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Abstract: This paper investigates a Hopfield neural network (HNN) under the simulation of external 

electromagnetic radiation and dual bias currents, in which the fluctuation of magnetic flux across the neuron 

membrane is used to emulate the influence of electromagnetic radiation. Utilizing conventional analytical 

methods, the basic properties of the proposed Hopfield neural network are discussed. Due to the addition of 

electromagnetic radiation and dual bias currents, the Hopfield neural network shows high sensitivity to 

system parameters and initial conditions. The proposed Hopfield neural network possesses multistability 

with periodic attractor, quasi-periodic attractor, chaotic attractor and transient chaotic attractor, and all of 

the attractors are hidden attractors because there is no equilibrium point in the system. In particular, when 

the neuron membrane magnetic flux is different, the system can present transient chaos with different 

chaotic times. More interestingly, with the change of system parameters, the proposed Hopfield neural 

network can exhibit parallel bifurcation behaviors. Finally, the Multisim simulation and hardware 

experiment results based on discrete electronic components are conducted to support the numerical ones. 

These results could give useful information to the study of nonlinear dynamic characteristics of the 

Hopfield neural network. 

 

Keywords: Hopfield neural network (HNN); electromagnetic radiation; dual bias currents; multistability; 

transient chaos; parallel bifurcation. 
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1. Introduction 

The brain is composed of a large number of nerve cells or neurons, and each neuron can be regarded as 

a small processing unit. These neurons are connected to each other in a certain way to form the biological 

neural network inside the brain. Humans rely on the brain for thinking, associating, memorizing, and 

reasoning. For a long time, many researchers have been committed to the study of the internal structure and 

function of the human brain. Nowadays, there is evidence that various complex activities in the brain are 

carried out through neural network [1-3]. Therefore, the researches on neural network are very necessary. 

As the fourth basic circuit element, memristor has received great attention since it was firstly proposed 

by Chua in 1971 [4]. Since the memristor is a passive two-terminal component, its plasticity and 

non-volatility are closely related to the memory characteristic of neurons [5, 6], so the memristor is widely 

employed in the researches of neural network. For example, Chen et al. [7] adopted an ideal flux-controlled 

memristor synapse to simulate the induced current generated by the potential difference between two 

neurons, upon which they found several extraordinary coexisting multi-stable patterns. Tang et al. [8] 

proposed a non-spike timing-dependent plasticity learning mechanism for memristive neural networks. This 

work has been achieved better hardware performance, and provided a broader space for the practical 

application of memristive neural networks. Xiu et al. [9] designed a new memristor model with smooth 

characteristic curve, and employed it to construct a four-dimensional memristive cellular neural network 

system. Its chaotic dynamic behaviors can be applied to secure communication. Zhang et al. 
[10] studied 

synchronization problem of coupled memristive neural networks, and Cao et al. [11] discussed exponential 

anti-synchronization problem. Besides, Liu et al. 
[12] investigated the dynamical robustness and transition of 

firing modes of multilayer memristive neural networks in detail. All these works show that the memeistor 

can effectively promote the researches of neural network in different fields. If readers want to know more 

cases of neural network based on memristor, the review [13] and the references in it are good choices. 

In order to better investigate the neural network in the human brain, artificial neural network has been 

proposed. Artificial neural network abstracts the human brain neural network from the perspective of 

information processing, and establishes a simple model to simulate the real biological activities in the 

human brain, among which the Hopfield neural network (HNN) is a typical one [14]. It clarifies the 

relationship between neural network and dynamics, and has a clear correspondence with electronic circuit, 

which makes HNN easy to understand and can be implemented using integrated circuit. There are many 
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factors that can affect the dynamic behaviors of the Hopfield neural network, including coupling weights 

[15-18], network structure [19, 20], neuron activation gradient [21, 22], time delay [23, 24] etc. In particular, due to 

the application of various electronic products in the real world, electromagnetic radiation is one of the most 

important factors that cannot be ignored. Hu et al. [25] firstly studied a small Hopfield neural network with 

three neurons, which found that periodic motion and chaotic motion appeared intermittently with variations 

in some system parameters, and this may explain the intermittent convulsions in patients with Epilepsy [26, 

27]. Then, Lin et al. [28] explored the dynamics of different numbers of neurons affected by electromagnetic 

radiation, and concluded that the dynamic behaviors of the neural network could be adjusted by changing 

the number of neurons in the neural network that affected by electromagnetic radiation. The theoretical 

analyses were verified by circuit experiments, which gave a new understanding to the pathogenesis of 

neurological diseases [29, 30]. Moreover, recently, Allehiany et al. [31] used the adaptive sliding mode control 

technique to investigate a fractional order neural network under electromagnetic radiation, and Yu et al. [32] 

designed a pseudo-random number generator based on a HNN under electromagnetic radiation. However, 

all these works about electromagnetic radiation set the bias current of the neurons to zero or the bias current 

of only one neuron to not zero. In fact, the bias current can improve the flexibility and fitness of the neural 

network [33, 34]. Therefore, it is necessary to study a HNN with multiple or dual bias currents that affected by 

electromagnetic radiation. 

Motivated by the above mentioned considerations, in this paper, we focus on a HNN composed of 

three neurons, in which the external electromagnetic radiation is imposed on one of the three neurons and 

the remaining two neurons are added with bias currents. What is more, we use the fluctuation of magnetic 

flux to emulate the influence of electromagnetic radiation on the electrical activities of the neuron, and 

utilize a flux-controlled memristor to describe the feedback of magnetic flux on membrane voltage. In order 

to explore the dynamical behaviors of the HNN, we conduct Matlab theoretical analyses, and perform 

Multisim simulations and hardware experiments for circuit-level verification. As a consequence, the results 

show that in a neural network with electromagnetic radiation and dual bias currents, the neural network will 

exhibit complex and fantastic dynamic behaviors, such as coexisting periodic attractor, quasi-periodic 

attractor, chaotic attractor and transient chaotic attractor. Moreover, a series of transient chaotic attractors 

with different chaotic times are also captured. These coexisting attractors show that this kind of neural 

network has a rich multistability. Meanwhile, we find parallel bifurcation behaviors, which have hardly 

been reported in the articles about electromagnetic radiation. To a certain extent, this work may shed light 
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on some cerebral pathologies and is worthy of further detailed investigation. 

The remaining sections of this paper are organized as follows. In Sec. 2, the neural network model with 

dual bias currents affected by electromagnetic radiation is established, and the basic properties including 

boundary, equilibrium point and symmetry are discussed carefully. In Sec. 3, the dynamics of the neural 

network are studied in detail with the help of Matlab numerical analyses. And an appropriate electronic 

circuit is proposed in Sec. 4 by Multisim simulation and hardware experiment. Finally, the conclusions are 

summarized in Sec. 5. 

 

2. Description of the proposed Hopfield neural network 

2.1. The mathematical model 

A generic Hopfield neural network containing n neurons can be expressed by a set of circuit equations 

[14], for the i-th neuron is expressed as 

1

tanh( )
n

i i

i ij j i

ji

dx x
C w x I

dt R 

                        (1) 

i
x  is the membrane voltage of the i-th neuron, 

i
R  and 

i
C  are the membrane resistance and capacitance 

between the inside and outside of the neuron, tanh( )
j

x  is the activation function representing the voltage 

input from the j -th neuron, 
ij

w  is the synapse weight illustrating the strength of the connection between 

the i -th neuron and the j -th neuron, and 
i

I  is the input bias current. 

In this paper, we consider a three-neuron-based HNN, what’s more, the second neuron is exposed to 

electromagnetic radiation, and the input dual bias currents are set as 

   1 2 3 0
T T

i
I I I I I I                         (2) 

After a lot of experiments, the connection topology of the neural network in this paper is selected as 

11 21 31

12 22 32

13 23 33
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3 2 0.8

w w w

w w w w

w w w

   
        
     

                  (3) 

Different from the connection weight in other Hopfield neural networks, the neural network studied in this 

paper is a new neural network. 

For a neuron, when it is exposed to electromagnetic radiation, its membrane magnetic flux will change. 

Therefore, we can add the magnetic flux as a new variable to describe the effect of electromagnetic 
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radiation on the neuron, and employ a flux-controlled memristor to describe the feedback of magnetic flux 

on membrane voltage. The topology of the HNN is shown in Fig. 1. Consequently, when 1 2 3 1C C C    

and 1 2 3 1R R R   , the HNN with dual bias currents affected by electromagnetic radiation can be 

described as follows 

1
1 1 2 3

22
2 1 2 1 2

3
3 1 2 3

2 2

1.5 tanh( ) 2 tanh( ) 0.9 tanh( )

1.5 tanh( ) 1.5 tanh( ) ( 3 )

3tanh( ) 2 tanh( ) 0.8 tanh( )

dx
x x x x I

dt

dx
x x x k a b x

dt

dx
x x x x I

dt

d
k x

dt





      

      

      


 


       (4) 

Where   is the magnetic flux of the second neuron cell membrane, 23a b denotes the 

memconductance of the flux-controlled memristor, a and b are the electromagnetic radiation parameters, 1k  

represents the strength of external electromagnetic radiation, and 2k  indicates the influence of the second 

membrane potential on magnetic flux. 

N2

N1 N3

1.5

-2-1.5

2

1.5 0.8

0.9

3

EMR

I I

 
Fig. 1 The topological connection of the proposed HNN under electromagnetic radiation and dual bias currents. 

2.2. Proof of boundary 

 It can be proved that the orbits of the Eq. (4) are not infinitely divergent, but always confined to a 

boundary area. Referring the approach of Ref. [35, 36], a Lyapunov function is proposed as follows 

2 2 2 2
1 2 3 4 1 2 3

1
( , , , ) ( )

2
V x x x x x x x                       (5) 

Differentiating Eq. (5) in the time domain yields 
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1 2 3 1 1 2 2 3 3

2
1 1 1 1 2 1 3 1

2 2 2
2 2 1 2 2 1 2

2
3 3 1 3 2 3 3 3

2 2

( , , , )

1.5 tanh( ) 2 tanh( ) 0.9 tanh( )

  1.5 tanh( ) 1.5 tanh( ) ( 3 )

 3 tanh( ) 2 tanh( ) 0.8 tanh( )

 

V x x x x x x x x x

x x x x x x x Ix

x x x x x k a b x

x x x x x x x Ix

k x

 





   

     

    

    



     (6) 

In order to facilitate calculations, defining 

1 2 3 1 2 3 1

1 2 3 2

1 3 3

( , , ) (1.5 1.5 3 ) tanh( )

                   (2 1.5 2 ) tanh( )

                   (0.9 0.8 ) tanh( )

v x x x x x x x

x x x x

x x x

  

  

 

                      (7) 

For all x R , it is well known that 1 tanh( ) 1x   . Therefore, Eq. (7) can be simplified as 

1 2 3 1 2 3 1

1 2 3 2

1 3 3

1 2 3 1 2 3 1 3

1 2 2

( , , ) (1.5 1.5 3 ) tanh( )

 (2 1.5 2 ) tanh( )

 (0.9 0.8 ) tanh( )

1.5 1.5 3 2 1.5 2 0.9 0.8

4.4 3 5.8

v x x x x x x x

x x x x

x x x

x x x x x x x x

x x x

  

  

 

       

  

        (8) 

Making 0 0D   to the sufficiently large area, for all 1 2 3( , , , )x x x   that satisfying 1 2 3( , , , )V x x x D   with 

0D D , it can be concluded that 

2 2 2
1 2 3 1 2 3 1 2 3( , , ) 4.4 3 5.8v x x x x x x x x x                      (9) 

Then Eq. (6) can be simplified as 

2 2 2
1 2 3 1 2 3

2 2
1 3 1 2 2 2

1 2 3

2 2
1 3 1 2 2 2

( , , , )

 ( 3 )

 ( , , )

( 3 )

V x x x x x x

Ix Ix k a b x k x

v x x x

Ix Ix k a b x k x



 

 

   

    



    

                 (10) 

According to Ref. [37], in the situation all 1 2 3( , , , )x x x   that contenting 1 2 3( , , , )V x x x D   with 0D D , 

the below requirement exists 

2 2
1 2 2 2 1 3( 3 ) ( )k a b x k x Ix Ix                          (11) 

Putting Eq. (11) into Eq. (10), there is   

1 2 3( , , , ) 0V x x x                                 (12) 

As a Consequence, it implies that on the surface 

1 2 3 1 2 3{( , , , ) | ( , , , ) }x x x V x x x D                          (13) 

Then set 
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1 2 3 1 2 3{( , , , ) | ( , , , ) }x x x V x x x D                         (14) 

It means that the trajectories of the system are limited to a bounded area. 

2.3. Equilibrium point and symmetry 

 System attractors are divided into self-excited attractors and hidden attractors. From the perspective of 

attraction basin and equilibrium points, the attraction basin of the self-excited attractors contain the unstable 

equilibrium points, but the attraction basin of the hidden attractors does not intersect with any unstable 

equilibrium points. According to Ref. [38], four types of systems with hidden attractors are classified as: (1) 

the system does not have any equilibrium points, (2) the system has only stable equilibrium points, (3) the 

equilibrium points of the system are curves, and (4) the equilibrium points of the system are surfaces.  

 Letting the left side of Eq. (4) equals to zero, the equilibrium points of the proposed HNN can be 

solved by 

1 1 2 3

2
2 1 2 1 2

3 1 2 3

2 2

1.5tanh( ) 2 tanh( ) 0.9 tanh( ) 0

1.5tanh( ) 1.5tanh( ) ( 3 ) 0

3tanh( ) 2 tanh( ) 0.8tanh( ) 0

0

x x x x I

x x x k a b x

x x x x I

k x


     

     
      
 

             (15) 

It is obviously that 2x  is equal to zero, so in the feedback item of external electromagnetic radiation 

2
1 2( 3 )k a b x ,  can be setted to any value. Putting 2 0x   into Eq. (15), then Eq. (15) can be simplified 

to 

1 1 3

1

3 1 3

1.5 tanh( ) 0.9 tanh( ) 0

1.5 tanh( ) 0

3tanh( ) 0.8 tanh( ) 0

x x x I

x

x x x I

    
  
     

                     (16) 

From Eq. (16), 1 0x   can be deduced, then Eq. (16) can be simplified to 

3

3 3

0.9 tanh( ) 0

0.8tanh( ) 0

x I

x x I

 
   

                          (17) 

It can be easily concluded that there is only one solution in Eq. (17), that is 

3 0

0

x

I


 

                                     (18) 

But in this paper, there are dual bias currents in the first neuron and third neuron of the HNN, that is to say, 

0I  . So the neural network (4) has no equilibrium points, and all attractors in the HNN are hidden 

attractors.  
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To judge whether a system has symmetry, it depends on whether the solutions of the system remain 

unchanged under the symmetric transformation. Similarly, due to the presence of the dual bias current I, the 

proposed HNN is not symmetrical about any coordinate axes, because the HNN does not remain invariant 

under the any transformation. Thus, it can be seen that the attractors of the proposed HNN are more 

intriguing and singular. 

 

3. Complex dynamic analyses of the proposed Hopfield neural network 

This section mainly discusses the dynamic behaviors of the proposed HNN. The research methods 

include phase portrait, time domain waveform, bifurcation diagram and Lyapunov exponent, etc. The phase 

portrait is the most intuitive method of observing the dynamic behaviors, which is the record of the 

trajectory of the system. The time domain waveform describes the change of the signal over the time, which 

can be a good verification of the phase portrait. The bifurcation diagram can clearly describe the 

characteristics of the system performance changing with the system parameters. In this article, taking the 

local maxima of the variable is used to obtain the bifurcation diagram. The Lyapunov exponent is also an 

indispensable research method. Its positive or negative value along a certain direction can represent the 

average divergence or convergence of the adjacent orbits in the attractor along that direction. Remark that 

the below numerical simulations are all use fourth order Runge-Kutta algorithm.  

3.1. Transient chaos 

  
Fig. 2 Dynamics for I∈[-0.004, 0.004], (a) is the bifurcation diagram; (b) is the corresponding first three Lyapunov exponents.  

Transient chaos is a special phenomenon in chaotic dynamics. Transient chaos refers to the chaotic 

behaviors of the system on a finite time scale, which ultimately evolves into regular behaviors such as fixed 

point or periodic orbit [39, 40]. From the topological point of view, transient chaos is caused by chaotic saddle 

point in the phase space. When the attractor intersects with the boundary of the attraction basin, the chaotic 

saddle point appears, and then the chaotic attractor encounters a chaotic crisis. The chaotic attractor 
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disappears and the system trajectories escape to the external attractor, then the chaotic attractor is replaced 

by the periodic attractor. The duration of chaotic behaviors strongly depend on the system parameters and 

initial conditions, and a small difference will cause different chaotic times. Next, transient chaotic behaviors 

in this HNN will be explored. 

 

  

 

Fig. 3 Transient chaotic attractors and chaotic attractor with different I. (a) and (b), I=-0.0018; (c) and (d), I=0.0003; (e) and (f), I=0.0035. 

Firstly, setting the bias current I  as the dynamical parameter, and the range of change is 

0.004 0.004I   . The other parameters are fixed as 1.5a  , 0.05b   , 1 0.3k    and 2 0.1k   . As 

for system initial conditions, they are 10 20 30 0( , , , ) (0.1,0,0.1,0.1)x x x   . The bifurcation diagram of x2 

varing with I is shown in Fig. 2(a), and the corresponding first three Lyapunov exponents are displayed in 
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Fig. 2(b). From Fig. 2(a), we can see that in the region 0.004 0.004I   , most of the bifurcation 

behaviors of the HNN are dense and irregular points, which indicates that the system state is always in 

chaos. But it is worth noting that in the range of 0.0009 0.0009I   , the bifurcation behaviors are 

different, that is to say, the system state occurs transformation. After a large number of time domain 

waveform and phase portrait experiments, we find that as the bias current I slowly increase, the system 

evolves from transient chaotic behaviors to chaotic behaviors and finally back to transient chaotic behaviors. 

These complex dynamic behaviors are caused by boundary crisis. Combined with the Lyapunov exponents 

in Fig. 2(b), it can be seen that the maximum Lyapunov exponent is always greater than zero under this 

condition, which is different from that the maximum Lyapunov exponent equals to zero in quasi-periodic 

behaviors. 

In order to get insight into these dynamic behaviors more directly, the phase portraits and 

corresponding time domain waveforms are given in Fig. 3 when (0,6000)t . For 

representative, 0.0018I    in the region 0.004 0.0009I    , 0.0003I   in the region 

0.0009 0.0009I    and 0.0035I   in the region 0.0009 0.004I   are selected. Obviously, Fig. 3(a) 

represents chaotic behaviors in the time region (0,4083)t , and then turns into periodic behaviors. Fig. 

3(c) always maintains at chaotic behaviors. As for Fig. 3(e), it holds chaotic behaviors in the time region 

(0,1038)t , and then settles down on periodic behaviors. What’s more, Fig. 3(b), Fig. 3(d) and Fig. 3(f) 

are the phase portraits of Fig. 3(a), Fig. 3(c) and Fig. 3(e) respectively. In Fig. 3, the red curves represent 

chaotic behaviors and the green curves represent periodic behaviors. 

Due to that the transient chaos is a kind of unstable behavior during the transformation process from 

period to chaos with random changes in a short or long time. After further research, it is found that the 

transient chaotic behaviors are not only related to the value of the bias current I , but also associated with 

the system initial value 0 . That is to say, for different 0 , the HNN can generate transient chaotic 

behaviors with different chaotic times. When 1.5a  , 0.05b   , 1 0.3k   , 2 0.1k   , 0.001I   , system 

initial conditions 10 20 30( , , ) (0.1,0,0.1)x x x   and (0,6000)t , Fig. 4 exhibits transient chaotic behaviors 

with different chaotic times under different values of 0 : 0 0.03   , 0 0.002   and 0 0.1   . 

Remark that the neural network in this paper can display multiple transient chaotic attractors with different 

chaotic times at different initial values of 0 , and only a few typical examples are represented for 

demonstration in Fig 4. Similarly, Fig. 4(a), Fig. 4(c) and Fig. 4(e) are the time domain waveforms, and Fig. 

4(b), Fig. 4(d) and Fig. 4(f) are the corresponding phase portraits. The chaotic behaviors are colored in red 
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and the periodic behaviors are colored in green.  

 

 

 

Fig. 4 Coexisting transient chaotic attractors with different chaotic times, (a) and (b), 0 0.03   ; (c) and (d), 0 0.002  ; (e) and (f), 

0.1   .
 

3.2. Parallel bifurcation 

 In recent years, a new phenomenon has been discovered, named parallel bifurcation [41-43]. This 

phenomenon means that the system has multiple bifurcation behaviors at the same time under the same 

parameters and initial conditions. To observe the influence of the second neuron membrane potential on 

magnetic flux, let 2k  increase monotonously from -0.8 to 0.8 and other parameters are kept as 

1.5a  , 0.05b   , 1 0.3k    and 0.001I   , Fig. 5 reveals its abundant dynamic behaviors under initial 

conditions 10 20 30 0( , , , ) (0.1,0,0.1,0.1)x x x   . In Fig. 5(a), it can be seen that there are periodic doubling 
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bifurcation and reverse periodic doubling bifurcation behaviors in the region 20.5 0.25k     and 

20.25 0.5k  . For details, Fig. 6 is the enlargement of the bifurcation diagram of Fig. 5(a).  

 

Fig. 5 Dynamics for k2∈[-0.8, 0.8], (a) is the bifurcation diagram; (b) is the corresponding first three Lyapunov exponents. 

   

Fig. 6 Extended bifurcation diagrams of Fig. 5(a), (a) k2∈[-0.5,-0.25]; (b) k2∈[0.25, 0.5]. 

In Fig. 6(a), when 2 0.3627k   , the system attractor is quasi-periodic attractor, and then each of its 

orbits occurs periodic doubling bifurcation and reverse periodic doubling bifurcation behaviors. In the 

chaotic region 20.5 0.3763k    , some quasi-periodic windows are existed, for example 

20.4248 0.4188k    , 20.4068 0.3993k     and 20.3908 0.3858k    . In these regions, the 

bifurcations are complicated but regular. Meanwhile, in Fig. 6(b), 0.3652k   is the critical value. At this 

value, each of the orbits of the quasi-periodic attractor of the system produces periodic doubling bifurcation 

and reverse periodic doubling bifurcation behaviors as well. Likewise, in the chaotic domains 

20.3783 0.5k  , some quasi-periodic windows are sandwiched, like 20.3863 0.3918k  , 

20.3988 0.4093k   and 20.4218 0.4243k  . In order to better observe such complex dynamics, the 

numerical results of the first three Lyapunov exponents in Fig. 5(b) verifies these rich dynamic behaviors. 

That is to say, in most of the region 10.8 0.8k   , the first three Lyapunov exponents are a positive value, 

a null value and a negative value, which indicating that the system attractor is chaotic attractor. However, in 
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the quasi-periodic regions, such as 20.3752 0.3432k     and 20.3532 0.3768k  , the first three 

Lyapunov exponents are two null values and a negative value. Undoubtedly, through changing 2k  in small 

steps, the HNN can appear unusual irregular behaviors and regular behaviors, which may be of great 

significance to the treatment of neurological diseases such as Alzheimer and Psychosis. 

Coincidentally, similar parallel bifurcation behaviors also occur if the parameter b changes. When 

1.5a  , 1 0.3k   , 2 0.1k   , 0.001I    and 10 20 30 0( , , , ) (0.1,0,0.1,0.1)x x x    are chosen, the parameter b 

bifurcation diagram is given in Fig. 7. In sight of Fig. 7, compared with Fig. 5(a), when 0.6333b   , the 

system is also a quasi-periodic attractor, but it just undergoes a series of reverse periodic doubling scenario 

to chaos and no forward periodic doubling scenario. Instead, as parameter b increases, when it reaches 

-0.5812, every orbits of the quasi-attractor breaks into chaotic state through tangent bifurcation, and finally 

keep in chaotic state except some quasi-periodic mini-zones at 0.517b   , 0.485b   , 0.4649b    

and 0.4188b   . It is stressed that in the dynamic behaviors mentioned above, there are some noises, 

which leads to some irregular points in addition to the normal reverse period doubling bifurcation and 

tangent bifurcation processes. In fact, this phenomenon of noises may be better consistent with the firing 

activities in the real human brain dynamics. Because from the physical point of view, according to Ref. [44], 

even if the energy cannot be completely absorbed, the participation of noises can also input energy for the 

system. 

 

Fig. 7 Bifurcation diagram for b∈[-1, 0]. 

According to the above discussion, to the best of the author’s knowledge, the parallel bifurcation is 

rare in other systems, especially in the Hopfield neural network. Hence, this kind of dynamic phenomenon 

has certain research significance and is worth exploring. 

3.3. Coexisting attractors 
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 Coexistence of attractors is a kind of special and interesting characteristic in nonlinear dynamics, 

which means that the system has different dynamic phenomenon under the same set of parameters but 

different initial conditions. This feature provides great flexibility for engineering applications and is a 

research hotspot for scholars. As a nonlinear system, the coexisting attractors of neural network are also the 

focus of research. The next part reveals the pattern of the coexisting attractors in this neural network. 

 

  
Fig. 8 Coexisting attractors under different initial conditions, (a) periodic attractor for (-0.95, 0.1, 0.09, -2.45); (b) quasi-periodic attractor for 

(-0.1, -0.1, 0, 0.1); (c) chaotic attractor for (-0.1, -0.1, -0.1, -0.1); (d) transient chaotic attractor for (0.1, 0.1, 0, 0.1). 

When the parameters are assigned with appropriate values: 1.5a  , 0.05b   , 1 0.3k   , 2 0.1k    

and 0.001I   , for different sets of initial conditions, four kinds of attractors can be triggered in this 

neural network as shown in Fig. 8, which depicts the phase portraits of the attractors on the x1-x2 plane. In 

Fig. 8(a), the neural network starts from the initial conditions 10 20 30 0( , , , ) ( 0.95,0.1,0.09, 2.45)x x x     . 

Obviously, it is a periodic attractor which means the dynamics are steady. In order to comprehensively 

analyze this behavior, its Lyapunov exponents are computed as 1 0.00191LE  , 2 0.02914LE   , 

3 0.43091LE    and 4 0.76618LE   , which the maximum Lyapunov exponent is about to zero. And 

undoubtedly, this regular behavior has large impact on the cure for neurological diseases. In Fig. 8(b), it can 

be obtained that the attractor is in quasi-periodic state when the initial conditions are chosen 

as 10 20 30 0( , , , ) ( 0.1, 0.1,0,0.1)x x x     . As for its Lyapunov exponents, they are 1 0.00182LE  , 
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2 0.00123LE  , 3 0.03988LE    and 4 0.49332LE   . In this quasi-periodic case, the system is in a 

transition state from period to chaos. And then, under the initial conditions 

10 20 30 0( , , , ) ( 0.1, 0.1, 0.1, 0.1)x x x       , a chaotic attractor can be produced as shown in Fig. 8(c), which 

the Lyapunov exponents are 1 0.02739LE  , 2 0.00726LE  , 3 0.04391LE    and 4 0.50371LE   . 

Moreover, transient chaotic attractor can be also captured as drawn in Fig. 8(d) with the initial conditions 

10 20 30( , , , ) (0.1,0.1,0,0.1)x x x   . In Fig. 8(d), chaotic orbits are shown in red and periodic orbits are shown 

in green. The orbits of the transient chaotic attractor exhibits chaotic motion in the time interval 

(0,2600)t , and subsequently degrades into periodic oscillations. As for its Lyapunov exponents, they are 

1 0.05024LE  , 2 0.00159LE   , 3 0.41329LE    and 4 0.52077LE   . 

Based on the above discussions, we know that there are a variety of coexisting hidden attractors in the 

neural network, including periodic and chaotic attractors in the steady state, and quasi-periodic and transient 

chaotic attractors in the switching state. This phenomenon shows that the system is very sensitive to the 

initial values, that is, the initial values have great influence on the dynamic behaviors of the neural network. 

From the perspective of practical applications, it provides new ideas for solving potential and unpredictable 

events. 

 

4. Circuit realization 

Realizing the circuit of the mathematical model through commercially available discrete electrical 

components is a very necessary step in the study of the dynamics of neural network. Moreover, the circuit 

realization based on the mathematical model is essential for practical engineering applications, which can 

reflect the feasibility of the theoretical model. In this section, a circuit is designed by the Multisim and 

breadboard to support the previous theoretical calculations.  

Before constructing the neural network circuit, we first introduce the nonlinear activation function 

tanh( )  , which is a hyperbolic tangent function, is shown in Fig. 9. In Ref. [45, 46], a pair of bipolar NPN 

transistors, two operational amplifiers, eight resistors, a constant current source 0I  and a supply voltage 

VCC are utilized to implement the hyperbolic tangent function module. When the component parameters are 

selected as 10R k  , 520
F

R   , 1
C

R k  , 15
CC

V V  and 0 1.1I mA , the input-output equation 

can be written as 0 tanh( )
i

v v  . In addition, according to Ref. [47, 48], the constant current source 0I  

can be replaced by the circuit with a pair of bipolar NPN transistors, three resistors and a supply voltage VEE 

in the solid line box of Fig. 9 , where the corresponding parameters are set as 9.8
w

R k  , 2
T

R k   and 
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Fig. 9 Circuit realization of hyperbolic tangent function. 
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Fig. 10 Circuit scheme of the proposed neural network. 

 With the proposed model of Eq. (4), the three-neuron-based neural network under electromagnetic 

radiation and dual bias currents can be physically synthesized as shown in Fig. 10, where the circuit 

modules inside the solid line boxes marked by tanh are the inverting hyperbolic tangent function circuit 

units plotted in Fig. 9. There are four dynamical capacitors in the required circuit of Fig. 10, where the 

capacitor voltages 1v , 2v , 3v  and 4v  denote the state variables 1x , 2x , 3x  and   respectively. 

Hence, by employing Kirchhoff’s circuit laws in Fig. 10, the circuit equations are formulated as 
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              (19) 

    

(a)                           (b) 

    

(c)                           (d) 

    

(e)                            (f) 

Fig. 11 Coexistence of transient attractors with different chaotic times observed from Multisim. Where (a), (c), and (e) are the time domain 

waveforms in the vC2 plane, and (b), (d) and (f) are the phase portraits in the vC1-vC2 plane; (a) and (b) with 40 0.7
C

v v , (c) and (d) with 

40 0.043
C

v v , (e) and (f) with 40 0.5
C

v v  . 

Supposing the time constant 10RC s , if 10R k  , the capacitances are configured as 

1 2 3 4 1C C C C C nF     . Based on the synaptic connection weight matrix defined in Eq. (3), some 
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resistances can be deduced as 1 / 1.5 6.667R R k   , 2 / 2 5R R k   , 3 / 0.9 11.111R R k   , 

4 /1.5 6.667R R k   , 5 / 1.5 6.667R R k   , 8 / 3 3.333R R k   , 9 / 2 5R R k   , and 

10 / 0.8 12.5R R k   . In addition to these resistances, other resistances are relevant with the system 

parameters. In other words, when the representative parameters 1.5a  , 0.05b   , 1 0.3k   , 2 0.1k    

are chosen and the gain of the amplifiers are both set as 0.1g  , we can determine that 

6 1/ | | 22.222R R ak k   , 2
7 1/ | 3 | 2.222R g R bk k   , 11 2/ | | 100R R k k   .  

      

(a)                                   (b) 

      

(c)                                   (d) 

Fig. 12 Captured attractors with different capacitor voltages of 1 4C - C  in the vC1-vC2 plane, (a) periodic attractor for 

( 0.1 , 0.1 ,0.1 ,0.1 )v v v v  ; (b) quasi-periodic attractor for (0.05 ,0 ,0 ,0.4 )v v v v ; (c) chaotic attractor for ( 0.1 , 0.1 , 0.1 ,0 )v v v v   ; (d) 

transient chaotic attractor for ( 0.1 , 0.1 , 0.1 , 0.1 )v v v v    . 

Based on the circuit schemes given in Fig.9 and Fig. 10, an analogue circuit is built up in Multisim, 

where the bipolar NPN transistors MPS2222, operational amplifiers TL082CP and multipliers AD633JN 

supplied by 15V  DC voltage, resistors and capacitors are employed as the discrete components. 

Furthermore, two external DC current sources are added to the inverting input of the operational amplifiers 

U1 and U3 respectively as the dual bias currents I . In Multisim simulation, the initial condition of the 

neuron can be easily realized by adjusting the initial voltage across the capacitor, and the phase portrait and 

time domain waveform can be also observed conveniently. When the DC current sources are set as 

-0.0001mA and the maximum simulation time step is chosen as 510 , the Multisim simulations can be 
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obtained. First, with the initial capacitor voltages of 1C , 2C  and 3C  are fixed as (0.1 ,0 ,0.1 )v v v , but 

adjusting the initial voltage of 4C , the screen shots of the time domain waveforms in the 2C
v  plane and 

the phase portraits in the 1 2C C
v v  plane are displayed in Fig. 11. As can be seen, the circuit simulations 

match with the theoretical results in Fig. 4 basically. 

   

(a)                                   (b) 

   

(c)                                   (d) 

Fig. 13 Hardware experimental measurements in the vC1-vC2 plane: (a) periodic attractor; (b) quasi-periodic attractor; (c) chaotic attractor; (d) 

transient chaotic attractor.  

In the same manner, the coexisting four attractors in the 1 2C C
v v  plane under different initial 

voltages of the four capacitors 1C , 2C , 3C  and 4C can be also measured as shown in Fig. 12, and Fig. 12 

is in good agreement with Fig. 8. Similarly, the experimental circuit is made manually on breadboard and 

the results are captured by an oscilloscope in X-Y mode as shown in Fig. 13. Ignoring some minor 

deviations that caused by the idealization of mathematical model and the existence of parasitic parameters 

in circuit, Fig. 13 are almost the same as Fig.8 and Fig. 12.  

 

5. Conclusion 

In this paper, by adding electromagnetic radiation on the second neuron and imposing the same 

magnitude of dual bias currents to the first neuron and third neuron, a small neural network with three 

neurons is studied systematically. Through bifurcation diagram, Lyapunov exponent spectrum, phase 
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portrait and time domain waveform, we find that with suitable system parameters and initial conditions, 

many types of attractors and parallel bifurcation phenomenon are emerged in this neural network. Notably 

that under different initial magnetic flux, which is the magnetic flux across the inner and outer cell 

membrane of the second neuron affected by the electromagnetic radiation, there are successive transient 

chaotic attractors with different chaotic times in this model, which indicates the multistability characteristic 

of the system. Finally, Multisim simulations and hardware experiments are carried out to verify the validity 

of the numerical analyses. These distinctive results may provide a meaningful reference for human brain 

activities on our future research. 
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