[1] Chen J., Zhu Y., Wu C., Shi J. Nanoplatform-based cascade engineering for cancer therapy. Chem Soc Rev. 2020; 49(24): 9057-94.
[2] Dai Y., Xu C., Sun X., Chen X. Nanoparticle design strategies for enhanced anticancer therapy by exploiting the tumour microenvironment. Chem Soc Rev. 2017; 46(12): 3830-52.
[3] Zhang P., Gao D., An K., Shen Q., Wang C., Zhang Y., et al. A programmable polymer library that enables the construction of stimuli-responsive nanocarriers containing logic gates. Nat Chem. 2020; 12(4): 381-90.
[4] Lin H., Chen Y., Shi J. Nanoparticle-triggered in situ catalytic chemical reactions for tumour-specific therapy. Chem Soc Rev. 2018; 47(6): 1938-58.
[5] Zhang M., Guo X., Wang M., Liu K. Tumor microenvironment-induced structure changing drug/gene delivery system for overcoming delivery-associated challenges. J Control Release. 2020; 323:203-24.
[6] Feng L., Liu B., Xie R., Wang D., Qian C., Zhou W., et al. An Ultrasmall SnFe2O4 Nanozyme with Endogenous Oxygen Generation and Glutathione Depletion for Synergistic Cancer Therapy. Adv Funct Mater. 2020; 31:2006216.
[7] Gong F., Chen M., Yang N., Dong Z., Tian L., Hao Y., et al. Bimetallic Oxide FeWOX Nanosheets as Multifunctional Cascade Bioreactors for Tumor Microenvironment‐Modulation and Enhanced Multimodal Cancer Therapy. Adv Funct Mater. 2020; 30(49):2002753.
[8] Mao Q., Fang J., Wang A., Zhang Y., Cui C., Ye S., et al. Aggregation of Gold Nanoparticles Triggered by Hydrogen Peroxide-Initiated Chemiluminescence for Activated Tumor Theranostics. Angew Chem Int Ed. 2021; 60(44): 23805-11.
[9] Zhang P., Wang Y., Lian J., Shen Q., Wang C., Ma B., et al. Engineering the Surface of Smart Nanocarriers Using a pH-/Thermal-/GSH-Responsive Polymer Zipper for Precise Tumor Targeting Therapy In Vivo. Adv Mater. 2017; 29(36):1702311.
[10] Li S., Chen Y., Zhu W., Yang W., Chen Z., Song J., et al. Engineered Nanoscale Vanadium Metallodrugs for Robust Tumor‐Specific Imaging and Therapy. Adv Funct Mater. 2021; 31(17):2010337.
[11] Zhao Z., Xu K., Fu C., Liu H., Lei M., Bao J., et al. Interfacial engineered gadolinium oxide nanoparticles for magnetic resonance imaging guided microenvironment-mediated synergetic chemodynamic/photothermal therapy. Biomaterials. 2019; 219:119379.
[12] Deng T., Wang J., Li Y., Han Z., Peng Y., Zhang J., et al. Quantum Dots-Based Multifunctional Nano-Prodrug Fabricated by Ingenious Self-Assembly Strategies for Tumor Theranostic. ACS Appl Mater Inter. 2018; 10(33): 27657-68.
[13] Lees E.E., Nguyen T.L., Clayton A.H.A., Mulvaney P., Muir B.W. The Preparation of Colloidally Stable, Water-Soluble, Biocompatible, Semiconductor Nanocrystals With a Small Hydrodynamic Diameter. ACS Nano. 2009; 3(5): 1121-8.
[14] Wang L., Jiang W., Xiao L., Li H., Chen Z., Liu Y., et al. Self-Reporting and Splitting Nanopomegranates Potentiate Deep Tissue Cancer Radiotherapy via Elevated Diffusion and Transcytosis. ACS Nano. 2020; 14(7): 8459-72.
[15] Xuan W., Xia Y., Li T., Wang L., Liu Y., Tan W. Molecular Self-Assembly of Bioorthogonal Aptamer-Prodrug Conjugate Micelles for Hydrogen Peroxide and pH-Independent Cancer Chemodynamic Therapy. J Am Chem Soc. 2020; 142(2): 937-44.
[16] Sheng Z., Guo B., Hu D., Xu S., Wu W., Liew W.H., et al. Bright Aggregation-Induced-Emission Dots for Targeted Synergetic NIR-II Fluorescence and NIR-I Photoacoustic Imaging of Orthotopic Brain Tumors. Adv Mater. 2018; 30:1800766.
[17] Guo H., Zhang Y., Liang W., Tai F., Dong Q., Zhang R., et al. An inorganic magnetic fluorescent nanoprobe with favorable biocompatibility for dual-modality bioimaging and drug delivery. J Inorg Biochem. 2019; 192:72-81.
[18] Wei T., Xing H., Wang H., Zhang Y., Wang J., Shen J., et al. Bovine serum albumin encapsulation of near infrared fluorescent nano-probe with low nonspecificity and cytotoxicity for imaging of HER2-positive breast cancer cells. Talanta. 2020; 210:120625.
[19] Huang L.Y., Zhu S., Cui R., Zhang M. Noninvasive In Vivo Imaging in the Second Near-Infrared Window by Inorganic Nanoparticle-Based Fluorescent Probes. Anal Chem. 2020; 92(1): 535-42.
[20] Gong P., Sun L., Wang F., Liu X., Yan Z., Wang M., et al. Highly fluorescent N-doped carbon dots with two-photon emission for ultrasensitive detection of tumor marker and visual monitor anticancer drug loading and delivery. Chem Eng J. 2019; 356:994-1002.
[21] Jin R., Liu Z., Bai Y., Zhou Y., Gooding J.J., Chen X. Core–Satellite Mesoporous Silica–Gold Nanotheranostics for Biological Stimuli Triggered Multimodal Cancer Therapy. Adv Funct Mater. 2018; 28(31):1801961
[22] Du J., Xu N., Fan J., Sun W., Peng X. Carbon Dots for In Vivo Bioimaging and Theranostics. Small. 2019; 15(32):1805087.
[23] Bao Y.W., Hua X.W., Li Y.H., Jia H.R., Wu F.G. Hyperthemia-Promoted Cytosolic and Nuclear Delivery of Copper/Carbon Quantum Dot-Crosslinked Nanosheets: Multimodal Imaging-Guided Photothermal Cancer Therapy. ACS Appl Mater Inter. 2018; 10(2): 1544-55.
[24] Liu Y., Zhi X., Hou W., Xia F., Zhang J., Li L., et al. Gd3+-Ion-induced carbon-dots self-assembly aggregates loaded with a photosensitizer for enhanced fluorescence/MRI dual imaging and antitumor therapy. Nanoscale. 2018; 10(40): 19052-63.
[25] Aizik G., Waiskopf N., Agbaria M., Levi-Kalisman Y., Banin U., Golomb G. Delivery of Liposomal Quantum Dots via Monocytes for Imaging of Inflamed Tissue. ACS Nano. 2017; 11(3): 3038-51.
[26] Fu J., Liang L., Qiu L. In Situ Generated Gold Nanoparticle Hybrid Polymersomes for Water-Soluble Chemotherapeutics: Inhibited Leakage and pH-Responsive Intracellular Release. Adv Funct Mater. 2017; 27(18):1604981
[27] Cai X., Xie Z., Ding B., Shao S., Liang S., Pang M., et al. Monodispersed Copper(I)-Based Nano Metal-Organic Framework as a Biodegradable Drug Carrier with Enhanced Photodynamic Therapy Efficacy. Adv Sci. 2019; 6(15): 1900848.
[28] Ko E., Tran V.-K., Son S.E., Hur W., Choi H., Seong G.H. Characterization of [email protected]/GO nanozyme and its application to electrochemical microfluidic devices for quantification of hydrogen peroxide. Sensor Actuat B-Chem. 2019; 294:166-76.
[29] Deng T., Zhang R., Wang J., Song X., Bao F., Gu Y., et al. Carbon Dots-Cluster-DOX Nanocomposites Fabricated by a Co-Self-Assembly Strategy for Tumor-Targeted Bioimaging and Therapy. Part Part Syst Char. 2018; 35(9):1800190
[30] Han C.Y., Zhang X.M., Wang F., Yu Q.H., Chen F., Shen D., et al. Duplex metal co-doped carbon quantum dots-based drug delivery system with intelligent adjustable size as adjuvant for synergistic cancer therapy. Carbon. 2021; 183:789-808.
[31] Ma W., Xu L., Li X., Shen S., Wu M., Bai Y., et al. Cysteine-Functionalized Metal-Organic Framework: Facile Synthesis and High Efficient Enrichment of N-Linked Glycopeptides in Cell Lysate. ACS Appl Mater Inter. 2017; 9(23): 19562-8.
[32] Liu G., Luais E., Gooding J.J. The fabrication of stable gold nanoparticle-modified interfaces for electrochemistry. Langmuir. 2011; 27(7): 4176-83.
[33] Boisselier E., Astruc D. Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev. 2009; 38(6): 1759-82.
[34] Cheng X., Xu H.D., Ran H.H., Liang G., Wu F.G. Glutathione-Depleting Nanomedicines for Synergistic Cancer Therapy. ACS Nano. 2021; 15(5): 8039-68.
[35] Jiang Y., Cheng J., Yang C., Hu Y., Li J., Han Y., et al. An ultrasensitive fluorogenic probe for revealing the role of glutathione in chemotherapy resistance. Chem Sci. 2017; 8(12): 8012-8.
[36] Ward R.A., Fawell S., Floc'h N., Flemington V., Mckerrecher D., Smith P.D. Challenges and Opportunities in Cancer Drug Resistance. Chem Rev. 2021; 121(6): 3297-351.
[37] Li Z., Ni J., Liu L., Gu L., Wu Z., Li T., et al. Imaging-Guided Chemo-Photothermal Polydopamine Carbon Dots for EpCAM-Targeted Delivery toward Liver Tumor. ACS Appl Mater Inter. 2021; 13(25): 29340-8.
[38] Chung Y.J., Kim J., Park C.B. Photonic Carbon Dots as an Emerging Nanoagent for Biomedical and Healthcare Applications. ACS Nano. 2020; 14(6): 6470-97.
[39] Galati E., Tebbe M., Querejeta-Fernandez A., Xin H.L., Gang O., Zhulina E.B., et al. Shape-Specific Patterning of Polymer-Functionalized Nanoparticles. ACS Nano. 2017; 11(5): 4995-5002.
[40] Chen C., Song M., Du Y., Yu Y., Li C., Han Y., et al. Tumor-Associated-Macrophage-Membrane-Coated Nanoparticles for Improved Photodynamic Immunotherapy. Nano Lett. 2021; 21(13): 5522-31.
[41] Li R., He Y., Zhu Y., Jiang L., Zhang S., Qin J., et al. Route to Rheumatoid Arthritis by Macrophage-Derived Microvesicle-Coated Nanoparticles. Nano Lett. 2019; 19(1): 124-34.