1 Zhu, H. et al. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nature Materials 14, 636, doi:10.1038/nmat4271 https://www.nature.com/articles/nmat4271#supplementary-information (2015).
2 Sutherland, B. R., Hoogland, S., Adachi, M. M., Wong, C. T. O. & Sargent, E. H. Conformal Organohalide Perovskites Enable Lasing on Spherical Resonators. ACS Nano 8, 10947-10952, doi:10.1021/nn504856g (2014).
3 Zhang, Q., Ha, S. T., Liu, X., Sum, T. C. & Xiong, Q. Room-Temperature Near-Infrared High-Q Perovskite Whispering-Gallery Planar Nanolasers. Nano Letters 14, 5995-6001, doi:10.1021/nl503057g (2014).
4 Hill, M. T. & Gather, M. C. Advances in small lasers. Nature Photonics 8, 908, doi:10.1038/nphoton.2014.239 https://www.nature.com/articles/nphoton.2014.239#supplementary-information (2014).
5 Wei, Q. et al. Recent Progress in Metal Halide Perovskite Micro- and Nanolasers. Advanced Optical Materials 0, 1900080, doi:10.1002/adom.201900080 (2019).
6 Wang, K., Wang, S., Xiao, S. & Song, Q. Recent Advances in Perovskite Micro- and Nanolasers. Advanced Optical Materials 6, 1800278, doi:10.1002/adom.201800278 (2018).
7 Sutherland, B. R. & Sargent, E. H. Perovskite photonic sources. Nature Photonics 10, 295, doi:10.1038/nphoton.2016.62 (2016).
8 Zhang, Y. et al. Photonics and optoelectronics using nano-structured hybrid perovskite media and their optical cavities. Physics Reports 795, 1-51, doi:https://doi.org/10.1016/j.physrep.2019.01.005 (2019).
9 Schlaus, A. P. et al. How lasing happens in CsPbBr3 perovskite nanowires. Nature Communications 10, 265, doi:10.1038/s41467-018-07972-7 (2019).
10 Liu, Y. et al. Efficient blue light-emitting diodes based on quantum-confined bromide perovskite nanostructures. Nature Photonics 13, 760-764, doi:10.1038/s41566-019-0505-4 (2019).
11 Green, M. et al. Solar cell efficiency tables (version 57). Progress in Photovoltaics: Research and Applications 29, 3-15, doi:https://doi.org/10.1002/pip.3371 (2021).
12 Chen, Y. et al. Dual Passivation of Perovskite and SnO2 for High-Efficiency MAPbI3 Perovskite Solar Cells. Advanced Science n/a, 2001466, doi:https://doi.org/10.1002/advs.202001466 (2021).
13 Veldhuis, S. A. et al. Perovskite Materials for Light-Emitting Diodes and Lasers. Advanced Materials 28, 6804-6834, doi:10.1002/adma.201600669 (2016).
14 Li, G. et al. High detectivity photodetectors based on perovskite nanowires with suppressed surface defects. Photon. Res. 8, 1862-1874, doi:10.1364/PRJ.403030 (2020).
15 Manser, J. S., Christians, J. A. & Kamat, P. V. Intriguing Optoelectronic Properties of Metal Halide Perovskites. Chemical Reviews 116, 12956-13008, doi:10.1021/acs.chemrev.6b00136 (2016).
16 Tang, B. et al. Single-Mode Lasers Based on Cesium Lead Halide Perovskite Submicron Spheres. ACS Nano 11, 10681-10688, doi:10.1021/acsnano.7b04496 (2017).
17 Qin, C. et al. Stable room-temperature continuous-wave lasing in quasi-2D perovskite films. Nature 585, 53-57, doi:10.1038/s41586-020-2621-1 (2020).
18 Eaton, S. W. et al. Lasing in robust cesium lead halide perovskite nanowires. Proceedings of the National Academy of Sciences 113, 1993, doi:10.1073/pnas.1600789113 (2016).
19 Zhao, C. et al. Stable Two-Photon Pumped Amplified Spontaneous Emission from Millimeter-Sized CsPbBr3 Single Crystals. The Journal of Physical Chemistry Letters 10, 2357-2362, doi:10.1021/acs.jpclett.9b00734 (2019).
20 Ju, M.-G. et al. Toward Eco-friendly and Stable Perovskite Materials for Photovoltaics. Joule 2, 1231-1241, doi:https://doi.org/10.1016/j.joule.2018.04.026 (2018).
21 Yan, Y., Pullerits, T., Zheng, K. & Liang, Z. Advancing Tin Halide Perovskites: Strategies toward the ASnX3 Paradigm for Efficient and Durable Optoelectronics. ACS Energy Letters 5, 2052-2086, doi:10.1021/acsenergylett.0c00577 (2020).
22 Luo, J. et al. Efficient and stable emission of warm-white light from lead-free halide double perovskites. Nature 563, 541-545, doi:10.1038/s41586-018-0691-0 (2018).
23 Jeong, M. et al. Stable perovskite solar cells with efficiency exceeding 24.8% and 0.3-V voltage loss. Science 369, 1615, doi:10.1126/science.abb7167 (2020).
24 Jia, Y., Kerner, R. A., Grede, A. J., Rand, B. P. & Giebink, N. C. Factors that Limit Continuous-Wave Lasing in Hybrid Perovskite Semiconductors. Advanced Optical Materials 8, 1901514, doi:10.1002/adom.201901514 (2020).
25 Fan, Z. et al. Layer-by-Layer Degradation of Methylammonium Lead Tri-iodide Perovskite Microplates. Joule 1, 548-562, doi:https://doi.org/10.1016/j.joule.2017.08.005 (2017).
26 Mathies, F. et al. Inkjet-printed perovskite distributed feedback lasers. Opt. Express 26, A144-A152, doi:10.1364/OE.26.00A144 (2018).
27 Li, X. et al. Stable Whispering Gallery Mode Lasing from Solution-Processed Formamidinium Lead Bromide Perovskite Microdisks. Advanced Optical Materials 8, 2000030, doi:https://doi.org/10.1002/adom.202000030 (2020).
28 Zhang, Q., Shang, Q., Su, R., Do, T. T. H. & Xiong, Q. Halide Perovskite Semiconductor Lasers: Materials, Cavity Design, and Low Threshold. Nano Letters 21, 1903-1914, doi:10.1021/acs.nanolett.0c03593 (2021).
29 Li, G. et al. Stability of Perovskite Light Sources: Status and Challenges. Advanced Optical Materials 8, 1902012, doi:https://doi.org/10.1002/adom.201902012 (2020).
30 Leijtens, T. et al. Stability of Metal Halide Perovskite Solar Cells. Advanced Energy Materials 5, 1500963, doi:https://doi.org/10.1002/aenm.201500963 (2015).
31 Fu, Q. et al. Recent Progress on the Long-Term Stability of Perovskite Solar Cells. Advanced Science 5, 1700387, doi:10.1002/advs.201700387 (2018).
32 Chen, S. et al. A Photonic Crystal Laser from Solution Based Organo-Lead Iodide Perovskite Thin Films. ACS Nano 10, 3959-3967, doi:10.1021/acsnano.5b08153 (2016).
33 Whitworth, G. L. et al. Nanoimprinted distributed feedback lasers of solution processed hybrid perovskites. Opt. Express 24, 23677-23684, doi:10.1364/OE.24.023677 (2016).
34 Li, G. et al. Record-Low-Threshold Lasers Based on Atomically Smooth Triangular Nanoplatelet Perovskite. Advanced Functional Materials 29,doi:10.1002/adfm.201805553 (2019).
35 Whitworth, G. L. et al. Nanoimprinted distributed feedback lasers of solution processed hybrid perovskites. Opt Express 24, 23677-23684, doi:10.1364/OE.24.023677 (2016).
36 Ha, S. T. et al. Synthesis of Organic–Inorganic Lead Halide Perovskite Nanoplatelets: Towards High-Performance Perovskite Solar Cells and Optoelectronic Devices. Advanced Optical Materials 2, 838-844, doi:https://doi.org/10.1002/adom.201400106 (2014).
37 Brivio, F., et al., Lattice dynamics and vibrational spectra of the orthorhombic, tetragonal, and cubic phases of methylammonium lead iodide. Physical Review B 92,doi:10.1103/PhysRevB.92.144308 (2015).
38 Chen, Q. et al. Controllable Self-Induced Passivation of Hybrid Lead Iodide Perovskites toward High Performance Solar Cells. Nano Letters 14, 4158-4163, doi:10.1021/nl501838y (2014).
39 Shi, D. et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 347, 519, doi:10.1126/science.aaa2725 (2015).
40 Li, J., Wei, S.-H. & Wang, L.-W. Stability of the DX- Center in GaAs Quantum Dots. Physical Review Letters 94, 185501, doi:10.1103/PhysRevLett.94.185501 (2005).
41 Li, J. & Wang. Comparison between Quantum Confinement Effects of Quantum Wires and Dots. Chemistry of Materials 16, 4012-4015, doi:10.1021/cm0494958 (2004).
42 Ding, S. et al. Enhanced performance of perovskite solar cells by the incorporation of the luminescent small molecule DBP: perovskite absorption spectrum modification and interface engineering. Journal of Materials Chemistry C 7, 5686-5694, doi:10.1039/C9TC00064J (2019).
43 Kirchhuebel, T. et al. Self-Assembly of Tetraphenyldibenzoperiflanthene (DBP) Films on Ag(111) in the Monolayer Regime. Langmuir 32, 1981-1987, doi:10.1021/acs.langmuir.5b04069 (2016).
44 Wang, Y. et al. All-Inorganic Colloidal Perovskite Quantum Dots: A New Class of Lasing Materials with Favorable Characteristics. Advanced Materials 27, 7101-7108, doi:https://doi.org/10.1002/adma.201503573 (2015).