Preprints are preliminary reports that have not undergone peer review.

6 Research Sq uare They should not be considered conclusive, used to inform clinical practice,

or referenced by the media as validated information.

Assessment of heavy metals and potential health
risks associated with the consumption of
vegetables grown on the roadside soils

Fazal Mabood
University of Malakand

Fazal Hadi
University of Malakand

Amin Ullah Jan
Shaheed Benazir Bhutto University Sheringal

Allah Ditta (% allah.ditta@sbbu.edu.pk )
Shaheed Benazir Bhutto University https://orcid.org/0000-0003-1745-4757

Ziaul Islam
Shaheed Benazir Bhutto University Sheringal

Manzer H. Siddiqui
King Saud University

Hayssam M. Ali
King Saud University

Ayman EL Sabagh
Kafr el-Sheikh University: Kafrelsheikh University

Research Article

Keywords: Rumex dentatus, Trachyspermum ammi, Spinacia oleracea, Allium cepa, lead, nickel
Posted Date: November 29th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-1115842/v1

License: © ® This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

Page 1/23


https://doi.org/10.21203/rs.3.rs-1115842/v1
mailto:allah.ditta@sbbu.edu.pk
https://orcid.org/0000-0003-1745-4757
https://doi.org/10.21203/rs.3.rs-1115842/v1
https://creativecommons.org/licenses/by/4.0/

Abstract

Vegetables cultivated near roads absorb toxic metals from polluted soil, which enter into the human body
through the food chain and cause serious health problems to humans. The present study investigated the
contamination level of lead (Pb) and nickel (Ni) in soils and vegetables grown along the roadside of
District Swat, Pakistan, and the health risks associated with the consumption of the tested vegetables
have been investigated. The plant samples were collected from the cultivated field within a 120-meter
range from the roadside. Spinacia oleracea, Allium cepa, Rumex dentatus, and Trachyspermum ammi
were selected based on their importance as vegetables. In results, Pb concentration was higher in plants
located at the distance between 0-10 m away from the roadside than the WHO permissible limit. In such
plants, Pb concentration was higher than Ni. Rumex dentatus contained the highest concentration of Pb
among the tested vegetables while Ni concentration was highest in Trachyspermum ammi as compared
to other plants. Concentration and accumulation of both the metals decreased in soil and plants with
increasing distance from the road. Similarly, target hazard quotient values noted for Pb and Ni were
greater than unity, which shows that there is a potential risk associated with the consumption of tested
vegetables near the road. Moreover, the values of target cancer risk were greater than 0.0001, which
shows that there is a risk of cancer with the consumption of tested vegetables. In conclusion, the
consumption of the tested vegetables was very dangerous as it may lead to higher risks of cancer.

Introduction

Fossil fuel combustion in automobiles releases toxic heavy metals into the air, which are then deposited
on the soils nearby roadsides (Suzuki et al. 2008; Bai et al. 2009). The concentration and toxicity vary in
various plant species (Mehmood et al. 2021a; Murtaza et al. 2021a). High concentrations of toxic heavy
metals in roadside soils have been reported in many regions across the globe (Irshad et al. 2021;
Mehmood et al. 2021b; Murtaza et al. 2021b; Naveed et al. 2021a). It has been disclosed that vehicle
exhaust is the main cause of the contamination of nearby roadside soils (Bai et al. 2011; Li et al. 2020).
Nickel (Ni), lead (Pb), zinc (Zn), and cadmium (Cd) are toxic heavy metals that are frequently found in the
soil near roadsides (Akoto et al. 2008; Mehmood et al. 2018).

Lead (Pb) is a common pollutant present in the air, water, and soil due to the widespread use of this metal
in industrial processes (Ullah et al. 2020; Kanwal et al. 2021). Combustion of petroleum products,
smelting, and sewage wastes are the main sources of Pb pollution (Grover et al. 2010). It has been
reported that Australia, the USA, and China produced 400, 516, and 1690 thousand metric tons of Pb in
the year 2009, respectively (United State geological survey, 2009). Lead deposits on the surface of bio-
particles, organic and clay particles (Sammut et al. 2010). Several biochemical factors control its
adsorption in the soil such as level of inorganic and organic ligands (Shahid et al. 2011), cation exchange
capacity (Vega et al. 2010), microbial and biological conditions (Arias et al. 2010), redox state (Tabelin
and Igarashi, 2009), and competing cations level (Komjarova and Blust, 2009). Plants may uptake Pb
through several pathways. High negative potential on the surface of plant roots is required for Pb
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absorption. Due to similarity with calcium (Ca), Pb enters into the plant mainly through channels
specified for Ca transport (Wang et al. 2007).

No biological role of Pb has been reported until now and thus it is a non-essential element for living
organisms. On contrary, it has been considered as the second most hazardous metal after arsenic
(Maestri et al 2010; Mehmood et al. 2018, 2019). Besides plants, Pb also adversely affects human health.
A decrease in the number of erythrocytes has been reported during Pb exposure because of the inhibition
of enzymes (coproporphyrinogen and ferrochelatase, delta-aminolevulinic acid ALAD) needed for the
synthesis of hemoglobin and red blood cell (Sipos et al. 2003; Warren et al. 2003). It has been found that
Pb exposure increased the excretion of amino acids and glucose in urine due to its toxic effect on the
proximal convoluted portion of the nephron (Loghman-Adham, 1997). Long-term Pb exposure causes
kidney failure, increased blood uric acid concentration, high blood pressure, and joint infection (Alasia,
2010). The highest amounts of Pb (about 1/3rd of the entire body) were accumulated in the liver
(Mudipalli, 2009). As Pb is analogous to Ca, therefore it can cross the blood-brain barrier easily where it
can replace and activate calcium-mediated activities, which disturb brain physiology and development
(Sanders et al. 2009). People working in the lead storage industry, show disorders of the male gonads
(testes), reduced testosterone production, and low sperm count in semen (Queiroz and Waissmann 2006).
Threshold limit of Pb that can cause reproductive abnormalities is about 40 pug dL™ (Quintanilla-Vega et
al. 2000). Lead affects the menstrual cycle, reduces the duration of pregnancy, and causes abnormal
birth (Han et al. 2000).

Ni is the 22nd most abundant element found in the earth's crust, occurring mostly in rocks as a free metal
or bonded with iron metal. Ni is a hard, ductile, and silvery-white metal (Mcllveen and Negusanti, 1994).
Concentrations of Ni in soil and drinking waters are lower than 100 and 0.005 ppm, respectively (Naveed
et al. 2020, 2021b). Anthropogenic sources of Ni pollution include vehicular emissions, fossil fuel
burning, mining, smelting, municipal and industrial wastes (Alloway, 1995). Ni concentrations may reach
up to 26000 ppm in contaminated soils (Alloway, 1995).

Ni is absorbed by plants mainly through the root system via both passive and active transport (Seregin,
2006). The ratio of Ni uptake between active and passive transport changes with plant species, Ni form,
and Ni concentration in the soil (Dan et al. 2002; Naveed et al. 2020). Moreover, soluble compounds of Ni
might also be absorbed through the Mg ion transport system, due to the similar charge/size ratio of the
two metal ions (Oller et al. 1997). However, its concentration in most of the plant species is extremely low
i.e. 0.05-10 ppm (Nieminen et al. 2007). Extremely high concentrations of Ni have made some farmland
soils unsuitable for growing crops, vegetables, and fruits (Naveed et al. 2021).

In humans, Ni is an abundant metal commonly responsible for skin allergies and is one of the greatest
causes of allergic contact dermatitis, as revealed by positive dermal patch tests (Cavani, 2005). Ni is a
carcinogenic element in several animal species but the basic mechanisms behind are still unknown
(Chang, 1996). Ni can act as a tumor inducer by inhibiting natural killer cell activity (Costa and Klein,
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1999). Another possible way by which Ni induces cell death and/or damage is through lipid peroxidation
(Misra et al. 1990; Chen et al. 1998; Janicka and Cempel, 2001).

Based on the above discussion, it has been found that both Pb and Ni cause toxic effects on plants as
well as humans. The increasing needs of the human population for food have resulted in intensive
farming, even near the roadsides. In addition, there is an increasing trend regarding the production of
vegetables along the roadside near urban areas. Therefore, it is necessary to evaluate the contamination
level of heavy metals especially Pb and Ni in soils as well as plants growing along the roadsides, as it
would help in exploring the contamination level of these metals in those soils and plants and to calculate
health risks associated with the consumption of these edible plants growing along the roadside.
Moreover, it would also help in identifying the safe distance for the production of different crop plants
along the roadside. Up to our knowledge, no study has focused on this aspect of the present research
work conducted. Based on these hypotheses, the present study was conducted to investigate the
contamination level of Pb and Ni in soils and plants that grew along the roadside of Bara Bandai,
Ningolai, and Ghalegay, District Swat, Khyber Pakhtunkhwa. Moreover, different parameters related to the
health risks associated with the consumption of the tested vegetables have been investigated.

Materials And Methods

Study area

The present study was conducted to investigate the contamination level of Pb and Ni in soils and plants
that grew along the roadside of Bara Bandai, Ningolai and Ghalegay, District Swat, Khyber Pakhtunkhwa.
Plants and soil samples were collected from the cultivated fields near the roadside at Bara Bandai,
Ningolai, and Ghalegay.

Collection of soil and plant samples

Plant samples were collected from the cultivated field within a 120-meter range from the roadside.
Collection of plants was made in four groups based on their distance range from road i.e. group-I (0-10 m
distance), group-Il (10-40 m distance), group-lll (40-80 m distance), and group-IV (80-120 m distance).
Five replicates were taken for each plant at each range. Similarly, five soils samples were randomly
collected from each range. Plants (Spinacia oleracea, Allium cepa, Rumex dentatus, and Trachyspermum
ammi) were selected for the present investigation based on their importance as vegetables.

Acid digestion of soil and plant samples

Collected soil samples were ground and sieved (2 mm) to remove large particles. Parameters such as
electrical conductivity and pH were calculated using a pH meter (Model CON.3173) and electrical
conductivity meter (Model CON 5). For acid digestion, 0.25 g from each soil sample was added in acid
solution (5 ml nitric acid and 1 ml sulfuric acid) in digestion tubes and placed overnight in a fume hood.
The next day, each soil sample in acid solution was heated until a clear aliquot was obtained. The aliquot
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was filtered and the total volume was raised to 50 mL with distilled water. Each solution was stored in
plastic bottles until analyzed for heavy metals.

Collected plant samples were cut into parts (roots, stem, and leaves) and then kept in paper envelopes.
The samples were dried in the oven at 80 °C for 48 h and then crushed into a powdered form using a
commercial blender. Each sample was digested by the method of Allen (1974). A 0.25gm of the sample
was taken in the conical flask and then a mixture of acids (5 ml nitric acid and 1 ml sulfuric acid) was
added to it and boiled on a hotplate until digested completely. After digestion, each sample was cooled,
filtered and then the final volume is raised to 50 mL by adding distilled water. The solutions were stored in
plastic bottles for metal analysis. The metal analysis of both soil and plants samples was carried out at
Central Resource Laboratory, Peshawar using atomic absorption spectrophotometer (AA2407, USA).

Health risk assessment
Bioconcentration factor (BCF)

It is the ratio of heavy metal concentration in the edible part of the plant to heavy metal concentration in a
soil sample (Sharma et al. 2018). BCF was calculated using the following formula:

_ Cpln.nt

BCF =

=ail

where Cp, is heavy metal content in the edible part of plant and Cg; is heavy metal content in

respective soil. The value of BCF greater than 1 indicates that the plant is a potential accumulator of the
metal being considered for analysis.

Estimated daily intake (EDI)

The estimated daily intake of the metals was determined based on their mean concentration in each
plant sample and the estimated daily consumption of the vegetables in grams. The EDI value of each
metal of interest was determined by the formula used by Chen et al. (2011) with slight modification as
presented in the following equation:

By X By X Fig X Cpy X C;
By, X Ty

EDI = * 0.001

where E; is exposure frequency (365 day/year), Ej, is the exposure duration (65 years), equivalent to an
average lifetime (Woldetsadik et al. 2017), F g is the average food (vegetable) consumption (240

g/person/day) which were obtained from the World Health Report (WHO, 2002) for low vegetable intake,
Cy is the metal concentration (mg/kg dry weight), C; is the concentration conversion factor for fresh

vegetable weight to dry weight i.e. 0.085 (Harmanescu et al. 2011), By, is reference body weight for an
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adult, which is 70 kg (Woldetsadik et al. 2017), T, is the average exposure time (65yrs x 365 days) and
0.001 is the unit conversion factor.

Target hazard quotient (THQ)

The target hazard quotient (THQ) values were estimated to assess non-carcinogenic human health risk
from the consumption of vegetables contaminated by heavy metals. The THQ values were calculated
using the following equation as described by Chen et al., (2011).

THQ:M—D

Where EDI is the estimated daily metal intake of the population in mg/day/kg body weight and RfD is the
oral reference dose (mg/kg/day) values which were 0.0035 for Pb and 0.02 for Ni. If the value of THQ is <
1, it is generally presumed to be safe for the risk of non-carcinogenic effects and if itis > 1, it is supposed
that there is a chance of non-carcinogenic effects with an increasing probability as the value upsurges
(Chen et al. 2011, Antoine et al. 2017).

Hazard Index (HI)

It has been documented that the individual health risks of the analyzed heavy metals in the same
vegetable are accumulative and that is expressed as hazard index (Chen et al. 2011, Antoine et al. 2017).
Accordingly, the HI of target metals considered in this study were calculated using the following equation
proposed by Antoine et al. (2017):

i
H!=Z THQ,,i=1,2,3,...... n
n=1

where Hl is the sum of various metals hazards. If the HI value became < 1.0, there is no apparent health
impact due to the metals considered. However, an Hl value of > 1.0 indicates potential health impact
implications. A serious chronic health impact has been suggested for HI > 10.0 (Antoine et al. 2017).

Target cancer risk (TCR)

The cancer risk posed to human health due to the ingestion of individual possibly carcinogenic metals
was estimated using the following equation as described by Sharma et al. (2018). Then, the target cancer
risk (TCR) resulting from heavy metals (Pb and Ni) ingestion, which may promote carcinogenic effect
depending on the exposure dose, was calculated using the following equation as described by Kamunda
et al. (2016).
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CR = EDI ¥ CP5,

i
TCR=Z CR,i=1,273,...... .1
n=1

where CR represents cancer risk over a lifetime by individual heavy metal ingestion, EDI is the estimated
daily metal intake of the population in mg/day/kg body weight, CPS,, is the oral cancer slope factor in
(mg/kg/day)-1 and n is the number of heavy metals considered for cancer risk calculation. The
CPS,values used for Pb and Ni were 0.0085 and 1.7, respectively. It has been pointed out that the slope
factor converts the estimated daily intake of the metal averaged over a lifetime of the exposure directly to
the incremental risk of an individual developing cancer (Kamunda et al. 2016).

Statistical analysis

The mean value of the data was calculated and then it was subjected to analysis of variance (ANOVA)
and correlations between different parameters were established using statistical software SPSS 16 and
MS Excel 2010.

Results

Physicochemical properties of soil

Different physicochemical properties of soils collected at different distances from the roadside are
presented in Table 1. Almost all the properties varied with distance from the roadside. A decreasing trend
in soil pH while an increasing trend in electrical conductivity (EC) was noted with increasing distance
from the roadside. Similarly, the concentrations of lead (Pb) and nickel (Ni) in the soil decreased as the
distance from the road increased. Concentrations of Pb and Ni were significantly higher at 0-10 meters
from the road compared to the other distances. The highest concentrations of Pb and Ni recorded at 0-10
m from the road were 60.6 and 35.0. The concentration of Pb in the soil was under the normal limit (85
mg kg™) but that of the Ni was at the edge of the permissible limit (35 mg kg™') by WHO, 2001. The soil
was loamy in texture, which is suitable for agricultural activities purposes because it has constituents
more or less the same amount required for plants growth.

Lead and nickel concentrations in Rumex dentatus L.

As clear from Figure 1, the highest accumulation of both Pb and Ni was in the root portion of the plants
followed by stem and leaves. The Pb concentration in all the parts of Rumex dentatus L. was above the
permissible limits (0.3 mg kg™) set by WHO/FAO, 2001 up to 80 m distance from the road. At 80-120 m
distance, the Pb concentration was above the permissible limits only in the root portion of Rumex
dentatus L. In the case of Ni, the concentration was above the permissible limits in root, leaves, and stem
portions of Rumex dentatus L. up to 10 m distance from the road. At 10-40 m away from the road, only
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the root portion accumulated Ni above the permissible limit. For the rest of the plants after 40-120 m, the
concentration of Ni was below the permissible limits as given by WHO, FAQ, 2001.

Lead and nickel concentrations in Trachyspermum ammi (L.) Sprague ex Turrill

Nickel (Ni) and lead (Pb) concentration in different parts of Trachyspermum ammi (L.) Sprague ex Turrill
collected at different distances from the roadside is presented in Figure 2. The red line along the
horizontal axis represents the permissible limits given by World Health Organization (WHO) and Food and
Agriculture Organization (FAO), 2001 for Pb (0.3 mg kg™) and Ni (1.5 mg kg™) concentration in plants to
be used as food. From the data presented, as the distance from the road was increased, the
bioaccumulation of Pb and Ni was decreased and vice versa. The highest accumulation of both Pb and
Ni was in the root portion of the plants followed by leaves, stems, and fruit. The Pb concentration in all
the parts of Trachyspermum ammi (L.) Sprague ex Turrill was above the permissible limits (0.3 mg kg™)
by WHO/FAQ, 2001 up to 40 m distance from the road. At 40-80 m distance, the Pb concentration was
above the permissible limits in the root, leaves, and stem portion of the plants while 80-120 m distance,
the concentration was above the permissible limits only in the root portion of Trachyspermum ammi (L.)
Sprague ex Turrill. In the case of Ni, the concentration was above the permissible limits in the root, leaves,
and stem portions of Trachyspermum ammi (L.) Sprague ex Turrill up to 40 m distance from the road. For
the rest of the plants after 40-120 m, the concentration of Ni was below the permissible limits as given by
WHO, FAQ, 2001.

Lead and nickel concentrations in Spinacia oleracea L.

From the data presented in Figure 3, the bioaccumulation of Pb and Ni in Spinacia oleracea L. was
decreased as the distance from the road was increased and vice versa. The highest accumulation of both
Pb and Ni was in the root portion followed by leaves, and stems. The Pb concentration in all the parts of
Spinacia oleracea L. was above the permissible limits (0.3 mg kg™') by WHO/FAO, 2001 up to 80 m
distance from the road. At 80-120 m distance, the Pb concentration was above the permissible limits only
in the root of Spinacia oleracea L. In the case of Ni, a similar decreasing trend in Ni concentration with
increasing distance was recorded in different parts of Spinacia oleracea L. The concentration was above
the permissible limits in root, leaves, and stem portions of Spinacia oleracea L. up to 10 m distance from
the road. At 10-40 distance, the Ni concentration was above the permissible limit in only the root portion
of the Spinacia oleracea L. For the rest of the plants after 40-120 m, the concentration of Ni was below
the permissible limits as given by WHO, FAO, 2001.

Lead and nickel concentrations in Allium cepa L.

A decreasing trend with increasing distance from the roadside regarding the concentrations of Ni and Pb

in different parts of Allium cepa L.was recorded (Figure 4). As clear from the data, the root portion

accumulated the maximum amount of Pb, followed by stem and leaves. In the case of Ni, the maximum

accumulation was observed in the case of the stem, followed by stem and leaves. Regarding the

permissible limit of Pb concentration, only stem and leaves portion at 80-120 away from the roadside
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were below the permissible concentration of Pb while all the others were above the permissible limit of Pb
i.e. 0.3 mg kg™. In the case of Ni, the concentration was above the permissible limit (1.5 mg kg™) in root,
stem, and leaves at 0-10 m away from the road while only root and stem portions had Ni concentrations
above the permissible limits.

Lead and nickel bioaccumulation

As clear from the data presented in Table 2, the maximum bioaccumulation of Pb was recorded in Rumex
dentatus L., followed by Trachyspermum ammi (L.) Sprague ex Turrill, Spinacia oleracea L., and Allium

cepa L. The shoot and root portion of Rumex dentatus L. bioaccumulated 46.2 and 29.4 mg kg™ DW.
Correlation between Ni and Pb concentration in soil and plant samples

A positive strong correlation (R? = 0.984) was found between Ni and Pb concentration in the soil as given
in Figure 5. Similarly, a positive correlation existed between the concentration of Ni and Pb in all the
studied plants as shown in Figure 6. The correlation was found to be highly significant in
Trachyspermum ammi (L.) Sprague ex Turrill (R? = 0.969), Spinacia olerace (R? = 0.988), Allium cepa (R?
= 0.959) and Rumex dentatus (R? = 0.906).

Bioconcentration factor

As clear from the data presented in Table 2, the bioconcentration factor (BCF) decreased with increasing
distance from the road in all the species studied. The maximum value of BCF (0.7629) was observed in
Rumex dentatus for the Pb, followed by 0.4949 in Trachyspermum ammi for Ni. The values of BCFs in
Spinacia oleracea, Allium cepa, and Rumex dentatus were more for Pb as compared to that observed for
Ni in the same species. The minimum BCF value (0.0312) was observed in the case of Trachyspermum
ammi at 80-120 m away from the road for Pb. A decreasing trend in BCF values was observed in all the
studied species as the distance from the road was increased.

Health risk assessment

After calculation of BCF and TF, the data on heavy metals concentration in different plant species studied
was analyzed regarding health risks associated. It was found that the values of estimated daily intake
(EDI), target hazard quotient (THQ), hazard index (HI), cancer risk (CR), and target cancer risk (TCR) were
decreased as the distance of sampling site from the road was increased. In general, the values of EDI and
THQ were higher in the case of Pb as compared to those observed for Ni. The maximum EDI (0.0135) and
THQ (3.3682) were recorded in the case of Rumex dentatus for Pb at 0-10 m away from the road.
Similarly, the values of EDI and THQ in the case of Spinacia oleracea L., Trachyspermum ammi (L.)
Sprague ex Turrill and Allium cepa L. were 0.0086 and 2.1507, 0.0057 and 1.4236, and 0.0052 and
1.2932, respectively. In the case of hazard index, the maximum value (3.4445) was observed in the case
of Rumex dentatus, followed by Spinacia oleracea L. (2.2466), Trachyspermum ammi (L.) Sprague ex
Turrill (1.6760), and Allium cepa L. (1.3836). Moreover, the values of cancer risk (CR) regarding Ni were
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higher than that of Pb and these values showed a decreasing trend with incasing distance from the road.
The value of CR for Ni was maximum (0.8413) in the case of Trachyspermum ammi (L.) Sprague ex
Turrill at 0-10 m away from the road. A similar trend was observed in the case of target cancer risk (TCR).
The maximum value of TCR (0.8413) in the case of Trachyspermum ammi (L.) Sprague ex Turrill at 0-10
m away from the road, followed by Trachyspermum ammi (L.) Sprague ex Turrill (0.5989) at 10-40 m
away from the road, Spinacia oleracea L. (0.3197) at 0-10 m away from the road, Allium cepa L. (0.3154)
at 10-40 m away from the road.

Discussion

Soil not only provides anchorage and support to the plants but also acts as a reservoir of different
nutrients. The physicochemical characteristics of soil are very important and have a crucial role in the
mobilization and distribution of toxic heavy metals. A strong correlation existed between concentrations
of Ni and Pb in the soil under study, which clearly shows that their sources might be the same on
roadsides i.e. traffic emission (Patel and Jain, 2021). Our study showed that Pb and Ni concentration in
soil was lower than the threshold limit (0.3 ppm for Pb and 1.50 ppm for Ni) set by World Health
Organization. The concentration of Pb and Ni in soils at the road edges was significantly high (Pb = 60.60
+ 5.60 and Ni = 35.00  3.24) and decreased rapidly with increasing distance from the road which is in
line with earlier studies (Huan et al. 2018; Li et al. 2020). Earlier, it has been found that Pb concentration
on the surface of the earth naturally occurs below 50 mg kg™ (Arias et al 2010). Its concentration in soil
mainly changes due to anthropogenic activities. As Pb occurs in the petroleum products and combustion
of this fuel in internal combustion engine of cars releases Pb into the atmosphere, which then settles
down on the soil near roadsides (Sammut et al 2010). Similar is the case with nickel, which also occurs
naturally in petroleum products. Nickel in soils can be found in several different forms: adsorbed or
complex with organic cation surfaces or on inorganic cation exchange surfaces, inorganic crystalline
minerals, water-soluble, chelated metal complexes, or free ion in soil solution. Lead does not seem to be
of big concern outside urban areas but may ultimately become a problem due to decreased pH of soil
caused by limited use of soil liming in agriculture and mobilization because of increased acid rain (Bai et
al. 2011).

Plants grown in contaminated soils are exposed to the contaminants. Since plants have the natural
ability to absorb dissolved substances from the soil solution and in doing so, plants also absorb toxic
metals present in the soil. Comparison among lead concentrations in different plant species
demonstrated significant variations with distances from roads. Pb concentration in plants occurred in the
order of Rumex dentatus > Spinacia oleracea > Trachyspermum ammi > Allium cepa. Differences in Pb
concentration in plants depend on several factors such as developmental stage, genetic makeup,
transpiration coefficient, plant roots system in soil, plant growth rate, and nutrients needed by plants
(Cenkci et al. 2010). Roots of plants absorbed the highest Pb concentration as compared to the other
plant parts. This is because roots are more exposed to the pollutants in the soil as compared to the other
parts of the plant. Many plants have been reported to retain up to 95% of Pb in their root portions and a
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little concentration is transported to aerial parts of a plant (Shahid et al., 2011). This restricted transport
of Pb to the aerial parts of the plants might be due to the immobilization of Pb on plant cell walls by the
negatively charged pectin (Arias et al. 2010). Despite this, some of the Pb moves through intercellular
spaces present between plant cells and translocation with water to endodermis (Wang et al. 2007; Shahid
etal. 2011). Pb is either stored in a plasma membrane attached with pectin, crystallized in intercellular
spaces, or stored in outer root cortical cells (Yang et al. 2007). Plants collected near the roadside were
more exposed to lead as compared to the plants away from roadsides. Similar results have been reported
by many investigators at different locations of the world (Lone et al., 2006; Bai et al. 2011; Li et al. 2020).
Nickel is an essential nutrient for plants required in very low concentrations. Nickel compounds are
mainly emitted by the combustion of fossil fuel in automobiles, which results in the contamination of
roadside areas with Ni particles.

The most serious problem in toxic metal pollution in agricultural soil is the absorption and accumulation
of toxic metals in plants tissues. The food chain is the main route of entry of heavy metals into the
human body, which accounts for about 90% of heavy metals source in the human body. Therefore, health
risk assessment in the form of estimated daily intake (EDI), target hazard quotient (THQ), and hazard
index (HI), cancer risk (CR), and target cancer risk (TCR) was done in the present study. In the present
study, EDI values for Pb and Ni were below maximum tolerable daily intakei.e. 0.21 and 0.1-0.3 as
reported by Chen et al. (2011) and Woldetsadik et al. (2017), respectively. In the case of THQ, values
noted for Pb and Ni were greater than unity, which shows that there is potential risk associated with the
consumption of all the tested vegetables up to 0-10 m away from the road. Moreover, the consumption of
Rumex dentatus was not safe up to 40 m away from the road. All the other species were safe to use after
10 m away from the road except Rumex dentatus, which was safe to utilize after 40 m away from the
road. A similar trend in Hl was observed regarding the usage of different vegetables tested in the present
study as observed in the case of THQ. In the case of TCR, all the values were greater than 1 x 10, which
shows that there is a risk of cancer with the consumption of all the tested vegetables. Based on these
indices, it was found that the consumption of the tested vegetables was very dangerous and may lead to
higher risks of cancer.

Conclusions

The results confirmed the presence of Pb and Ni in selected soils and plant samples. The concentration
of Pb in Rumex dentatus, Trachyspermum ammi, Spinacia oleracea, and Allium cepa was above the safe
limits of WHO within 80 m range from the road. The results demonstrated that plants collected beyond
the 80 m range contained Pb concentration below the WHO safe limit. While the plant was found safe in
the case of Ni beyond the 10 m range where the concentration of Ni in plant tissues was found below the
WHO safe limit. Moreover, the consumption of studied vegetables grown along the roadside was not safe
based on the values of different indices. In the case of target hazard quotient (THQ), the values noted for
Pb and Ni were greater than unity, which shows that there is potential risk associated with the
consumption of all the tested vegetables up to 0-10 m away from the road. In the case of target cancer
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risk (TCR), all the values were greater than 1 x 10, which shows that there is a risk of cancer from Ni
with the consumption of vegetables to the people in the study area. Based on these results, it is highly
recommended to have strict regulatory control on the cultivation of these vegetables along the roadside
in the study area.
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Tables

Table 1: Physical and chemical properties of soil collected at different distances from roadside.
Distance from road side(m) pH EC(dSm™) Texture Pb (ppm) Ni (ppm)
0-10 701 591 Loamy soil 60,60+ 5.602*  35.00 + 3.24°
10 -40 6.70 5.99 Loamy soil 20 60 +4.56P 16.01 + 2.56P
40 -80 6.46 6.03 Loamy soil  1300+3.24°  10.33+1.25
80 -120 6.39 6.04 Loamy soil 513 +2.92b 867 +1.87°

*Significant variations between values is represented by different letters.

Table 2: Bioaccumulation of Pb and Ni in root and shoot, bioconcentration factor (BCF), and
translocation factor (TF) calculated for Pb and Ni concentration in different plant species sampled at
different distances from the road
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Distance Bioaccumulation of Pb (mg  Bioaccumulation of Ni(mg  Bioconcentration

from road kg" DW) kg DW) factor (BCF)

Root Shoot Total Root Shoot  Total Pb Ni
Rumex dentatus L.
0-10 m 294 46.23 75.63 2.83 5.24 8.07 0.7629 0.1497
10-40 m 10.13 14.58  24.71 1.50 2.61 411 0.7078 0.1630
40-80 m 0.93 1.00 1.93 0.90 1.42 2.32 0.0769 0.1375
80-120 m 0.30 0.19 0.49 0.72 1.00 1.72 0.0370 0.1153

Trachyspermum ammi (L.) Sprague ex Turrill

0-10 m 2490 19.54 4444 10.25 17.32 27.57 0.3224 0.4949
10-40 m 12.12 6.54 18.66  3.17 5.64 8.81 0.3175 0.3523
40-80 m 2.20 1.04 3.24 0.90 1.67 2.57 0.0800 0.1617
80-120 m 0.45 0.16 0.61 0.56 1.11 1.67 0.0312 0.1280
Spinacia oleracea L.

0-10 m 18.00 29.52 4752 424 6.58 10.82 0.4871 0.1880
10-40 m 496 5.76 10.72  1.67 2.67 434 0.2796 0.1668
40-80 m 1.04 1.05 2.09 1.00 1.58 2.58 0.0808 0.1530
80-120 m 0.62 0.45 1.07 0.64 1.00 1.64 0.0877 0.1153
Allium cepa L.

0-10 m 12.54 17.75 3029 290 6.20 9.1 0.2929 0.1771
10-40 m 6.39 8.66 15.05 1.53 2.97 4.5 0.4204 0.1855
40-80 m 0.79 0.92 1.71 0.72 1.28 2.0 0.0708 0.1239
80-120 m 0.30 0.38 0.68 0.50 0.85 1.35 0.0741 0.0980

Table 3: Estimated daily intake (EDI), target hazard quotient (THQ), and hazard index (HlI), cancer risk (CR)
and target cancer risk (TCR) calculated for Pb and Ni concentration in different plant species sampled at
different distances from the road
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Distance Estimated daily Target Hazard Hazard Cancerrisk (CR) Target

fromroad intake (EDI) Quotient (THQ) index ﬁgﬂcer
Pb N Pb Ni H) — pp Ni (TCR)

Rumex dentatus L.

0-10 m 0.0135 8353E- 3.3682 0.0764 3.4445 1.14518E-04 0.2545 0.2546

10-40 m 0.0042 7.61E- 1.0623 0.0380 1.1003 3.61167E-05 0.2771 0.2772
04

40-80 m 0.0003 4.14E- 0.0729  0.0207 0.0935 2.47714E-06  0.2337 0.2337
04

80-120 m 0.0001  2.91E- 0.0138 0.0146  0.0284  4.70657E-07  0.1961 0.1961
04

Trachyspermum ammi (L.) Sprague ex Turrill

0-10 m 0.0057 SSOSE_ 1.4236 0.2524 1.6760  4.84034E-05 0.8413 0.8413
10-40 m 0.0019 (1)364E- 0.4765  0.0822 0.5587 1.62005E-05 0.5989  0.5989
40-80 m 0.0003 gf7E- 0.0758 0.0243 0.1001 2.57623E-06  0.2748 0.2748
80-120m  0.0000 8.423E- 0.0117 0.0162 0.0278  3.96343E-07 0.2176 0.2176
Spinacia oleracea L.

0-10 m 0.0086 (1);392E- 21507 0.0959 2.2466 7.31253E-05 0.3196 0.3197
10-40 m 0.0017 6.478E- 0.4197 0.0389 0.4586  1.42683E-05 0.2835 0.2835
40-80 m 0.0003 61.460E- 0.0765 0.0230 0.0995 0.000002601 0.2600 0.2600
80-120 m 0.0001 6.491E— 0.0328 0.0146 0.0474 1.11471E-06 0.1961 0.1961
Allium cepa L.

0-10 m 0.0052 8.381 E- 12932 0.0903 1.3836 4.39693E-05 0.3011 0.3012

10-40 m 0.0025 8.66E- 0.6309 0.0433 0.6742  2.14521E-05 0.3154 0.3154
04

40-80 m 0.0003 3.73E- 0.0670 0.0187  0.0857 2.27897E-06  0.2106  0.2107
04
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80-120 m 0.0001  2.48E- 0.0277 0.0124  0.0401 9.41314E-07 0.1667 0.1667
04
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Figure 1

Lead (Pb) and Nickel (Ni) concentration in different part of Rumex dentatus L. at different distances from
road. Significant variations between the mean values (n = 3) is represented by different letters. The red
line along horizontal axis represents the permissible limits given by World Health Organization and Food
and Agriculture Organization, 2001 for Pb (0.3 mg kg-1) and Ni (1.5 mg kg-1) concentration in plants to
be used as food
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Lead (Pb) and Nickel (Ni) concentration in different part of Trachyspermum ammi (L.) Sprague ex Turrill
at different distances from road. Significant variations between the mean values (n = 3) is represented by
different letters. The red line along horizontal axis represents the permissible limits given by World Health
Organization and Food and Agriculture Organization, 2001 for Pb (0.3 mg kg-1) and Ni (1.5 mg kg-1)
concentration in plants to be used as food
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Figure 3

Lead (Pb) and Nickel (Ni) concentration in different part of Spinacia oleracea L. at different distances
from road. Significant variations between the mean values (n = 3) is represented by different letters. The
red line along horizontal axis represents the permissible limits given by World Health Organization and
Food and Agriculture Organization, 2001 for Pb (0.3 mg kg-1) and Ni (1.5 mg kg-1) concentration in
plants to be used as food
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Figure 4

Lead (Pb) and Nickel (Ni) concentration in different part of Allium cepa L. at different distances from
road. Significant variations between the mean values (n = 3) is represented by different letters. The red
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line along horizontal axis represents the permissible limits given by World Health Organization and Food
and Agriculture Organization, 2001 for Pb (0.3 mg kg-1) and Ni (1.5 mg kg-1) concentration in plants to
be used as food
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Correlation between Pb and Ni in soil.
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Figure 6

Correlation between Pb and Ni accumulation in Trachyspermum ammi (A), Spinacea oleracea (B), Allium
cepa (C) and Rumex dentatus (D).
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