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Abstract
Recently, Anti-cancer targeting drugs are directed against specific molecules and signaling pathways. These
targeting agents have reasonable specificity, efficacy, and less side effects. Tyrosine kinases, which play an
essential role in growth factor signaling regulation, are significant targets in this type of therapy. Synthesized
numerous tyrosine kinase inhibitors (TKIs), such as substituted indolin-2-ones, are effective as anti-tumor and
anti-leukemia agents.

In this study, a series of novel substituted indolin-2-ones were studied as kinase inhibitor analogs through
quantitative structure-activity relationship (QSAR) analysis.Two chemometrics methods, such as multiple linear
regression (MLR) and partial least squares combined with genetic algorithm for variable selection (GA-PLS),
were employed to establish relationships between structural characteristics and kinase inhibitory activity of
oxindole analogs. The GA-PLS was developed as the best predictor and validated QSAR model. The data set
compounds were also studied by molecular docking to investigate their binding mechanism in the active site of
tyrosine kinase enzymes. According to the information obtained from QSAR models and molecular docking
analysis, 44 new potent lead compounds with novel structural features were introduced. Molecular docking,
drug-likeness rules, ADMET analysis, bioavailability, toxicity prediction, and target identification were carried out
on the newly designed oxindoles to elucidate the fundamental structural properties that affect their inhibitory
activity. The results of our study could provide significant insight for future design and development of novel
tyrosine kinase inhibitors.

1. Introduction
Targeted anticancer therapy has been one of the top developments in medicine in recent years [1]. Today,
protein kinases are one of the significant drug targets in the field of chemotherapeutic antitumor drugs [2]. In
recent years, more than 20 kinase-targeted drugs have been applied in chemotherapy, and hundreds of drug
candidates are in pre-clinical and clinical trials [3]. Tyrosine kinase receptors play an essential role in cellular
signal transduction pathways, modulating cellular responses to an external stimuli and affecting a variety of
cellular processes including cell cycle progression, migration, cell metabolism, survival, proliferation and cell
differentiation [4]. Due to their high expression in most cancer cells and their important role in modulating
growth factor signaling in the cancer cell cycle, tyrosine kinases have been considered as one of the potential
targets in the targeted therapy of cancers [2, 5]. Two tyrosine kinase receptors, vascular endothelial growth
factor receptor1 (VEGFR1) and vascular endothelial growth factor receptor 2 (VEGFR2 or KDR), regulate the
function of endothelial cells [6, 7]. Small molecule tyrosine kinase inhibitors (TKIs) have been successfully
entering the drug market as selective anticancer agents with good potency, efficacy and low side effects [8].
Additionally, TKIs have good safety profiles and can be easily combined with other forms of chemotherapy or
radiation therapy [9]. In recent years, several small molecules acting on tyrosine kinases such as Sorafenib,
Sunitinib, Axitinib, and Regorafenib have been developed and approved for clinical use [10-14]. Many oxindoles
or oxindole-like compounds have been documented in the literature as receptor tyrosine kinase (RTK) inhibitors.
Among them, the scaffold of sunitinib has been extensively studied and the structure-activity relationships
(SAR) of many of the indolin-2-one derivatives have been described [15-17]. As shown in Figure 1, Sunitinib
structure does not have the phenyl group on its alkene substitution and because of that Sunitinib is inactive
against FGFR1 [18].
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Regarding such significant inhibitory activities of sunitinib on KDR and FGFR in the presence and absence of
the phenyl ring substitution, there have been many efforts for developing SAR of sunitinib and its similar
structures by changing the substituents of rings A, B, and C. From published SAR studies on indolin-2-ones,
modifications at the C-5 position of C-ring resulted compounds with different kinase inhibition profiles against
VEGFR2 enzyme [18, 19]. Therefore, substitution at this position can be used to improve the pharmacological
characteristics of     indolin-2-one derivatives. In this study, various substituents have been applied at different
positions of rings A, B, and C of indolin-2-ones derivatives to improve their kinase inhibition spectrum.

In silico procedures have become a crucial part of drug discovery processes such as identify, re-design, and
evaluate new candidate inhibitors [20]. Molecular modeling studies such as quantitative structure-activity
relationship studies (QSARs) and molecular docking have been traditionally used as lead optimization
approaches in the drug design field. Recently, some novel oxindole derivatives have been reported as selective
inhibitors of VEGFR2 with an excellent binding affinity [18, 19]. Accordingly, this encouraged us to
systematically probe the relationship between their structures and their inhibitory activities.            

In this research, a novel series of  oxindole analogs with broad spectrum kinase inhibitory activity was selected
to perform a QSAR analysis [18]. Two different methods were applied to model the relationship between the
structural properties and biological activity of the studied compounds: (1) multiple linear regression (MLR), and
(2) partial least squared combined with genetic algorithm for variable selection (GA-PLS). The best model was
obtained from GA-PLS, which is a linear six-parameter model. Additionally, the binding affinity, ligand
orientation, and protein-ligand interactions of the designed compounds were revealed using the molecular
docking technique. Drug-likeness rules like Lipinski's rule of five, bioavailability, toxicology prediction, and target
identification can provide useful guidelines in early stage drug discovery. Accordingly, in this study, the useful
drug-likeness descriptors were also calculated for selected ligands. Finally, from the final selected compounds,
some novel potent hit compounds were chosen for future study. Hence, the results of the present study might
provide helpful guidelines for the future design of potent tyrosine kinase inhibitors as potential anticancer
agents.

2. Materials And Computational Methods

2.1. Data set preparation
In this study, a data set of 44 oxindole derivatives was collected from the literature (Kim MH et al.) to perform
this study [18]. The chemical structures and kinase inhibitory activity (IC50) of these 44 molecules against KDR
are presented in Table 1. The IC50 values of the compounds were converted into the corresponding pIC50 (−log
IC50) values and were used to develop QSAR models. To perform the QSAR studies, the whole data set (44
molecules) was randomly divided into a training set (35 molecules, 80%) for model generation and a test set (9
molecules, 20%) for external evaluation of the generated models.

Table 1: Chemical structure of oxindole derivatives used in this study and their inhibitory activity data
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2.2. Descriptor preparation and Optimization methods
The 2D structures of all studied compounds were sketched employing ChemBio Draw Ultra 12.0 [20]. The
energy minimization was carried out using molecular mechanics (MM+) followed by quantum-based semi-
empirical (AM1) method employing Hyperchem 8.0 software [21]. The software Gaussian 98, Hyperchem 8.0,
and Dragon (version 5.5) were used to calculate molecular descriptors [22]. For example, the highest occupied
molecular orbital energy (EHOMO), the lowest unoccupied molecular orbital energy (ELUMU), as well as the total
dipole moment (µ) were calculated by Gaussian 98. Furthermore, some chemical parameters including
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molecular volume (V), hydrophobicity (logP), molecular surface area (SA), molecular polarizability (MP),
hydration energy (HE) were computed employing Hyperchem 8.0. Dragon software provides a large domain of
various descriptors such as constitutional, topological, empirical, 2D autocorrelation, geometrical, aromaticity
index, atom-centered fragments, functional group counts, topological charge index, molecular properties and
charge descriptors for each molecule [22]. Moreover, according to the equations proposed by Thanikaivelan et
al., hardness, softness, electronegativity, and electrophilicity were calculated [23]. Some of these descriptors are
depicted in Table S1 in the supplementary file.

2.3. Molecular docking procedure
Molecular docking analysis was carried out using an in-house batch script (DOCKFACE) to run AutoDock 4.2
and Vina in parallel mode automatically [24]. MGLTools 1.5.6 was used to convert the output structures to
PDBQT [25]. The 3D crystal structure of EphB4, a surrogate receptor tyrosine kinase (PDB ID:4AW5), were
obtained from the protein data bank (http://www.rcsb.org/) [12]. Regarding the preparation of the protein, co-
crystallized ligand and water molecules were removed from the crystal structure using Accelrys DS Visualizer 4.
Then, missing hydrogens were added, nonpolar hydrogen atoms were merged, Kollman charges, and AD4 atom
types were assigned using AutoDock Tools [26]. Subsequently, the ligand was prepared by addition of Gasteiger
partial chargers and merging the nonpolar hydrogen atoms. The grid box of dimensions 45×45×45 A° with a
grid spacing of 0.375 A° was generated by the auxiliary program AutoGrid 4.0 using the x, y, and z coordinates
of the active site. The Lamarckian Genetic Algorithm (LGA) was applied to perform the docking calculations
[27]. For the LGA method, the number of runs was set to 100 and the number of population was set to 150. The
binding visualization and further ligand-receptor interactions were performed using PyMOL, Autodock tool
program and VMD software [28, 29].

The internal validation of the docking protocol was performed by self-docking of the crystallized ligand to the
binding pocket of the receptor. The root-mean-square deviation (RMSD) value was calculated between the
docked and crystalized ligand to evaluate the accuracy of the docking protocol. The RMSD value between the
crystalized and redocked conformations was less than 2 Å.

2.4. QSAR model development
Two different regression methods were developed and used as QSAR models: (1) simple multiple linear
regression with stepwise variable selection (MLR) and (2) Genetic algorithm–partial least squares (GA-PLS).
These well-known methods are commonly used in QSAR analysis [30]. In QSAR procedure, various approaches
can be used to obtain many descriptors, but selecting the best of them is crucial because these descriptors
must contain all the essential structural details of compounds. Here, using the SPSS statistics 18.0, stepwise
selection and variable elimination were used to obtain a final descriptor set for QSAR modeling.

2.5. Model validation
Model validation is a critical stage in the development of a reliable model. Leave-one-out (LOO) cross-validation
(CV) is a powerful tool in the GA–PLS and MLR methods that consider the potential and predictive ability of the
model. If the following conditions are satisfied, the QSAR model is called predictive: R2>0.6, Q2>0.6 and R2

pred>

0.5 (30). The higher R2 and Q2 values indicate the better prediction ability and more robustness of the model
[31]. In this study, both GA–PLS and MLR methods were validated by the Leave-one-out cross-validation
approach to check their predictive ability using MATLAB 2013 software.
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2.6. Applicability domain
The applicability domain (AD) is a principle key in creating the QSAR model, and it must be quantified before
predicting a collection of molecules. Therefore, the predictions of only those compounds that fall into the
applicability domain of the model might be considered reliable. The leverage values for each compound were
used to evaluate the applicability domain. Furthermore, the Williams plot was used to show standardized
residuals versus leverage values (h). According to the Williams plot, the obtained GA-PLS and MLR models were
reliable if the leverage value (h) of each compound in the data set was lower than the warning leverage value
(h*). In other words, prediction must be considered unreliable for compounds with a high leverage value (h > h*).
The warning leverage value (h*) is generally fixed at 3(k + 1) ⁄ n, where k is the number of the predictor variables
and n is the number of training set compounds) [32–34].

2.7. In Silico Drug-Likeness, Bioavailability, Toxicology
Prediction and Target identification
Nowadays, the assessments of pharmacokinetics and bioavailability become more important in the drug
discovery process. Hence, in this work, the ADME (absorption, distribution, metabolism, and excretion)
properties, drug-likeness (Lipinski’s rule of five), and oral bioavailability of the 10 best-predicted compounds
were calculated and compared with those of sunitinib as a control drug. The drug-likeness properties and ADME
profiles were calculated through the SwissADME web tool (http://www.swissadme.ch/) [35]. The human
intestinal absorption (HIA) and blood–brain barrier penetration (BBB) properties of ADME were predicted using
BOILED-Egg graphical model in the SwissADME web tool [35]. Additionally, the toxicity which is one of the key
ingredients in medicine was predicted by the admetSAR online tool that is available at
http://lmmd.ecust.edu.cn/admetsar2 [36, 37].

Target identification is an essential step in screening the best and effective compounds in the modern drug
design process. We used SwissADME online tool for target prediction of selected compounds which is
accessible through the http://www.swisstargetprediction.ch/ server [38].

3. Results And Discussion

3.1. QSAR analysis

3.1.1. MLR modeling
First, various descriptors were used in stepwise multiple linear regression (MLR) analyses, then the MLR
equation was obtained from the calculated descriptors. As shown in Table 2, the obtained model provided an
acceptable predictive performance as confirmed by statistical parameters such as R2 value of 0.73, R2

p value of
0.67 for the test set, standard error of regression (SE) value of 0.59, variance ratio (F) value of 14.7 at specified
degrees of freedom, Q2 value of 0.67, Cvcv value of 10.08 and root mean square error of cross-validation
(RMScv) value of 0.7. According to the MLR model, the connectivity indices (X5AV, X3A), 2D autocorrelation
(MATS6m, MATS1e), geometrical (G(F.i .F)), geometrical descriptor (SPAM), atom-centered fragments (H-046)
and constitutional indices (nN) descriptors influenced the kinase inhibitory activity of the studied structures.
The obtained MLR equation and its results are shown in Table 2.
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Table 2. MLR analyses results

3.1.2. GA-PLS method
In the GA-PLS method, unlike MLR analysis, PLS analysis ignores the multicollinearity problem in the
descriptors. In GA-PLS modeling, a genetic algorithm was used to find the most helpful set of descriptors. It is
an essential step in QSAR analysis because the selection of relevant descriptors directly relates to the predicted
inhibitory activity values. In our work, the GA–PLS method was able to select the best descriptors for building
the QSAR model. The details of the descriptors and the statistical results of the model obtained from GA-PLS
method are shown in Table 3. As can be seen, a combination of 2D autocorrelation (ATS1m, GATS5v),
information content index (IC1), topological index (MAXDN), geometrical descriptor (SPAM) and quantum
chemical descriptor (softness), selected by GA-PLS approach, were responsible for the kinase inhibitory activity
of oxindole analogs.

The obtained GA-PLS model showed very high statistical quality parameters (i.e., R2 value of 0.8284 and Q2

value of 0.7175). The predictive ability of the obtained model was evaluated by five external test set molecules.
The predictive R2 value for the test set was found to be 0.79, which indicated the great predictive ability of the
model. A detailed statistical results of the two generated models by GA-PLS and MLR methods are shown in
Table S2. Comparison of statistical results of these two models indicates the higher predictability and accuracy
of the GA-PLS model to the MLR model.

Table 3: GA-PLS results

3.2. Application domain of the selected GA-PLS model
The William plot for the applicability domain of GA-PLS model is displayed in Figure 3. This plot was acquired
using the leverage approach to define the applicability domain of the model. As shown in Figure 3, all values of
the training set and test set compounds were lower than the warning h* value of 0.6, indicating the good
predicting ability of the final model. Hence, new compounds with enhanced tyrosine kinase inhibitory activity
could be designed using GA-PLS model.

3.3. Docking Studies
With the aim of exploring the possible binding modes of TKIs to the tyrosine kinase active site and obtaining
their crucial binding interactions, 44 TKIs were docked into the active site of the tyrosine kinase enzyme (PDB
ID: 4AW5). Before docking, the reliability of the docking method and parameters was evaluated by redocking the
original co-crystallized ligand into the binding pocket.
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As shown in Figure 4A, the best redocked pose and the original structure of the co-crystallized ligand were
superimposed well with each other. Additionally, the RMSD value between them was 0.33 Å, confirming the
reliability and accuracy of the docking method employed in this study. An H-bond was found between the
oxindole carbonyl group of co-crystallized ligand and Gly98 residue (Figure 4B). Hydrogen bond and
electrostatic interactions were also found between the piperidine ring and Glu140 and Asp234, respectively.

All TKIs were then docked into the active site applying the same docking parameters. The ranking order of the
inhibitory activity (pIC50 values) were found to be in accordance with the docking scores (Figure 5), which
further indicated the reliability of the employed docking algorithm. The estimated free binding energy values
(ΔGbind; kcal/mol) and the possible binding mode of this compound with the key amino acid residues at the
active site of the enzyme are summarized in Tables 1, S5 and S6.

As can be seen from Table1, the studied molecules were classified into four different classes based on their
structures. Accordingly, their docking results have changed with these structural changes. The binding energy
values (ΔGbind) for the best-docked poses of the class 1 (6a-6w), class 2 (7a-7j), class 3 (8a-8e) and class 4 (8f-
8k) compounds were within the range of -7.34 to -10.53 kcal/mol, -9.29 to -10.77 kcal/mol, -7.53 to -11.05
kcal/mol and -9.63 to -10.46 kcal/mol, respectively. Based on the results, class 2 and 3 compounds possessed
the lowest docking binding energies. Therefore, the docking results of compounds 7g, 7j, 8b, and 8e with the
lowest binding energy among the 44 compounds were chosen for further binding mode analysis between
protein and ligands.

It was noted that the nitrogen and oxygen atoms of oxindole core and the nitrogen atom of benzimidazole
group of all four compounds formed hydrogen bonding contacts with Glu170, Phe171 and Met172, respectively,
which indicated the remarkable contribution of these interactions for the binding affinity (Figures 6 and S1). For
compounds 7g and 7j, other CH---O interactions were observed between the sidechain group on the nitrogen
atom of piperidine ring and the oxygen atom of Arg220, Asn221 and Asp234. Additionally, the piperidine ring in
the three studied compounds 7g, 7j, and 8b formed CH---O interactions with Ser233.

3.3. Design of novel potent compounds
According to the information obtained from the developed QSAR models (MLR and GA-PLS) and the binding
mechanisms of molecular docking, 44 compounds were proposed as novel tyrosine kinase inhibitors. The main
strategy in the design of these novel inhibitors was the skeleton modification of the most potent compounds
(8a-8e) and (8f-8k) via bioisosterism principle. The inhibitory activities of the newly designed compounds were
predicted by the derived MLR and GA-PLS models and the results are listed in Table S3. From the designed
compounds, molecules 9i, 9j, 9k, 9m, 10j, 11b, 11e, 11h, 11k, and 11m showed equal to or higher predicted pIC50

values than compounds (8a-8e) and (8f-8k) (Figure 7).

To explore the binding modes of the novel designed compounds, they were docked into the binding site of
tyrosine kinase enzyme. The docking score of all newly proposed compounds is shown in Table S3 as well as
the binding mode details of 12 of them are listed in Table S4. Based on their structures, the designed
compounds can be divided into three groups (9a-9p), (10a-10k), and (11a-11m). Hence, the docking results were
affected by structural changes in these compounds. As expected, compounds 11a-11m showed better docking
scores than those of other designed compounds. Moreover, all proposed compounds of group 11a-11m showed
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lower binding energy values than that of sunitinib as the control drug and some of them displayed equal and
even better binding energy values than that of co-crystalized ligand.

The binding interactions of Sunitinib and new compounds 9i, 9j, 9m, 11b, 11e, 11j, and 11k in the active pocket
of tyrosine kinase are shown in Figures 8 and S2-S4. The docking results suggested that most of the designed
compounds had a common binding mode similar to that of the most potent compounds (8a-8e) and (8f-8k). As
shown in Figure 8A, there is a CH---O interaction between Sunitinib and Glu170, further indicating the crucial role
of Glu170 in stabilizing ligands in the active site of enzyme. The designed compound 9i formed two H-bond
interactions with Glu170 and Met172. Similar to compounds 7a-7j, the piperidine ring and the side chain group
on the nitrogen atom of the piperidine ring of compound 9i participated in CH---O interactions with Arg220 and
Asn221. The docking findings also indicated that, in addition to H-bonding, hydrophobic interactions with
nonpolar amino acids and arene-H interactions play a significant role in the stability of the ligand-protein
complex.

To investigate the specificity of the newly proposed compounds toward the tyrosine kinase enzyme, the target
identification was carried out using SwissADME online tool. Table S5 summarizes the results of this prediction.
Among these new structures, compounds 9j, 9k, 9m, 10j, 11b, and 11e demonstrated the highest probability to
act as kinase inhibitors with similarity of 93.3%, 66.7%, 80%, 60%, 66.7% and 60% to previously reported kinase
inhibitors, respectively. It was notable that SwissADME showed 80% similarity with sunitinib as a control drug,
which could indicate the acceptable specificity of our proposed compounds.

3.4. In Silico Drug-Likeness, Bioavailability, Toxicology
Prediction and, Synthetic accessibility
The druggability of the newly designed compounds was analyzed by assessing their physiochemical properties
and by applying Lipinski's rule of five using SwissADME web tool and compared with that of sunitinib (Table 4).
It could be seen that most of the selected compounds successfully passed Lipinski's five rules. Compounds 9i,
11h, 11k, and 11m had one violation of Lipinski's rule of five, and that was their molecular weight.
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Table 4
In silico Lipinski’s rule of five results for 10 selected designed compounds

Compound Molecular

weight

(≤500Da)

Oral

Bioavailability:

TPSA(≤140Å)

H- Bond

Donor

(≤5)

H- Bond

Acceptor

(≤10)

logP

(≤5)

Rotatable

Bond

(≤10)

Rule of 5

violation

Sunitinib 398.47 77.23 3 4 3.55 8 0

9i 536.62 96.55 2 6 4.01 8 1

9j 463.57 73.05 3 3 3.47 5 0

9k 480.51 96.55 2 5 3.26 5 0

9m 473.53 102.93 4 5 2.16 6 0

10j 434.56 114.18 3 4 2.85 5 0

11b 446.52 70.25 2 5 3.44 5 0

11e 476.52 78.09 2 6 2.86 5 0

11h 538.59 78.09 2 6 3.32 6 1

11k 587.50 98.32 3 5 3.39 6 1

11m 504.58 103.87 2 6 2.99 6 1

Table 5 shows the physiochemical properties of the selected newly designed compounds. As shown, most of
the compounds have moderate water solubility and some of them are poorly soluble in water. Although all
compounds except compound 11k displayed high gastrointestinal absorption, most did not show brain
penetration. Half of the compounds depicted that they could act as cytochrome CYP2D6 inhibitors like the
control drug, indicating that these compounds might not easily undergo oxidation and hydroxylation in the
phase-1 metabolism. The synthetic accessibility of all new compounds were lower than 5, suggesting that they
were relatively easy to be synthesized.
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Table 5
Pharmacokinetic parameters of the best selected compounds

Compounds Water
solubility1

GI
absorption

BBB
permeant

CYP2D6
inhibitor

P-gp
substrate

Lipophilicity

Log P
o/w

Synthetic
accessibility2

Sunitinib Soluble High Yes Yes Yes 3.55 3.58

9i Moderately High No Yes Yes 4.01 4.08

9j Poorly High Yes Yes Yes 3.47 4.21

9k Moderately High No Yes Yes 3.26 3.64

9m Poorly High No No No 2.16 3.61

10j Moderately High No Yes Yes 2.85 3.83

11b Moderately High Yes Yes Yes 3.44 3.71

11e Moderately High No No Yes 2.86 3.74

11h Poorly High No No No 3.32 4.11

11k Poorly Low No No No 3.39 4.15

11m Moderately High No No Yes 2.99 3.98

1-log S scale: insoluble < -10 < poorly < -6 < poorly < moderately < -4 < soluble < -2 very < 0 < highly

2-range: 1= very easy, 10= very hard

Bioavailability radar plots depicted the oral bioavailability of the selected compounds (Figure 9). Orally
bioavailable compounds were predicted to be 9i, 9j, 10j, 11b, 11e, 11h, and 11m. compounds 9k and 9m showed
one off-shoot relative to insaturation (INSATU), and compound 11k showed four off-shoot relatives to
insaturation (INSATU), insolubility (INSOLU), size and Lipophilicity (LIPO) indicated that they might have poor
physicochemical properties for oral bioavailability.

The toxicity risk calculation is critical in the early drug design phase for screening the safest and most effective
drugs or compounds. The toxicity of 10 selected compounds was predicted using the admetSAR online tool
[37]. Table S6 shows the toxicity prediction results. None of the compounds showed carcinogenicity, eye
corrosion, or eye irritation. Compound 9m was predicted to cause Ames mutagenesis. All Compounds and
control drug (Sunitinib) were determined to be hepatotoxic, however, the toxicity range of the selected
compounds was better than that of Sunitinib. According to the US EPA classification, all compounds were
predicted to have class III acute oral toxicity, which means that their LD50 values are greater than 500 mg/kg but
less than 5000 mg/kg. These computational pharmacokinetics and bioavailability information could improve
the success rate of newly proposed compounds.

Conclusion
In this work, a molecular modeling study on a series of oxindole derivatives has been carried out employing 2D-
QSAR, molecular docking and ADMET property analysis to investigate the structural requirements for inhibition
of tyrosine kinase enzymes. Two different QSAR modeling methods, MLR and GA-PLS, were used to develop



Page 12/20

QSAR models by 35 molecules as training set and 9 molecules as the test set to validate these models. The
QSAR model obtained from GA-PLS approach was superior to the MLR version and had more powerful
predictive ability. From the molecular docking, the H-bond interactions with residues Glu170, Phe171, and
Met172 contributed mainly to the inhibitory activity of the studied compounds. Furthermore, residues Arg220,
Asn221 played an important role in stabilizing inhibitors in the tyrosine kinase active site. Based on information
derived from QSAR models and molecular docking studies, 44 novel potential inhibitors with improved
theoretical inhibitory activity were designed by modification of the oxindole scaffold. According to their
predicted pIC50 values and docking scores, ten newly designed compounds 9i, 9j, 9k, 9m, 10j, 11b, 11e, 11h, 11k,
and, 11m were selected and studied through molecular docking and their ADMET properties were investigated
comprehensively. The docking results further verified the crucial role of Glu170, Phe171, Met172, Arg220, and
Asn221 in binding interactions. Furthermore, ADMET studies suggested that the six proposed compounds 9i, 9j,
9m, 11b, 11e, and 11h had favorable drug-like properties, pharmacokinetic parameters and toxicological profiles
as novel tyrosine kinase inhibitors. These selected compounds, in particular, proved to be a helpful starting
point for the development of new synthetic oxindole derivatives with improved inhibitory activity. Overall, these
results might provide and insight into some instructions for the rational design of more potent tyrosine kinase
inhibitors.
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Figure 1

A) Sunitinib structure. B) Positions of rings A, B, and C in the indolin-2-ones structure.
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Figure 2

Plots of predicted pIC50 versus experimental pIC50 values of the training and test set compounds retrieved by
the MLR (A) method and (B) GA-PLS method.

Figure 3

The Williams plots for the calibration set and external prediction set for kinase inhibition A) GA-PLS model B)
MLR model.
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Figure 4

The redocked results of co-crystallized ligand in the binding site of tyrosine kinase enzyme (PDB ID = 4AW5).
(A) Superimposition of co-crystallized ligand conformation (green) with the best redocked conformation
(yellow). (B) Binding modality of the co-crystal with the key residues in the active site of 4AW5.

Figure 5

Plot of correlation between experimental pIC50 values and docking binding energy

Figure 6
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Binding modes of compounds 7g (A) and 7j (B) in the active pocket of tyrosine kinase enzyme

Figure 7

Structures of the compounds 9i, 9j, 9k, 9m, 10j, 11b, 11e, 11h, 11k, and 11m.

Figure 8

Docking results of control drug Sunitinib (A) and newly designed compound 9i (B) in the active site of tyrosine
kinase enzyme.
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Figure 9

The bioavailability radar plots of compounds 1–10 and control drug Sunitinib. The pink area shows the ideal
range for each parameter. Lipophilicity (LIPO): -0.7 < XLOGP3 < 5.0; SIZE: 150 g/mol <MW< 500 g/mol; polarity
(POLAR): 20 Å2 < topological polar surface area (TPSA) < 130 Å2, and insolubility (INSOLU): 0 <LogS < 6;
INSATU (insaturation): 0.25 < fraction of carbons in sp3 hybridization < 1; FLEX (flexibility): 0 < number of
rotatable bonds < 9. The radar plots were obtained with the support of the SwissADME web tool.
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Figure 10

BOILED-Egg plot of 10 selected designed compounds and the control drug Sunitinib. Spots on the yellow area
of the plot represent passive diffusion molecules through the BBB. In contrast, points in the white space of the
plot are predicted to be passively absorbed by the gastrointestinal tract (HIA). Blue dots (PGP+) indicate the
molecules expected to be effluated from the central nervous system (CNS) by P-glycoprotein. In contrast, the red
ones (PGP-) show the molecules predicted not to be effluated from the CNS by P-glycoprotein [37].
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