For unconventional reservoirs hydraulic fracturing design, a greater fracture length is a prime factor to optimize. However, core observation results from Hydraulic Fracturing Test Site (HFTS) show the propped fractures are far less or shorter than expected which suggests the roughness and tortuous of hydraulic fractures are crucial to sand transport. In this study a transport model of sands is first built based on experimental measurements on the height and transport velocity of sand bank in fractures with predetermined width and roughness. The fracture roughness is quantified by using surface height integral. Then, three-dimensional simulations are conducted with this modified model to further investigate the impact of fractures tortuous on sand transport, from which an analytical model is established to estimate the propped length of hydraulic fractures at a certain pumping condition. Experiments results show that height of sand bank in roughness fracture is 20-50% higher than that in smooth. The height of sand bank decreases with the reduction of slurry velocity and increases with the sand diameters increasing. Sand sizes do little effect on the transport velocity of sand bank but the increase in slurry velocity and sand volume fraction can dramatically enhance the migration velocity of sand bank. The appearance of tortuous decreases the horizontal velocity of suspended particles and results in a higher sand bank compared with that in straight fractures. When the sand bank gets equilibrium at the tortuous position, it is easy to produce vortices. So, there is a significant height of sand bank change at the tortuous position. Moreover, sand plugging can occur at the entrance of the fractures, making it difficult for the sand to transport deep in fractures. This study explains why the propped length of fractures in HFTS is short and provides an analytical model that can be easily embedded in the fracturing simulation to fast calculate dimensions of the propped fractures network to predict length and height of propped fractures during fracturing.