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 24 

Abstract 25 

Dynamic shape-morphing soft materials systems are ubiquitous in living organisms; they 26 

are also of rapidly increasing relevance to emerging technologies in soft machines1–4, 27 

flexible electronics5–7, and smart medicines8,9. Soft matter equipped with responsive 28 

components can switch between designed shapes or structures, but cannot support the 29 

types of dynamic morphing capabilities needed to reproduce natural, continuous 30 

processes of interest for many applications10–27. Challenges lie in the development of 31 

schemes to reprogram target shapes post fabrication, especially when complexities 32 

associated with the operating physics and disturbances from the environment can prohibit 33 

mailto:helingwang1@gmail.com
mailto:y-huang@northwestern.edu
mailto:y-huang@northwestern.edu
mailto:jrogers@northwestern.edu
mailto:xiaoyue.ni@duke.edu


the use of deterministic theoretical models to guide inverse design and control 34 

strategies3,28–32. Here, we present a mechanical metasurface constructed from a matrix 35 

of filamentary metal traces, driven by reprogrammable, distributed Lorentz forces that 36 

follow from passage of electrical currents in the presence of a static magnetic field. The 37 

resulting system demonstrates complex, dynamic morphing capabilities with response 38 

times within 0.1 s. Implementing an in-situ stereo-imaging feedback strategy with a 39 

digitally controlled actuation scheme guided by an optimization algorithm, yields surfaces 40 

that can self-evolve into a wide range of 3-dimensional (3D) target shapes with high 41 

precision, including an ability to morph against extrinsic or intrinsic perturbations. These 42 

concepts support a data-driven approach to the design of dynamic, soft matter, with many 43 

unique characteristics.  44 

45 
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Results 46 

Soft matter that can dynamically reconfigure their shapes upon interactions with 47 

environment or perceptions of information is thriving33. Pioneering studies rely on an 48 

exploitation of responsive materials or material configurations to create active structures 49 

that shift their shapes in response to external stimuli34–38. Smart materials (e.g., liquid 50 

crystal elastomers11,13–17,39,40, shape memory polymers41, hydrogels10,12,24, and others25) 51 

and multimaterial structures11,26 enable large structural deformation but face challenges 52 

in implementing fast control to refined structures. The design of shape-morphing process 53 

usually requires prerequisite modeling effort to be programmed into the fabrication 54 

process, and is therefore hard to reprogram on-the-fly (e.g., 3D printing11,27, 55 

magnetization19,42, laser or wafer-jet cutting29,30,43, mechanical buckling28). The desire to 56 

swiftly shift shapes among large number of configurations post fabrication invites the 57 

investigations on programmable stimulus (e.g., temperature13, 44, magnetic field20, electric 58 

current22,23). However, limitations remain in the accessible design space and the real-time 59 

inverse design because of the challenges in establishing analytical solutions or barriers 60 

in high computational costs due to the complexity arising from nonlinearity or high 61 

dimensionality. Also, existing computer-aided methods usually leave the inclusion of 62 

imperfections, damages, or the coupling between the system with the unforeseen 63 

environment. Incorporating instant feedback is necessary for the morphing process to see 64 

the deployment scheme to precisely account for specific, multifunctional, or time-varying 65 

requirements45. The time constraints and the complexity in actuation, feedback, or 66 

modeling all contribute to a prolonged programming cycle that limits the possible shapes 67 

or shape responses to remain discrete and quasi-static. 68 

Here, we demonstrate a dynamically reprogrammable mechanical metasurface with 69 

a closed-loop 3-dimensional (3D) shape control, based on a digital, fast, and precise 70 

Lorentz force actuation scheme. The metasurface takes the form of interconnected, 71 
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serpentine-shaped beams that consist of a thin conductive layer of gold (Au, thickness 72 ℎAu = 300 nm) encapsulated by polyimide (PI, thickness ℎPI = 7.5 μm, width 𝑏PI = 160 73 

μm) (see Methods section ‘Sample fabrication’, Supplementary Note S1, and 74 

Supplementary Fig. 1 for details). The intersections of the beams form an N×M mesh as 75 

shown in Fig. 1a (N = M = 4, sample size L = W = 18.0 mm). A tailored serpentine design 76 

ensures sufficiently large, fast, and reversible out-of-plane deformation ( 𝑢/𝐿~30% ; 77 

response time <0.07 s) of the serpentine beam, driven by a modest electric current (I < 78 

27.5 mA) in a magnetic field B (magnitude B = 0.224 ± 0.016 T) (see Supplementary 79 

Notes S2–5 and Supplementary Figs. 2–7 for details). Fig. 1b shows that independent 80 

voltages (V={Vj}) of size 2(N+M) applied to the peripheral ports, controls the distribution 81 

of current density (J) in the conductive network (see Methods section ‘Digital control’ and 82 

Supplementary Fig. 8 for details) and therefore the Lorentz force  𝑭EM =  𝑱 × 𝑩 . The 83 

spatially distributed actuation 𝑭EM(𝑱)  controls the local, out-of-plane (Z-direction) 84 

deformations (u = {ui}, where ui is the displacement of the ith node) of the sample in a 85 

magnetic field B aligned with its diagonal, enabling a large set of accessible 3D shapes 86 

from the same precursor structure. The unusual structure and material design further 87 

enables the system to adopt an approximate, linearized model, such that the nodal 88 

displacement response to the input voltages follows, 89 

𝑢𝑖 = ∑ 𝐶𝑖𝑗𝑉𝑗 ,2(𝑁+𝑀)
𝑗=1  for 𝑖 = 1, … 𝑁 × 𝑀, (1) 90 

where the coupling matrix 𝑪 = {𝐶𝑖𝑗} fully characterizes the electro-magneto-mechanical 91 

system. Fig. 1c shows the finite element analysis (FEA) and the experimental 92 

characterization of the coupling coefficients Cij for representative nodes in the actuation 93 

range of 0–4 V for the 4×4 sample in the magnetic setup. Linear regression on the FEA 94 

results predicts 𝑪. The analytical model and the FEA studies provide a scaling law of the 95 

coefficients as 𝐶𝑖𝑗  ~ (𝐵𝐿𝐻2𝑏AuℎAu)/(𝐸PI𝑏PIℎPI3 𝜌Au)  (H–serpentine beam width, 𝐸PI –PI 96 



5 

 

Young’s modulus, 𝜌Au–Au electrical conductivity; see Supplementary Notes S3.2, 3.3, 97 

Supplementary Figs. 9, 10 for details). Following this linear approximation, a model-driven 98 

approach attempts to zero the errors, 𝑒𝑖(𝑽) = (𝑢𝑖(𝑽) − 𝑢𝑖∗)/𝐿 (difference between the 99 

output deformation, 𝑢𝑖(𝑽), from the target, 𝑢𝑖∗, normalized by system size 𝐿), to optimize 100 

the voltages for the precursor surfaces to deform to target implicit shapes. Specifically, a 101 

gradient-descent based algorithm iterates over V to minimize a loss function, 𝑓(𝑽) =102 ∑ 𝑒𝑖2(𝑽)𝑖  with a maximum-current constraint (see Methods section ‘Optimization 103 

algorithm’ in Methods and Supplementary Note S6 for details). The linearized model-104 

driven approach yields a prediction for V within ~10 ms. The same approach driven by 105 

numerical methods (e.g., FEA) without linearization is not possible due to unaffordable 106 

computational costs (~10 days using a workstation with 40-core, 2.4 GHz CPU, and 64 107 

GB memory). Fig. 1d shows FEA and experimental results of an inverse-designed, 108 

continuous shape morphing of a 4×4 and an 8×8 sample (L = W = 22.4 mm). The process 109 

consists of four phases: growing up, moving around, splitting and oscillating, with a 110 

prescribed control of the instantaneous velocity and acceleration of the dynamics 111 

(Supplementary Video 1, Supplementary Note S7 and Supplementary Figs. 11–14). 112 

In addition to the abstract, implicit shapes, the reprogrammable metasurface 113 

demonstrates an ability to reproduce dynamic processes in nature that involve a temporal 114 

series of complex shapes, provided with the inversely designed current distributions. Fig. 115 

2a shows an array of 8 serpentine beams (L = 10.4 mm, W = 20.6 mm, Supplementary 116 

Note S8 and Supplementary Fig. 15) morphing into the 2-dimensional profile of a droplet 117 

dripping from a nozzle (Supplementary Video 2 and Supplementary Fig. 16). Shapes I–118 

III describe the growing of a pendant drop to its critical volume. Shapes IV–V capture the 119 

following pinch-off process. Fig. 2b and c present the 4×4 and 8×8 samples simulating 120 

the 3D surface of a droplet hitting a rigid surface in five stages: falling on the surface, 121 

spreading out, bouncing back, vibrating and stabilizing (Supplementary Video 3 and 122 
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Supplementary Figs. 17–20). Numerical analysis further illustrates that the mesh structure 123 

can morph into an extensive set of target shapes (see Supplementary Notes S7, S9, S10, 124 

and Supplementary Figs. 21–28).  125 

The linearized model-driven approach accomplishes the inverse design when a 126 

modest error from the nonlinearity is tolerable. Extending the model-driven approach to 127 

include nonlinearity is challenging due to large computational expenses (Supplementary 128 

Note S11) or difficulties in establishing analytical solutions. The open-loop model-based 129 

inverse design has constraints in the design space and cannot account for non-ideal 130 

factors such as environmental changes or defects in the sample. The existing limitations 131 

motivate the development of sensing feedback for a closed-loop self-evolving approach. 132 

Fig. 3a illustrates an experiment-driven process in comparison with the linearized 133 

model-driven process. While the model-driven route relies on the presumption of a linear 134 

and stationary model, the experimental method takes the in-situ measurement of the 135 

system output and feed the difference between the current states and the target states 136 

for actuation regulation. In this work, a custom-built stereo-imaging setup using two 137 

webcams (ELP, MI5100) enables a 3D reconstruction of the nodal displacement at a rate 138 

of 30 frames per second (fps), with a displacement resolution of ~0.006 mm and a 139 

measurement uncertainty of ±0.055 mm (see details of 3D imaging in Methods, 140 

Supplementary Note S12 and Supplementary Fig. 29). After each update of the actuation 141 

(V), the real-time imaging provides an in-situ nodal displacement error analysis. An 142 

optimization algorithm, same as the one used in the model-driven approach but wrapping 143 

the 3D imaging process, performs the experimental iterations over V to minimize 𝑓(𝑽). 144 

For a 4×4 sample morphing into a representative target shape (𝑓(𝑽 = 𝟎) = 0.05–0.35), 145 

the optimization process takes 5–15 iterations (Supplementary Figs. 30). Each feedback-146 

control cycle in the current setup takes ~0.25 s due mainly to the time overhead from 147 

imaging processing algorithm but is ultimately limited to the mechanical response time 148 
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(<0.1 s) (Supplementary Note S6 and Supplementary Table 1). A hybrid method, taking 149 

a model-driven prediction as the initial input, reduces the number of iterations to ~3 at the 150 

cost of a preceding modeling effort. The dominant sources of errors are discreteness in 151 

input voltages and uncertainties associated with 3D imaging (Supplementary Note S12 152 

and Supplementary Fig. 31). The experiment-driven process opens opportunities for the 153 

metasurface to self-evolve to target shapes without any pre-knowledge of the system 154 

(Supplementary Video 4). Fig. 3b provides a quantitative comparison between the model-155 

driven and experimental-driven morphing results from the same 4×4 precursor, targeting 156 

representative implicit shapes (Supplementary Note S7, Supplementary Figs. 32–35, and 157 

Supplementary Video 5). The resulting errors from the model-driven approach follows a 158 

wide (over ±5%), mostly skewed distribution (considering 441 points from the interpolated 159 

3D surface; Supplementary Note S12). The experiment-driven approach, accounting for 160 

the subtle nonlinear deviation, yields a relatively narrow (±2%), symmetric error 161 

distribution.  162 

The experiment-driven process works as a physical simulation to accommodate 163 

pronounced nonlinearity without a significant increase in the computational cost. Fig. 4a 164 

introduces a 2×2 sample (L = W = 25.0 mm) consisting of serpentine beams with the 165 

relative arc length reduced morphing into the same target shape in Fig. 3b. Centered in 166 

the same magnetic setup, the sample exhibits an amplified non-linear mechanical 167 

behavior in response to input voltages (Supplementary Note S13 and Supplementary Fig. 168 

36). The model-driven approach based on the linear-system assumption results in an 169 

absolute maximum error of ~8%. The experimental-driven approach achieves more 170 

accurate morphing result in ~20 iterations with absolute errors below 1%. 171 

Guided by the experiment-driven process, the metasurface can also self-adjust to 172 

morph against unknown perturbations. Fig. 4b–d shows three representative cases in 173 

which a 4×4 sample morphs with perturbed magnetic field, external mechanical load, and 174 
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intrinsic damage, respectively. In all cases, the model-driven approach following the 175 

original inverse design results in absolute maximum errors of ~8–10%. In comparison, 176 

the experiment-driven approach adapts the shape to reach the target with absolute errors 177 

below ~3% that is comparable with that of an intact sample (~2%) (Supplementary Video 178 

6). The significantly boosted accuracy level demonstrates a ‘self-sustained’ morphing 179 

ability enabled by the experiment-driven process.  180 

The adaptive, self-evolving metasurface platform delivers a semi-real-time morphing 181 

scheme to learn the continuously evolving surface of a real object in-time. In this 182 

experiment, a duplicated stereo-imaging setup measures the displacement of a 4×4 array 183 

of markers (with inter-spacing a0 = 15 mm) on the palm (Supplementary Fig. 37a). The 184 

optimization acts directly to minimize the displacement difference between the 16 markers 185 

and their corresponding nodes of a 4×4 sample. Given continuity, the gradient-descent 186 

process takes the last morphing result as the initial state for the next morphing task. This 187 

differential method (with the target descent 𝛥𝛥𝑓𝑓(𝑽𝑽) ~0.08) requires only ≤3 iterations (~20 188 

s) to reach the optimum. Fig. 5a shows representative frames from a video recording of 189 

hand making eight gestures with different fingers moving (see Supplementary Fig. 37b, c 190 

and Supplementary Video 7 for complete results of all gestures). All morphing results 191 

agree with the target with absolute errors below 2%. 192 

In addition to self-evolving to optimize shapes, the metasurface can self-evolve to 193 

optimize functions. Setting multiple target functions drives the optimization towards 194 

emergent multifunctionality, with an ability to decouple naturally coupled functions. Fig. 195 

5c illustrates a scheme where a 3×3 sample (L = W = 14.8 mm) with 9 reflective gold 196 

patches at the nodes, attempts to perform an optical and a structural function: I) reflect 197 

and overlap two laser beams (red, green) with different incident angles ([θXr θZr], [θXg θZg]) 198 

on a receiving screen (Supplementary Fig. 38a) and II) achieve the target displacement 199 

of its central node. The optimization takes a hybrid strategy combining the model-driven 200 
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and experiment-driven processes (Supplementary Note S14). While the voltages control 201 

the reflected beam paths, a top camera provides an imaging feedback of the distances 202 

between the beam spots on the screen. The model-driven process predicts the difference 203 

between the central nodal displacement and the target. The total loss takes a linear 204 

combination of the two errors (Supplementary Note S14, Supplementary Fig. 38b). Fig. 205 

5d shows the self-evolving results of three optical configurations with distinctive incident 206 

beam angles. Fig. 5e shows that the metasurface can morph to overlap the laser spots 207 

on the receiving screen with a range of possible shapes (Supplementary Fig. 39a). By 208 

enforcing both functions, the sample overlaps the spots and settles its central node to a 209 

target displacement. A post analysis via ex-situ 3D imaging validates that the final 210 

experimental central nodal displacement reaches the target within an error of ±2% 211 

(Supplementary Fig. 39b and Supplementary Video 8).   212 

 The work presents a reprogrammable metasurface that can precisely and rapidly 213 

morph into a wide range of target shapes and dynamic shape processes. The highly 214 

integrable digital-physical interfaces incorporating actuation, sensing, and feedback allow 215 

for an in-loop optimization process to guide the metasurface to self-evolve to target 216 

shapes, without prior knowledge of physics, or with a model-driven prediction to expedite 217 

the evolving process. Such scheme enables an autonomous materials platform to 218 

promptly change structures, actively explore the design space, and responsively 219 

reconfigure functionalities towards unprecedented performance and efficiency. The 220 

experiment-driven shape shifting capability addresses existing theoretical and 221 

computational challenges in complex, nonlinear systems, bringing new opportunities to 222 

physical simulations for a real-time, data-driven inverse design process. Compared to 223 

existing shape morphing or structural reconfiguration methods that are often slow in 224 

programming cycles18, exclusive to responsive polymeric materials or complex 225 

structures11,13, or require customized fabrication procedures that are difficult to scale19,21, 226 
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our Lorentz-force strategy enables extremely fast, precise, and digitally reprogrammable 227 

soft matter that is compatible with the typical materials, structures, and thin-film fabrication 228 

techniques used in the existing flexible electronics framework. The usage of conventional 229 

conductive materials and the potential scalability of the platform promise a wide, versatile 230 

application scenario in wearable techniques, soft robotics, and advanced materials. Many 231 

possibilities exist to improve this system. For example, incorporating a mechanically-232 

locking mechanism (e.g., applying phase transition materials21,46 or jamming 233 

configuration47 could hold the morphed shapes without actuation. The current modular 234 

platform demonstration invites future work to embed sensing, computing, and 235 

communicating functions directly into the materials for higher levels of integration. 236 

Employing advanced data-driven techniques in the loop, (e.g., Bayesian optimization48, 237 

Deep Learning49, Reinforcement Learning50) will bring the self-evolving morphing ability 238 

of artificial matter to a level closer to or even beyond their natural counterpart, paving a 239 

way for new classes of intelligent materials that adopt spatiotemporally controlled shapes 240 

and structures for advanced on-demand functionalities. 241 

 242 
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 348 

Methods 349 

Sample fabrication. The fabrication process (Supplementary Fig. 1) began with spin 350 

coating a thin layer of PI (HD Microsystems PI2545, ~3.75 μm in thickness) on a silicon 351 

wafer with poly(methyl methacrylate) (PMMA; Microresist 495 A5, ~80 nm in thickness) 352 

as the sacrificial layer. Subsequent lift-off processes patterned the metal electrodes and 353 

serpentine connections (Ti/Au, 10 nm/300 nm in thickness). Spin coating another layer of 354 

PI (HD Microsystems PI2545, ~3.75 μm in thickness) covered the metal pattern. 355 

Photolithography and oxygen plasma etching of PI defined the outline of sample. 356 

Undercutting the bottom layer of PMMA allowed transfer of the sample to a water-soluble 357 

polyvinyl alcohol (PVA) tape (3M) from the silicon wafer. 358 

 359 

Digital control. The digital control system used (i) pulse-width modulation (PWM) drivers 360 

(PCA9685, 16-channel, 12-bit), (ii) voltage amplifier circuits (MOSFET, IRF510N, Infineon 361 

Tech), and (iii) a single-board computer (Raspberry Pi 4) remotely connected to an 362 

external computer (Intel NUC, Intel Core i7-8559U CPU@2.70GHz). The external 363 

computer ran the optimization algorithm and sent the updated values of voltage profile 364 

wirelessly to the single-board computer through Python Socket network programming. 365 
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The PWM driver received the actuation signals from the single-board computer. Each 366 

PWM channel, operated at a frequency of 1,000 Hz, generated an independent voltage 367 

in the range of 0-6 V with 12-bit (~0.0015 V) resolution. The single stage MOSFET 368 

provided a reversely linear amplification to the PWM output with a gate voltage, Vgs(th) = 4 369 

V, and an external power supply, Vex = 6 V (Supplementary Fig. 8). 370 

 371 

Optimization algorithm. Sequential Least Squares Programming (SLSQP) with 3-point 372 

method (SciPy-Python optimize.minimize function) computed the Jacobian matrix in the 373 

loop to minimize the loss function 𝑓𝑓(𝑽𝑽). The model-driven approach adopted the same 374 

optimization algorithm, with 𝑓𝑓(𝑽𝑽)  evaluated by Eq. (1) and a maximum of ~10,000 375 

iterations. For the experiment-driven approach, a maximum final loss value of 376 

0.005𝑓𝑓(𝑽𝑽 = 𝟎𝟎) and a maximum of 15 iterations set the stopping criteria for the 377 

optimization process. Each iteration required 2(N+M+1) function evaluations for an N×M 378 

sample (Supplementary Note S6).  379 

 380 

3D imaging. The multi-view stereo-imaging platform consisted of two cameras 381 

(Webcams, ELP, 3840×2160-pixel resolution, 30 fps) connected to the external computer 382 

taking top-view images of the sample from symmetric angles (Supplementary Fig. 29a). 383 

A calibration algorithm (OpenCV-Python calibrateCamera function) applied to a collection 384 

of images of a checkerboard (custom-made, 7×8 squares, 2 mm × 2 mm per square) 385 

returned camera matrix, distortion coefficients, rotation and translation vectors to correct 386 

for the lens distortion of the images (OpenCV-Python undistort function). The nodes of 387 

the mesh samples provided distinguishable geometry for image registration. A template 388 

matching algorithm (OpenCV-Python matchTemplate function) returned the locations of 389 

the nodes in the images from the two cameras. A perspective projection algorithm 390 

(OpenCV-Python reprojectImageTo3D function) transformed the disparity map to the 391 
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nodal heights in a unit of pixels (𝑢𝑢p). An additional side camera provided ground-truth 392 

measurement of the displacement (𝑢𝑢m) of the discernible nodes and provided a linear-393 

model prediction of the 3D-recontructed nodal displacement (𝑢𝑢(𝑢𝑢p)) (Supplementary Fig. 394 

29b, c and Supplementary Note S12).  395 
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Fig. 1 | Mechanical metasurfaces driven by reprogrammable electromagnetic actuation. a, Schematic 
illustration (exploded view) of a representative square mesh sample constructed from the serpentine beams 
consisting of thin polyimide (PI) and gold (Au) layers. b, Schematic illustration of a 4×4 sample (column and row 
serpentine length LN/M = 2.5 mm) placed in a magnetic field (in-plane with the sample in a diagonal direction). 
Port voltages define the current density distribution (J) in the sample and hence control the local Lorentz force 
actuation. c, Finite element analysis (FEA) provide a linear-model approximation of the nodal displacement in 
response to the input voltages for the 4×4 sample. Experimental characterization using a side camera 
agrees with the FEA prediction. d, FEA and experimental results of a 4×4 and 8×8 sample morphing into 
four target implicit shape shifting processes with control on instantaneous velocity and acceleration of the 
dynamics. Scale bars, 5 mm.
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Fig. 2 | Model-driven inverse design of the metasurfaces for dynamic, complex shape morphing. 
a, FEA and experimental results of an array of 8 serpentine beams morphing into the growth and pinch-off 
of a droplet dripping from a nozzle. b, c, FEA and experimental results of a 4×4 (b) and an 8×8 (c) 
sample reproducing the dynamic process of a droplet hitting a solid surface, spreading out, bouncing back, 
vibrating, and stabilizing. 
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Fig. 3 | Experiment-driven self-evolving process in comparison with the model-driven approach. a, 
Flow diagram of the model-driven inverse design approach (top, blue) and an experiment-driven self-evolving 
process enabled by an in-situ 3D-imaging feedback and a gradient-descent based optimization algorithm 
(bottom, red). b, Target implicit shapes and optical images of the experiment-driven morphing results of a 4×4 
sample. c, 3D reconstructed surfaces overlaid with contour plots of the minimized errors (e) and d, histograms 
of the minimized errors for model-driven and experiment-driven outputs. Scale bars, 5 mm.
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Error distribution
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Fig. 4 | Self-evolving shape morphing against extrinsic or intrinsic perturbations. a, b, c, d, Experimental 
results of a 2×2 sample (a) and a 4×4 sample (b-d) morphing into the same target shape (Fig. 3b) via model-
driven and experiment-driven processes with a modified serpentine design that amplifies the non-linearity of the 
voltage-driven deformation (a), and an introduction of an extrinsic magnetic perturbation by displacing the sample 
from the original, centered position (Δx = 8 mm, Δy = 12 mm, Δθ = 15°) (b), an extrinsic mechanical perturbation 
by applying an external mechanical load (~0.5 g) on a serpentine beam (c), and an intrinsic damage by cutting 
one beam open, causing substantial changes in both mechanical and electrical conductivity of the sample (d). 
Left: schematic illustration of the experimental configuration. Middle: optical images and 3D reconstructed surface 
superimposed with error map (middle). Right: histogram plots of error e (right). Scale bars, 5 mm.
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Fig. 5 | Self-evolving shape morphing toward semi-real-time shape learning and multifunctionality. a, 
Morphing results of representative frames from a recording of hand making eight gestures with different 
fingers moving. b, Schematic illustration of a 3×3 sample with gold patches mounted on the nodes reflecting a 
laser beam from an incident angle. A top-positioned camera monitors the laser spot projected on a paper 
screen. c, A representative optical image of a 3x3 sample (LN/M = 2 mm) with 9 reflective gold patches (Au, 2 
mm × 2 mm in size, 300 nm in thickness) at the nodes self-evolving via a hybrid experiment-driven and 
model-driven process to perform two functions: I) reflect and overlap two laser beams (red, green) with 
different incident angles ([θXr θZr], [θXg θZg]) and II) achieve the target displacement (-0.5 mm) of its central 
node (u5). d, Imaging of the screen from the camera provides an experimental feedback of the distance 
between the two laser spots. e, Model predictions of the displacement profile of the sample (cross-sectional 
view, dashed line in (d)) when overlapping the laser spots with the highest-possible (blue), lowest-possible 
(green), and optimized (orange) central positions. Ex-situ stereo imaging provides 3D reconstructed 
measurement of the optimized deformation (black) that validates the in-situ model predictions. Scale bars, 5 
mm.
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