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Abstract 

One of the most widely used additive manufacturing (AM) methods is Fused Filament 

Fabrication (FFF), which can produce complex geometry parts. In this process, a continuous 

filament of thermoplastic material is deposited layer by layer to make the final piece.  One 

of the essential goals in the production of parts with this method is to produce parts with 

high mechanical properties and excellent geometrical accuracy at the same time. Among the 

various methods used to improve the desired properties of produced parts is to determine 

the optimum process parameters in this process. This paper investigates the effect of 

different process parameters on four essential parameters: chamber temperature, Printing 

temperature, layer thickness, and print speed on cylindricity, circularity, strength, Young’s 

modulus, and deformation by Gray Relational Analysis method simultaneously. Taguchi 

method was used to design the experiments, and the PA6 cylindrical parts were fabricated 

using a German RepRap X500
®
 3D printer. Then the GRG values were calculated for all 

experiments. In the 8
th

 trial, the highest value of GRG was observed.  Then, to discover the 

optimal parameters, the GRG data were analyzed using ANOVA  and S/N analysis, and it 

was determined that the best conditions for enhancing GRG are 60 °C in the chamber 

temperature, 270 °C in the printing temperature, 0.1 mm layer thickness, and 600 mm/min 

print speed. Finally, by using optimal parameters, a verification test was performed, and 

new components were investigated. Finally, by comparing the initial GRG with the GRG of 

the experiment, it was discovered that the GRG value had improved by 14%. 

Keywords: FFF; Taguchi Design; ANOVA; Grey Relational Analysis  
 

 

1. Introduction 

All industries have changed their focus from traditional manufacturing methods to rapid 

prototyping (RP) procedures to reduce part manufacturing cycle times while maintaining 

essential mechanical properties. This helps to keep industries competitive in the market- 

place. RP processes were first established in the 1980s, known as Additive Manufacturing 

(AM), layer manufacturing, additive processes, free-form fabrication, and additive 

techniques. This technology builds objects by adding material in the layered format using 

Computer-Aided Design (CAD) [1–3]. 
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The additive manufacturing (AM) method includes several techniques that allow the 

development of three-dimensional objects with complex geometries [4, 5]. AM has been 

used in building and construction, automotive sector, aerospace, art, and food industry.  

Also, due to the widespread shortage of medical equipment and protective products in the 

COVID-19 pandemic. [6–8]. 

Material Extrusion (ME), Material Jetting (MJ), Powder Bed Fusion (PBF), Sheet 

Lamination (SL), Binder Jetting (BJ), Vat Photo Polymerization (VP), and Directed Energy 

Deposition (DED) are seven types of AM methods that have been developed over the years 

[9]. ME, also known as Fused Filament Fabrication (FFF) as described in the ISO/ASTM 

52900, is a popular AM method that involves selective deposition due to less material 

wastage, less expensive materials, and tools of thermoplastic polymers through a heated 

nozzle. As a 3D printing technique in prototype and end-product applications among 

additive manufacturing methods [10, 11]. 

A polymer is supplied into a liquefier in the FFF process, which extrudes a filament 

while moving in successive X-Y planes along the Z-axis to layer-by-layer build a 3D object 

[12, 13]. Polylactide (PLA), Polyamide (PA), Polycarbonate (PC), Acrylonitrile Styrene 

Acrylate (ASA), Nylon, Acrylonitrile Butadiene Styrene (ABS) and, Polyether Ether 

Ketone  (PEEK) seem to be the most often utilized thermoplastic polymers used in the FFF 

technique to make  3D   parts [14]. The most significant disadvantages of this approach 

include poor surface quality, slow build speed, and anisotropic mechanical properties 

resulting from the layer-by-layer strategy [15–17]. Due to 3D printed parts usage, 

mechanical behavior and geometrical accuracy must be carefully examined to avoid wasting 

materials and time [18]. 

Because many parameters might impact the printing process, manufacturers' default 

configuration of printing process parameters cannot guarantee the quality of printed 

products [19]. Various process parameters with multiple responses control the FFF process. 

From the perspective of analysis, this makes it a rather tricky procedure. Extensive research 

is being conducted to determine the impact of various FFF process parameters on the 

different responses [20].  
 

Ju-Long [21] developed the Gray Relational Analysis (GRA), which is one of the multi-

response optimization techniques, and it is based on the Taguchi technique. Many recent 

studies based on the Gray Relational Analysis (GRA) have been performed to improve 

different responses through processing parameter optimization. For example, Parlad et 

al.[22], have studied the effect of six different input process characteristics, such as density 

of pattern, mould Thickness, type of pattern, V/A ratio, grade of material on the dimensional 

deviation, surface roughness, and hardness of the ABS plastic based implants using Taguchi 

design of experiments. And they optimized the parameters using the multi-objective 

optimization method. According to the obtained results, it was found out that the smaller 

V/A ratio produces more hardness, and the best accuracy is attained at 90° orientation. For 

all of the responses, the effect of pattern density is non-significant. Less mould thickness 

improves hardness and microstructure, and a thin coating of wax improves the dimensional 

accuracy and surface finish. Aslani et al. [23] investigated the impact of the number of 

shells, printing temperature, infill rate, and printing pattern on the dimensional accuracy of 
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the PLA. The Grey–Taguchi technique was used to determine the optimum printing 

parameter levels for PLA FFF components, resulting in the best dimensional accuracy. The 

obtained results showed that the essential characteristic, according to the data, is the nozzle 

temperature. Furthermore, Analysis shows that the levels that minimize dimensional 

deviation are three shells, 230 °C Printing temperature, one of the recommended printing 

temperatures of PLA, 10 % Infill rate, and hexagonal printing pattern. 

 Deng et al.[24], analyzed the effect of 4 parameters, including printing speed(20, 40 and 

60 mm/s), layer thickness (0.2, 0.25 and 0.3 mm), printing temperature (350,360 and 370 

°C), and filling ratio (20,40 and 60 %) on strain, strength, and stiffness. The substance 

studied in this study is polyether-ether-ketone (PEEK) which is manufactured by FFF. It 

was observed that the mechanical properties would increase in printing speed of 60 mm/s, 

the layer thickness of 0.2 mm, the temperature of 370 °C, and the filling ratio of 40%. 

Venkatasubbareddy et al. [25], used the Taguchi method with Grey Relational Analysis 

(GRA) to determine the best combination of FDM process characteristics for ABS parts, 

resulting in improved surface finish and dimensional accuracy in terms of length, thickness, 

and diameter. L27 Orthogonal Array was chosen for this experiment using Taguchi’s DOE 

with five parameters: air gaps, layer thickness, raster width, raster angle, And part 

orientation at three levels of each parameter. It was stated that the layer thickness of 

0.254mm, part orientation and raster angle of 0°, raster width of 0.4564mm, and zero air 

gaps should improve the components’ surface quality and dimensional accuracy. Xiaoyong 

et al. [26] investigated the effect of bed temperature (130, 110 and, 25 °C), chamber 

temperature (60 and, 25 °C) and filling ratio (50% and 100%) on mechanical properties and 

forming precision, the sheet forming of PEEK thermoplastic parts fabricated using FFF 

method. They understood that temperature significantly impacts mechanical properties, and 

increasing the temperature can improve mechanical qualities. It was found that in the higher 

bed and chamber temperature, the tensile strength will be enhanced due to the increase in 

binding force between the layers. Also, mechanical properties are improved at low filling 

ratios. Aamir et al. [27] applied the Taguchi and GRA technique to determine the effects of 

five parameters: raster width, layer thickness, printing speed, and extrusion temperature on 

build time, surface roughness, and flatness error of PC/ABS blend parts. 

L27 Orthogonal Array of Taguchi’s design of experiments Selected and GRA techniques 

were used to select the optimum FDM variables for responses using multi-objective 

optimization. According to the investigation results, Raster width, layer thickness, and 

printing speed significantly impact multiple control factors. The layer thickness of 0.2 mm, 

the Raster width of 0.55 mm, extrusion temperature 270°C, Bed temperature 100°C, and 

Printing speed 40 mm/s are optimal conditions. Anusree et al. [28] analyzed the effects of 

four variables, including print speed, layer thickness, support material density, and raster 

width, on dimensional accuracy, tensile strength, and surface finish of FDM-processed 

helical surfaces using Taguchi and GRA methods. It was stated that the better dimensional 

accuracy, tensile strength, and surface finish were obtained by a minimum level of the layer 

thickness, in a print speed of 58 mm/s, and maximum level of raster width and rough 

support material.  In our previous research [29], the effect of four parameters, including 

thickness (5, 10, and 15 mm), infill pattern (Hexagonal, Rectangular, Triangular), number 

of walls (2, 3, and 4), and Layer height (1, 1.125 and 2 mm) were analyzed on geometrical 
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accuracy of cylindrical PA6 parts using Taguchi method. It was understood the effect of 

thickness and Layer height is more significant. The best process parameters for minimum 

geometrical error were the hexagonal infill pattern, a thickness of 5 mm, a wall layer of 2, 

and a layer height of 1.125 mm. The most important challenge in the FFF process is to 

fabricate the parts with excellent surface quality and mechanical properties. One way to 

improve these responses is to optimize the process parameters. In this study, the effect of 

four important parameters, including Chamber temperature (30, 45, and 60 °C), Printing 

temperature (260, 270 and 280 °C), layer thickness (0.1, 0.2 and 0.3 mm), and print speed 

(600, 1800 and 3000 mm/min), on the mechanical properties and geometrical accuracy of 

cylindrical parts made of PA6, produced by the FFF process, was investigated using the 

GRA method.  Finally, a confirmation test was performed to validate the results. In the final 

part of this work, the results obtained were discussed. 

 

  

2. Materials and Methods 

 

 2.1. Experimental setup 

 

In this study, the PA6 samples were fabricated by a German RepRap X500
®
 3D printer, 

which uses fused filament fabrication (FFF) technology. This machine has a high degree of 

design freedom and allows designers to experiment with completely new design and 

functionality concepts. Some of the technical specifications of the German RepRap X500
®
 

3D printer are shown in Table 1. Nylon white or PA6 is one of the most widely used 

polyamides. Also, it is a commercial material whit high surface quality and excellent 

mechanical properties, so we chose this material in this research [30,31]. A hollow 

cylindrical part with the dimensions of inner diameter 16mm and outer diameter 20mm with 

a height of 40mm was designed (Fig. 1) using CATIA-V5™ software and exported as an 
STL file. After slicing the parts with Simplify 3D software used to set FFF parameters, they 

will be manufactured using a German RepRap X500
®
 3D printer. Fig. 2 shows a schematic 

of these steps. 
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Fig. 1 Hollow cylindrical dimensions 

 
Table 1. Technical specifications for German RepRap X500

®
printer 

             Specifications 

Extruder Dual extruder with dual lift extruder system 

Software setup Simplify3D slicer software 

Build volume 500 x 400 x 450 mm 

Print speed 600 - 9000 mm/min 

Extruder temperature (Max) 400° C 

Chamber temperature 80° C 
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Fig. 2   Schematic of 3D printing steps. (a) Creating a digital model, (b) converting the digital model to 

STL, (C) slicing and choosing the presses parameters, (d) printing the parts by German Rep Rap 3d 

printer, (e) 3d printed cylindrical parts 

 

 

2.2. Design of experiment (DOE) 

 

Design of Experiments (DOE) is a systematic approach for determining the effect of 

input process parameters on a single or set of output responses in the setting of process 

parameter optimization. Several DOE approaches have been utilized to optimize the process 

parameters of the FFF system, including the Taguchi method, analysis of variance 

(ANOVA), complete factorial designs, bacterial foraging technique, and fuzzy logic 

because many parameters might impact the printing process, the default configuration of 

printing process parameters provided by manufacturers cannot guarantee the quality of 

printed products [32]. Extensive research is being conducted to determine the impact of 

various FFF process parameters on the different responses [33–36]. The Taguchi design 

method provides a practical approach to lower cost, higher quality, and performance 

optimization.  In the Taguchi design technique, a more significant number of parameters 

may be analyzed at once, and the best optimal configuration can be found with fewer 

resources than in the traditional DOE approach. 

 The L9 Orthogonal Array used in this study and the effect of four critical parameters of 
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the FFF process , including layer thickness (mm), print speed (mm/min), chamber 

temperature (°C), and print temperature (°C) in three different levels investigated on 

cylindricity and circularity as geometric accuracy. Also, Young’s modulus, strength, and 

deformation as mechanical properties were analyzed on these samples.   

Proses parameters in three different levels are shown in Table 2. The chamber controlled the 

environment temperature, and chamber temperature was set at 30, 40, and 60 (°C). Layer 

thickness refers to the thickness of each deposited layer and is based on the dimensions of the 

cylinders, and it was selected in the range of 0.1, 0.2, and 0.3 mm. The print speed was set from 

low to high in 600, 1800, and 3000 mm/min. Because the print temperature of nylon is usually 

270 (°C) [37], the selected temperature was slightly higher and lower than 270 (°C) to 

investigate the responses (250, 260 and, 270 (°C)). Table 3 shows the Taguchi orthogonal array 

that controls the parameter combinations for each experiment. Also, to increase the repeatability, 

each part has been printed five times, and 45 pieces have been fabricated. 

 
Table 2 The process parameters and their levels 

Level Chamber temperature 

(°C) 
Printing temperature 

(°C) 
layer thickness 

(mm) 
print 
speed 

(mm/min) 
1 30 260 0.1 600 

2 45 270 0.2 1800 

3 60 280 0.3 3000 

 

Table 3  L9 Orthogonal Array 

No. of Trial Chamber temperature 
(°C) 

Printing temperature 
(°C) 

layer thickness 
(mm) 

print speed 
(mm/min) 

1 30 260 0.1 600 

2 30 270 0.2 1800 

3 30 280 0.3 3000 

4 45 260 0.2 3000 

5 45 270 0.3 600 

6 45 280 0.1 1800 

7 60 260 0.3 1800 

8 60 270 0.1 3000 

9 60 280 0.2 600 

 

 

2.3. Measurement of responses 

First, all 3D printed parts were scanned using a 3D laser scanner (Solutionix D500) to measure 

geometrical error values. With an accuracy of 0.01 mm and a resolution of 0.055 mm. The advantage 

of this scanner is the high speed of scanning processing. The process consisted of using the blue light 

reflected from the object’s surface to the camera lens from a blue light source projected onto the 

surface of the parts. Then it is reflected from the object’s surface to the camera lens. Point-by-
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point coordinates are displayed in Solutionix ezScan software, which controls Solutionix 

D500, and the geometry of the part Obtained. This data was then extracted in STL format 

from Solutionix ezScan. In the next step, the initial CAD model was compared with the STL 

files extracted from Solutionix ezScan by Geomagic
®
 Control X software and aligned by 

component alignment. Finally, the circularity and cylindricity errors were obtained based on 

the ASME Y14.5M standard. The measured values of cylindricity and circularity are shown 

in Table 4, and the schematic of the steps is shown in Fig. 3. 
 

 

Fig. 3  Schematic of scanning process to find the cylindricity and circularity error. (a) scaning the parts 

by Solutionx D500, (b) Solutionx Ezscan software , (C) Geomagic Control X, (d) Measuring the 

geometrical accuracy  

 

 

The mechanical properties of parts were measured by compression test (INSTRON 5881 

compressive and tensile testing machine), all the pieces were compressed using a loading cell of 

50 KN and loading speed of 5 mm/min. The special jaws were designed to perform the 

compression tests, and the tubes were positioned between two jaws as sketched, as shown in 

Fig. 4. Then a stress-strain curve was obtained (Fig. 5). Strength, Young’s modulus, and 

elongation are shown in Table 4, and the steps are shown in Fig. 5 a flowchart shows the steps 

of the optimization process (Fig. 6). 

 

 

Fig. 4  Steps to find the strength, Young’s modulus, and elongation 
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Table 4  Measured values of responses 

No. of Trial Young’s modulus 
(MPa) 

Strength 
(MPa) 

Deformation Cylindricity 
(mm) 

Circularity 
(mm) 

1 1564.98±50.86 62.50±0.39 0.0556 ±0.00045 0.177± 0.01108 0.136±0.0118 

2 1327.24± 36.49 52.12 ±0.47 0.1164±0.000741 0.258±0.00242 0.194±0.01439 

3 1346.30±12.27 51.21±0.217 0.0883±0.00171 0.219±0.01605 0.154±0.01315 

4 1401.54±6.572 51.42±0.225 0.0635±0.000497 0.206±0.00695 0.151±0.0060 

5 1594.29±25.106 59.48±0.370 0.1256±0.000064 0.243±0.01715 0.245±0.01187 

6 1592.60±3.878 64.48±0.253 0.056±0.000427 0.236±0.02378 0.203±0.02284 

7 1313.97±6.673 47.73±0.202 0.062±0.000682 0.261±0.008515 0.169±0.00090 

8 1685.25±7.168 63.36±0.349 0.0539±0.00022 0.180±0.01212 0.146±0.0046 

9 1730.69±5.575 65.54±0.825 0.0595±0.000679 0.243±0.0174 0.174±0.01277 

 

Fig. 5  Stress-strain curves of all trials 
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Fig. 6  Flowchart of implementing the steps 
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3. Results and Discussion 

The obtained data from experiments were investigated one by one by analysis of 

variance (ANOVA) and Signal-to-noise ratio (S/N). MINITAB
®
 19.0 was used to analyze 

all of the data. Taguchi method is used to investigate the effect of a large number of 

parameters on a certain response with a fewer number of experiments. 

3.1. Analysis of experimental data 

Signal-to-noise (S/N) ratio is used to optimize process parameters and examine each 

parameter's impact on response. In the S/N ratio, the "signal" indicates the desired effect for 

the responses, while the "noise" indicates the undesirable effect for the responses. 

Therefore, a higher S/N ratio indicates the optimal conditions. According to the expected 

quality characteristics of different responses, there are different types of S/N ratio, 

including: "larger-is-better," "smaller-is-better," and "normal-is-better" which are shown in 

1, 2, and 3 Equations, respectively.  

 

Larger-is-better:
 𝜂 = −10 log [1𝑛 ∑ 1𝑦𝑖2

𝑛
𝑖=1 ] 

 

                               

(1) 

 
Smaller-is-better: 𝜂 = −10 log [1𝑛 ∑ 𝑦𝑖2𝑛

𝑖=1 ] 

 

                                 

(2) 

Normal-is-better:   𝜂 = −10 log [1𝑛 ∑(𝑦𝑖𝑛
𝑖=1− 𝑦𝑛)2] 

 

                         

(3) 

 

Where η represents the S/N ratio, yi is the response value of the target experiment in an 

orthogonal array, yn shows the variance, and n is the number of experiments [38]. In this study, 

minimize cylindricity and circularity, and maximize Young’s modulus, deformation, and 

strength of parts were analyzed by “smaller-is-better” and “larger-is-better,” respectively. 

3.2. Multi-response optimization 
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To simultaneously optimize multi-response parameters, the GRA method, which is a 

statistical method, was used. By finding the optimal process parameters, this method 

simultaneously reduces the cylindricity and circularity and increases the strength, 

elongation, and Young’s modulus. GRA is applied in the following steps. 
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3.2.1. Normalization of experimental data 

The first step is to normalize the experimental data. According to the expected quality 

characteristics of different responses, this value can be divided into three criteria for 

optimization in GRA: “larger-is-better,” “smaller-is-better,” and “normal-is-better” are 

shown in Equations 4, 5, and 6 [38]. 

 

Larger-is-better: 𝑋∗(𝑝) = 𝑋𝑖(𝑝) − 𝑀𝑖𝑛(𝑋𝑖(𝑝))𝑀𝑎𝑥(𝑋𝑖(𝑝)) − 𝑀𝑖𝑛(𝑋𝑖(𝑝)) 
 

                (4) 

 
Smaller-is-better: 

 𝑋∗(𝑝) = 𝑀𝑖𝑛(𝑋𝑖(𝑝))−𝑋𝑖(𝑝)𝑀𝑎𝑥(𝑋𝑖(𝑝)) − 𝑀𝑖𝑛(𝑋𝑖(𝑝)) 
 

           (5) 

 
Normal-is-better: 

 𝑋∗(𝑝) = 1 − |𝑋𝑖(𝑝) − 𝑂𝐵|𝑀𝑎𝑥[𝑀𝑎𝑥(𝑋𝑖(𝑝)) − 𝑂𝐵, 𝑂𝐵 − 𝑀𝑖𝑛(𝑋𝑖(𝑝))]  

(6) 
 

 

Where X
* (p) is the GRG value,  i shows the number of trials, Xi(p) represents the response 

value of the target experiment, Max(Xi(p)) is the maximum value of Xi(p), Min(Xi(p)) 

demonstrates the minimum value of Xi(p) and OB is the target value. In this study, the “smaller-

is-better” is chosen to normalize the cylindricity and circularity, and “larger-is-better” is chosen 

for strength, Young’s modulus, and deformation the normalized values are shown in Table 5. 

 
Table 5  Normalized values 

No. of Trial Young’s modulus 
(MPa) 

Strength 
(MPa) 

Deformation Cylindricity 
(mm) 

Circularity 
(mm) 

1 0.602 0.829 0.024 1.000 1.000 

2 0.032 0.246 0.872 0.042 0.472 

3 0.078 0.195 0.480 0.502 0.834 

4 0.210 0.207 0.134 0.658 0.868 

5 0.673 0.660 1.000 0.213 0.000 

6 0.669 0.940 0.029 0.302 0.383 

7 0.000 0.000 0.113 0.000 0.695 

8 0.891 0.878 0.000 0.956 0.907 

9 1.000 1.000 0.078 0.222 0.655 
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3.2.2. Deviation sequence 

The next step is to calculate the deviation sequence from equation 7.  𝛥𝑜𝑖 (𝑝) = || 𝑋0(𝑝) − 𝑋𝑖(𝑝) ||                                      (7) 

 

Where ∆oi (p) represents the deviation sequence and X0(p) is the reference sequence 

which is equal to one. Values of deviation sequence for each response are given 

in Table 6 [38]. 

 
Table 6  Deviation sequence of GRA 

No. of Trial Young’s modulus 
(MPa) 

Strength 
(MPa) 

Deformation Cylindricity 
(mm) 

Circularity 
(mm) 

1 0.398 0.171 0.976 0.000 0.000 

2 0.968 0.754 0.128 0.958 0.528 

3 0.922 0.805 0.520 0.498 0.166 

4 0.790 0.793 0.866 0.342 0.132 

5 0.327 0.340 0.000 0.787 1.000 

6 0.331 0.060 0.971 0.698 0.617 

7 1.000 1.000 0.887 1.000 0.305 

8 0.109 0.122 1.000 0.044 0.093 

9 0.000 0.000 0.922 0.778 0.345 

 

 

3.2.3. Grey Relational Coefficients 

 

The relationship between ideal and real normal experimental results is expressed by the 

Gray Relational Coefficient (GRC). The Grey relationship coefficient is calculated using 

Equation 8 [38] for each of the normalized values.  

 

 𝑋∗(𝑝) = 1 − 𝛥𝑚𝑖𝑛 + 𝜁. 𝛥𝑚𝑎𝑥𝛥𝑜𝑖(𝑝) + 𝜁. 𝛥𝑚𝑎𝑥 
 

(8) 

 

 

Where ζi (p) is Gray Relation Coefficient, ∆oi (p) represents the deviation sequence, ζ is 

the identification coefficient and has a value between 0 and 1; this coefficient is usually 

considered 0.5. Also, ∆min and ∆max are minimum and maximum values of ∆oi (p), 

respectively. The values are given in Table 7. 
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3.2.4. Gray Relational Grade 

In general, the Gray Relational Grade (GRG) is used to evaluate the multi-response 

properties. On the other hand, GRG is the average sum of the GRC, and Equation 9 is used 

to determine it [38].  𝛾𝑖 = 1𝑛 ∑ 𝜁(𝑝)𝑛
𝑖=1  

 

(9) 

Where n is the number of presses parameters. As a result, a larger GRG implies that the 

process parameter combination is closer to the ideal. After that, all experimental 

experiments were ranked based on GRG values from 1 to 9, the highest GRG value 

representing the   Optimum run, and it is considered 1st rank. So the 8
th

 test, which has the 

highest GRG value, so the 8
th

 experiment has the best characteristics among the other trials. 

 

Table 7  Grey Relation Coefficient 

No. of 
Trial 

Young’s modulus 
(MPa) 

Strength 
(MPa) 

Deformation Cylindricity 
(mm) 

Circularity 
(mm) 

GRG Rank 

1 0.557 0.746 0.339 1,000 1.000 0.728 2 

2 0.341 0.399 0.796 0,343 0.486 0.473 8 

3 0.352 0.383 0.490 0.501 0.750 0.495 7 

4 0.388 0.387 0.366 0.594 0.791 0.505 6 

5 0.604 0.595 1.000 0.389 0.333 0.584 4 

6 0.601 0.894 0.340 0.417 0.488 0.540 5 

7 0.333 0.333 0.360 0.333 0.621 0.396 9 

8 0.821 0.803 0.333 0.920 0.843 0.744 1 

9 1.000 1.000 0.352 0.391 0.592 0.667 3 

 

 

3.3. Analysis of GRG data 

 

3.3.1. Analysis using ANOVA and S/N ratio  

Analysis of variance (ANOVA) and signal-to-noise ratio (S/N) were used to analyze the 

data obtained from GRG using MINITAB
®

19.0. To examine the effect of each parameter on 

GRG, the Taguchi technique was utilized. Due to the higher the GRG value, the desired 

responses improve, so “larger-is-better” was used to maximize the GRG to optimize the 

process parameters. The S/N ratios and response table of means for GRG are shown in 

Table 8 and 9, respectively. These tables show the significance of parameters by utilizing 

rank, and delta represents the difference between the highest and lowest average.  

According to the results, it can be said that the print speed and printing temperature have the 

most significant impact compared to the chamber temperature and layer thickness on GRG. 
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Table 8  Response Table for signal to noise ratios of GRG 

Level Chamber temperature 
(°C) 

Printing temperature 
(°C) 

Layer thickness 
(mm) 

print speed 
(mm/min) 

1 -5.123 -5.579 -3.559 -3.649 

2 -5.319 -4.581 -5.318 -6.634 

3 -4.711 -4.993 -6.275 -4.870 

Delta 0.609 0.998 2.716 2.985 

Rank 4 3 2 1 

 

 

 

Table 9  Response Table for Means of GRG 

Level Chamber temperature 
(°C) 

Printing temperature 
(°C) 

Layer thickness 
(mm) 

print speed 
(mm/min) 

1 0.5653 0.5430 0.6707 0.6597 

2 0.5430 0.6003 0.5483 0.4697 

3 0.6023 0.5673 0.4917 0.5813 

Delta 0.0593 0.0377 0.2934 0.1900 

Rank 3 4 2 1 

 

 

The S/N diagram was used to analyze the data and determine optimal parameters in 

the form of average S/N ratios for responses. As minimization of the output, parameters 

are required for geometrical accuracy (cylindricity and circularity), the “smaller-is-

better,” and to maximization of the output parameters are required for mechanical 

properties (Young’s modulus, deformation, and strength), the “larger is better” was 

selected to maximize mathematical expression for the S/N ratio. The best condition is 

shown by the highest point in the S/N ratio graphic. A B, C, and D represent the 

chamber temperature, 3D Printing temperature, layer thickness, and print speed in 

Figures 9 and 10, respectively. The various levels for each parameter are represented on 

the horizontal axis, and the vertical axis is the mean S/N ratio. According to the Main 

Effects Plot for S/N ratio (Fig. 7) and Main Effects Plot for mean diagrams (Fig. 8), it 

can be seen that chamber temperature is 60 °C, printing temperature 270 °C, layer 

thickness 0.1 mm, and print speed 600 mm/min is the optimum combination of 

processes parameters for achieving the maximum GRG. 
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Fig. 7 Main Effects Plot for S/N ratios GRG 

 

 
 

Fig. 8 Main Effects Plot for means GRG 

 

 

The impact of each process parameter on the response variables was determined using 

the ANOVA approach. The results of ANOVA are shown in Table 10. The adjusted sum of 

squares (Adj SS) was calculated using Equation 10.  

 𝑠𝑇 = ∑(𝜂𝑖 − 𝜂𝑗)2𝑛
𝑖=1  

 

(10) 

Where ηi  represent  the  mean  S/N  ratio,  ηj is  the  overall  mean  S/N  ratio,  and  n  
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shows the total number of experiments. DF stands for the degree of freedom, and the 

adjusted mean sum of squares is Adj MS, while the variance of the group means and the 

probability value is F-Value and P-Value, respectively. By investigating the F-value 

mentioned in Table 10 and considering that the higher the value, the greater the effect of the 

related parameter, it was determined that print speed, layer thickness, Chamber temperature, 

and Printing temperature have the most significant effect on the amount of GRG 

respectively. 
 

Table 10 Response of Variable Parameters of GRG 

Source DF Adj SS Adj MS F-Value P-Value 

A 2 0.005388 0.002694 - - 

B 2 0.004968 0.002484 0.92 0.520 

C 2 0.050218 0.025109 9.32 0.097 

D 2 0.054706 0.02735 10.15 0.09 

Pulled Error 2 0.005388 0.002694 - 0.480 

Total 8 0.147663 - - - 

 

 

3.3.2. Regression modeling of GRG  

Response surface regression examines the correlation between different variables, which 

determines the relationship between GRG and process parameters. Also, the best responses 

can be achieved by finding the best correlation between factors and the best levels of 

parameters linear-interaction model of the response surface method is used. The regression 

model is shown in Equation 11.   

 𝐺𝑅𝐺 = 3.38 + 0.1082𝐴 − 0.01211 𝐵 − 28.76𝐶 − 0.000098𝐷− 0.00033𝐴 ∗ 𝐵 − 0.071𝐴 ∗ 𝐶 + 0.1141𝐵 ∗ 𝐶 

(11) 

 

 

The chamber temperature, printing temperature, layer thickness, and print speed are 

represented by A, B, C, and D, respectively. The correlation coefficient, often known as R-

squared, is a statistical tool that represents the proportion of variation in a dependent 

variable and ranges from 0 to 100 percent. MINITAB 19.0
®
 software calculates the R-

squared value, and the value of this coefficient is 99.20 percent, which indicates a high 

correlation. 

Fig. 9 and 10 corresponds to the surface plots and contour plots, respectively, and they 

show the interaction effects between two different process parameters on the GRG. As can 

be seen from these graphs, the highest value of GRG is obtained at the lowest values of 

layer thickness and print speed and the highest values of chamber temperature. Also, as it is 

observed in Fig. 11, by Comparing the GRG values obtained by the experiments and the 

GRGs calculated by the regression equation, it is determined that the maximum error rate is 

3%, indicating that the model is validated. 
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Fig. 9  GRG Surface plots. (a) chamber temperature and printing temperature, (b) chamber temperature 

and layer thickness, (c) chamber temperature and print speed, (d) printing temperature and layer thickness,  

(e) printing temperature and print speed, (f) layer thickness and print speed, on GRG 
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Fig. 10  GRG contour plots. The effect of; (a) chamber temperature and printing temperature,  

(b) chamber temperature and layer thickness, (c) chamber temperature and print speed, (d) printing 

temperature and layer thickness,  (e) printing temperature and print speed, (f) layer thickness and print speed, 

on GRG 



October 22, 2021  

 

Fig. 11 Comparison of GRG values obtained from regression model and obtained from 

experimental 

 
 

3.1. Confirmation test 

In the last step, a confirmation experiment was performed using optimum levels of process 

parameters (Chamber temperature 60 °C, Printing temperature 270 °C, layer thickness 0.1 

mm, and print speed 600 mm/mi) to verify this parameter obtained from the GRA and also 

to evaluate the improvement in responses. To ensure repeatability of the results, five hollow 

cylindrical parts with optimal parameters were fabricated by the FFF 3D printer. And the 

predicted Grey relational grade value or Ypredicted is compared to the mean value of the grey 

relational grade obtained from the confirmation test. Equation 12 is used to calculate the 

predicted GRG value for optimal parameters.  𝑌𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 = 𝑦𝑚 + ∑(𝑦𝑖 − 𝑦𝑚)𝑛
𝑖=1  

 

(12) 

 

 
Table 11  Measured values of responses 

Young’s modulus 
(MPa) 

Strength 
(MPa) 

Deformation Cylindricity 
(mm) 

Circularity 
(mm) 

1890.22 ±27.49 73.37 ±0.19 0.0560 ±0.00031 0.1528 ± 0.00781 0.10106 ± 0.0111 
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𝐸𝑟𝑟𝑜𝑟 (%) = [𝐺𝑅𝐺𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝐺𝑅𝐺𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙𝐺𝑅𝐺𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 ] ∗ 100 

 

      

    (13) 

 

 

 

Table 12  Measured values of responses 

 Initial setting Predicted Experimental 

Chamber temperature(°C) 60  60 

Printing temperature(°C) 270  270 

layer thickness(mm) 0.1  0.1 

print speed(mm/min) 3000  600 

GRG 0.744 0.823 0.868 

 

 

 𝐼𝑚𝑝𝑟𝑜𝑣𝑚𝑒𝑛𝑡 (%) = [𝐺𝑅𝐺𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 − 𝐺𝑅𝐺𝐼𝑛𝑡𝑖𝑡𝑖𝑎𝑙] ∗ 100                 (14) 

 

 

     Where ym represents the total mean of the GRG, yi refers to the average GRG at the 

optimal level, and n is the number of chosen process parameters. Then a compression test was 

applied to the parts to evaluate the strength, Young’s modulus, and elongation of PA6 parts. 

Also, for measuring geometrical error values such as cylindricity and circularity, 3D printed 

parts were scanned using Solutionix D500, and the measured value is shown in Table 11. Also, 

the stress-strain curve of optimum parameters and the 8
th

 trial, which has the most GRG, are 

compared in Fig. 12 (e). As it turns out, the mechanical properties such as young’s modulus and 

strength of the printed part have been improved with optimal conditions. Then, using the values 

of the obtained responses, the GRG value for the 3D printed piece with optimal parameters was 

measured using Equations 4, 5,7,8, and 9. After calculating the experimental GRG, the next step 

is to calculate the percentage error between the predicted GRG and the experimental GRG. Then 

the improvement in GRG is evaluated. All the measured values of GRG are shown in Table 12, 

and by comparing the initial GRG and the GRG obtained from the experiment and using 

Equation 13, it was found that the optimum GRG value has improved by 14%. So the results 

show that the values of the optimal parameters obtained from the GRA method have 

improved all the intended responses. Also, by comparing the predicted GRG and the GRG of 

the experiment (Equation 14), it was found that the error rate is equal to 5%. Therefore, 

considering this amount of error, it can be said that there is a good correlation between these 

values. 
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Fig. 12  Scanning Electron Microscopy (SEM) images of the samples manufactured by FFF in ((a), (b)) 

8
th

, ((c), (d)) and optimum condition, respectively. (e) Stress strain curve of initial GRG (8
th

) and the 

GRG obtained from the experiment 
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Fig. 12 ((a), (b), (c), (d)) shows the SEM observation of the samples manufactured in 8
th

 and 

optimum condition. More voids and delamination can be seen in the 8
th

 (initial condition) 

sample compared to the optimum condition 3D printed part. Given that the difference in printing 

speed for fabrication of these parts, the difference in print quality can be attributed to this 

parameter. One of the critical parameters affected by changing the printing speed is thermal 

gradient [39]. So that, the effect of thermal gradient on delamination between the layers has been 

emphasized. By increasing the nozzle speed cooling rate will be increased [40]. So optimum part 

which printed at a lower speed will be under a lower thermal gradient than the 8
th

. So, more 

delamination in 8
th

 is justified. Furthermore, the weld interface between filaments plays a vital 

role in final mechanical properties [41]. As shown in the Fig. 12 weld interface in this figure, 

considering the presence of some delamination, it has not been done well. By reducing the weld 

interface between the two filaments, fewer mechanical properties were expected. The 

compression test results show a decrease in the compressive strength of 8
th

 printed part 

compared to the optimum part. Furthermore, the geometric accuracy is less due to more 

delamination in the 8
th

 printed part compared to the condition 3D printed part [42]. 

The results of this research enable the designer to produce high-quality parts. In the 

following, the results of this research and the optimal selection parameters, and its 

comparison with other articles expressed in the literature section are discussed. It was found 

that at 270°, the amount of GRG was optimum. In general, the optimum 3D printing 

temperature depends on the type of material used, etc., but at low temperatures, the printed 

layer is almost solid. If the new layer is deposited, the decreased binding force between the 

layers will be reduced. The adhesion will be very poor, so it causes lower mechanical 

properties and dimensional accuracy. On the other hand, if the temperature is high, the 

fluidity is too high, and due to the gravity force, the stability of the geometry decreases. It 

was found that the 60° chamber temperature, which was the highest value considered in this 

study, is the optimal GRG level. This is because the high chamber temperature is not too 

high to affect geometric stability. In the mentioned research in the literature, it was 

observed that the highest temperature followed the best dimensional accuracy in PLA parts 

with increasing temperature of 3D printing.  Another study on PEEK components had 

similar results to the current work.  This can be due to differences in materials used and 

different temperature ranges [23, 24]. Also, in a study, the effect of chamber temperature on 

the strength of PEAK components was investigated. Similar results were observed [27]. 

According to the optimization results, it was found that the amount of GRG at low speeds is 

higher. Because at high speeds, the printed layers do not have enough time to solidify. The 

following layers are deposited on the previous layers, and the piece becomes deformed with 

a short time interval. Other researches on PEEK and PC/ABS blend parts indicated that 

higher printing speed values enhanced and optimized strain, strength, and stiffness. The 

difference in results might be due to limitations in the cylinder design, the type of material 

utilized, and the responses selected [24, 27]. The effect of layer thickness as one of the most 

critical parameters in improving parts’ mechanical properties and accuracy was 

investigated. It was found that the amount of GRG is higher at lower layer thickness. A 

thicker layer thickness results in higher temperature gradients between the layers, which 

leads to more deformation. Also, as the number of deposited layers increases, more 

interfaces appear, and adhesion reduces. However, as indicated in the literature, different 

results and similar results were observed in articles with different materials. And the reason 

can be the difference in the desired responses and the difference in the selected material. 

Another reason could be other selected parameters because all parameters affect each other 
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[23, 25, 27, 28]. 

 

4. Conclusions 

The present paper uses multi-response optimization using the GRA method to analysis 

the effect of four parameters including chamber temperature (30, 45, and 60 ° C), printing 

temperature (260, 270 and 280 °C), layer thickness (0.1, 0.2, and 0.3 mm), and print speed 

(600, 1800 and 3000 mm/min) to achieve the best mechanical properties and geometrical 

accuracy in the FFF process on cylindrical parts made of PA6. For this purpose, the Taguchi 

method was first used to design the experiments, and then the pieces were produced by a 

German RepRap X500
®

3D printer. Then, INSTRON 5881 machine was applied to measure 

mechanical properties such as strength, Young’s modulus, and deformation. Finally, the 

desired responses were obtained through stress-strain curve diagrams. The Solutionix D500 

laser scanner was used to calculate the geometrical accuracy, and the cylindricity and 

circularity values were calculated by Geomagic
®

 Control X software. In the next step to 

finding the optimum values of the processing parameters to improve all the responses 

simultaneously, the GRA method was used. It was determined that the highest GRG belongs 

to the 8
th

 experiment. Then, to find the optimal parameters, GRG data were analyzed by 

ANOVA and S/N analysis, and it was determined that the optimal conditions for improving 

GRG would be obtained at Chamber temperature of 60 °C, Printing temperature of 270 °C, 

the layer thickness of 0.1 mm and print speed of 600 mm/min. Finally, a verification test 

was performed according to the optimal parameters, and new components were examined. 

Finally, by comparing the initial GRG and the GRG obtained from the experiments, it was 

observed that the GRG value had improved 14%. Also, by comparing the predicted GRG 

and the GRG of the experiment, it was found that the error rate is equal to 5%. Therefore, 

considering this amount of error, it is proved that there is a good correlation between these 

values. 

Finally, the results were discussed, and it is clear that: 

1) The optimum GRG level was discovered at a chamber temperature of 60°, and This is 

may due to the fact that the temperature in the chamber is not too high to impact geometric 

stability. 

2) The amount of GRG will be optimum at 270° printing temperature. However, the 

optimum 3D printing temperature varies depending on the type of material used, etc. At 

low temperatures, the printed layer is almost solid, and if a new layer is deposited, the 

binding force between the layers will be reduced, and adhesion will be poor, resulting 

in lower mechanical properties and dimensional accuracy. On the other side, if the 

temperature is too high, the fluidity is too great, and the geometry’s stability is reduced 

owing to gravity. 

3) The quantity of GRG was determined to be greater at low speeds, according to the 

optimization results. This can be explained by the fact that the printed layers do not have 

enough time to solidify at high speeds, the following layers are deposited on top of the 

previous layers, causing the piece to deform. 
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4) The influence of layer thickness was examined, and it was discovered that the amount of 

GRG is more significant at lower layer thickness. As the number of deposited layers increases, 

more surfaces appear, and adhesion will be decrease, a wider layer thickness resulting in 

higher temperature gradients between the layers, which leads to increased deformation. 
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