80-. ). 362, 1244–1245 (2018).
37. Vyatskikh, A. et al. Additive manufacturing of 3D nano-architected metals. Nat. Commun. 9, 593 (2018).
38. Mooraj, S. et al. Three-dimensional hierarchical nanoporous copper via direct ink writing and dealloying. Scr. Mater. 177, 146–150 (2020).
39. Miyanaji, H. et al. Binder jetting additive manufacturing of copper foam structures. Addit. Manuf. 32, 100960 (2020).
40. Yee, D. W., Lifson, M. L., Edwards, B. W. & Greer, J. R. Additive Manufacturing of 3D-Architected Multifunctional Metal Oxides. Adv. Mater. 31, 1–9 (2019).
41. Sari, N., Kahraman, E., Sari, B. & Özgün, A. Synthesis of some polymer-metal complexes and elucidation of their structures. J. Macromol. Sci. Part A Pure Appl. Chem. 43, 1227–1235 (2006).
42. Beyerlein, I. J., Zhang, X. & Misra, A. Growth twins and deformation twins in metals. Annu. Rev. Mater. Res. 44, (2014).
43. Roy, B. & Das, J. Strengthening face centered cubic crystals by annealing induced nano-twins. Sci. Rep. 7, 1–8 (2017).
44. Hall, E. O. The deformation and ageing of mild steel: III Discussion of results. Proc. Phys. Soc. Sect. B 64, 747–753 (1951).
45. Cordero, Z. C., Knight, B. E. & Schuh, C. A. Six decades of the Hall–Petch effect – a survey of grain-size strengthening studies on pure metals. Int. Mater. Rev. 61, 495–512 (2016).
46. Lu, L., Shen, Y., Chen, X., Qian, L. & Lu, K. Ultrahigh Strength and High Electrical Conductivity in Copper. Science (80-. ). 304, 422–426 (2004).
47. Pande, C. S., Rath, B. B. & Imam, M. A. Effect of annealing twins on Hall–Petch relation in polycrystalline materials. Mater. Sci. Eng. A 367, 171–175 (2004).
48. Wang, C., Hossain Bhuiyan, M. E., Moreno, S. & Minary-Jolandan, M. Direct-Write Printing Copper-Nickel (Cu/Ni) Alloy with Controlled Composition from a Single Electrolyte Using Co-Electrodeposition. ACS Appl. Mater. Interfaces 12, 18683–18691 (2020).
49. Emeis, F., Peterlechner, M., Divinski, S. V. & Wilde, G. Grain boundary engineering parameters for ultrafine grained microstructures: Proof of principles by a systematic composition variation in the Cu-Ni system. Acta Mater. 150, 262–272 (2018).
50. Chang, S. Y. & Chang, T. K. Grain size effect on nanomechanical properties and deformation behavior of copper under nanoindentation test. J. Appl. Phys. 101, (2007).
51. Bansal, S., Toimil-Molares, E., Saxena, A. & Tummala, R. R. Nanoindentation of single crystal and polycrystalline copper nanowires. Proc. - Electron. Components Technol. Conf. 1, 71–76 (2005).
52. Bahr, D. F. & Vasquez, G. Effect of solid solution impurities on dislocation nucleation during nanoindentation. J. Mater. Res. 20, 1947–1951 (2005).
53. Gun’ko, V. M., Savina, I. N. & Mikhalovsky, S. V. Properties of water bound in hydrogels. Gels 3, (2017).
54. Danks, A. E., Hall, S. R. & Schnepp, Z. The evolution of ‘sol–gel’ chemistry as a technique for materials synthesis. Mater. Horizons 3, 91–112 (2016).
55. Moore, J. J. & Feng, H. J. Combustion synthesis of advanced materials: Part I. Reaction parameters. Prog. Mater. Sci. 39, 243–273 (1995).
56. Bahl, S. et al. Non-equilibrium microstructure, crystallographic texture and morphological texture synergistically result in unusual mechanical properties of 3D printed 316L stainless steel. Addit. Manuf. 28, 65–77 (2019).
57. Senkov, O. N., Miracle, D. B., Chaput, K. J. & Couzinie, J. P. Development and exploration of refractory high entropy alloys - A review. J. Mater. Res. 33, 3092–3128 (2018).
58. Lisi, N. et al. Contamination-free graphene by chemical vapor deposition in quartz furnaces. Sci. Rep. 7, 1–11 (2017).