To reveal the material removal mechanism of zirconia ceramics, an improved prediction models of the critical grinding force and maximum subsurface damage depth models are developed based on the dynamic fracture toughness. The effects of three different grain sizes on the material removal mechanism during brittle- ductile transition process of zirconia ceramics is analyzed through grinding experiments. And the influence of grain size on grinding force, workpiece surface roughness, surface fragmentation rate and subsurface damage depth in grinding are discussed. The results of the experiment results indicated that the value of dynamic fracture toughness tends to decrease with an increase in equivalent grinding thickness, and the ductile removal range of zirconia ceramics expands for the reason that the critical grinding force considering dynamic fracture toughness is higher than the static grinding force considering static fracture toughness, and the maximum subsurface damage depth is closer to actual maximum subsurface damage depth. Besides the smaller the grain size of zirconia ceramics, the higher the surface quality of grinding.